
1

Multi-Task Learning as enabler for General-Purpose
AI-native RAN

Hasan Farooq, Julien Forgeat, Shruti Bothe, Kristijonas Cyras and Md Moin
Ericsson Research, Santa Clara, 95054 CA, USA

{hasan.farooq, julien.forgeat, shruti.bothe, kristijonas.cyras, md.moin.uddin.chowdhury}@ericsson.com

Abstract—The realization of data-driven AI-native architecture
envisioned for 6G and beyond networks can eventually lead to
multiple machine learning (ML) workloads distributed at the
network edges driving downstream tasks like secondary carrier
prediction, positioning, channel prediction etc. The independent
life-cycle management of these edge-distributed independent mul-
tiple workloads sharing a resource-constrained compute node
e.g., base station (BS) is a challenge that will scale with denser
deployments. This study explores the effectiveness of multi-task
learning (MTL) approaches in facilitating a general-purpose AI-
native Radio Access Network (RAN). The investigation focuses
on four RAN tasks: (i) secondary carrier prediction, (ii) user
location prediction, (iii) indoor link classification, and (iv) line
-of-sight link classification. We validate the performance using
realistic simulations considering multi-faceted design aspects of
MTL including model architecture, loss and gradient balancing
strategies, distributed learning topology, data sparsity and task
groupings. The quantification and insights from simulations reveal
that for the four RAN tasks considered (i) adoption of customized
gate control-based expert architecture with uncertainty-based
weighting makes MTL perform either best among all or at par
with single task learning (STL) (ii) LoS classification task in MTL
setting helps other tasks but its own performance is degraded (iii)
for sparse training data, training a single global MTL model is
helpful but MTL performance is on par with STL (iv) optimal
set of group pairing exists for each task and (v) partial federation
is much better than full model federation in MTL setting.

Index Terms—Multi-task Learning; RAN, mixture of experts;
partial federated learning.

I. INTRODUCTION

AI-native RAN is a trending concept that is spearheading
the evolution of wireless mobile networks. This concept makes
AI pervasive in the entire RAN architecture. The reason
being AI’s pronounced success for virtually every RAN de-
sign/optimization aspect [1]. These AI driven RAN workloads
can be deployed at the edge of networks e.g., centralized unit
(CU)/distributed unit (DU). Edge-deployed ML workloads, in
contrast to traditional cloud-centric architecture, are appealing
for fulfilling the latency, scalability, reliability, and privacy
needs of beyond-5G applications. Additionally, they present
an attractive solution for privacy-focused multi-vendor deploy-
ment scenarios and data regulatory compliance.

Nevertheless, a notable limitation in the majority of AI-
driven RAN studies is the tendency to address specific RAN
problems, features, or use cases in isolation. In such cases, AI
is often customized to suit a particular use case, referred to as
specialized AI models. Implementing solutions with specialized

Positioning

LoS Link Classification
Secondary Carrier Prediction

Positioning

LoS Link Classification

Secondary Carrier
Prediction

Indoor Link
Classification

Indoor Link Classification

Specialized AI-native RAN General Purpose AI-native RAN

Fig. 1: Specialized AI-native RAN vs General AI-native RAN.

AI models in live RANs may result in an uncontrolled prolifer-
ation of specialized ML models per downstream task (radio fea-
ture) that will increase both RAN complexity and operational
expenditure. In particular, the independent life-cycle manage-
ment (LCM) of these edge-distributed independent multiple
workloads sharing a resource-constrained compute node (BS,
CU/DU) will be challenging in terms of availability of labelled
data and compute-memory resources that will scale with denser
deployments. Contrary to this, general purpose AI-native RAN
vision is much more desirable wherein a single AI algorithm
would have the capability to learn and manage a wide spectrum
of networking operations, spanning the whole protocol stack.
Achieving this involves designing an AI algorithm that can
concurrently control multiple RAN tasks (Fig. 1).

Multi-task learning (MTL) is one such paradigm that can be
used to train a ML model to perform multiple RAN related
tasks. MTL jointly learns multiple related tasks using a single
model. MTL draws inspiration from human learning, where
individuals frequently leverage knowledge acquired from prior
tasks to facilitate the learning of a new task. MTL has been
shown to improve parameter-efficiency and inference speed
compared with learning a separate model for each task. It can
also enable features for one task to be available for another
and emphasizes generalizable features that are common across
tasks. With an MTL approach, different tasks need to share
some common structure otherwise it is usually better to use
single-task learning. Fortunately, in the context of RAN, there
are many tasks with shared structure that may also need
concurrent execution. Even if tasks are seemingly unrelated,
the laws of physics that govern radio propagation are same for
all tasks. In this study, we aim to address three key research
questions: (i) What is the impact of the design space of state-
of-the-art MTL approaches in terms of model architecture and
weighting strategies on the overall performance of RAN-related

Copyright © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works by sending a request to pubs-permissions@ieee.org.

ar
X

iv
:2

40
4.

15
19

7v
1

 [
cs

.N
I]

 5
 A

pr
 2

02
4

tasks? (ii) In various scenarios, which among the three modes
of distributed learning topology—local model, global model, or
partial federated model—is most appropriate? (iii) How does
the sparsity of training data and the different groupings of RAN
tasks influence the performance of MTL?

A. Related Work

Some works have used ML for RAN tasks considered in
this paper, such as [2] for secondary carrier prediction, [3] for
location prediction, [4] for indoor/outdoor link classification,
and [5] for LoS link classification. However, the conventional
approach in these AI for RAN studies is to design a specialized
independent ML (STL) model for each task. As opposed to
STL, MTL is a promising paradigm that has been largely
studied in the domain of computer vision and natural language
processing related use-cases only as evident from survey in
[6]. Recently very few works have explored MTL paradigm
in context of mobile networks like in [7] which has explored
MTL to address two RAN use cases, handover management
and initial modulation selection. Likewise the work in [8] used
MTL for predicting user environment (indoor or outdoor) and
mobility (low, medium or high) state using drive test data. The
work in [9] has used MTL to simultaneously learn modulation
and signal classification tasks. All of these studies have used
neural network (NN) based hard parameter sharing architec-
ture without accounting for imbalanced losses or distributed
learning topology that can have substantial effect on learning
performance. To the best of authors’ knowledge, performance
analysis of state-of-the-art MTL approaches for RAN tasks
considering its key design aspects like model architecture, loss
balancing, distributed learning topology is missing in literature.
This paper aims to fill this gap.

B. Contributions

The contributions of this paper can be summarized as
follows:

1) We demonstrate how to design MTL approach to improve
RAN related task performance by performing simulations
to evaluate the behavior of four RAN tasks in multi-task
learning context considering MTL model architecture,
loss and gradient balancing strategies, and data sparsity.

2) We demonstrate how MTL performance varies when
training independent MTL models, a single global MTL
model and partial federated MTL model with two vari-
ants depending upon the order in which local parameters
are updated.

3) We present experimental results on how different group-
ing combinations of tasks affect overall MTL perfor-
mance.

The rest of the paper is organized as follows: Section II
describes the MTL paradigm in context of four RAN use-
cases. The performance analysis and associated discussion is
presented in Section III while Section IV concludes the paper.

II. MULTI-TASK LEARNING FOR RAN DISTRIBUTED
WORKLOADS

In the context of T learning tasks, each having their own
dataset Dt = (x, y)t where x are input features, y are labels
and L is the model loss. Each task is characterized by a tuple
{p(x)t, p(y|x)t, Lt} and each task should differ in at least one
of them. For the scope of this paper, we have considered four
ML driven RAN tasks running in each of the base stations:

1) Secondary Carrier Prediction (SC): user equipments
(UEs) use AI model to predict coverage on the higher
band based on measurements at the serving lower band
carrier. This avoids the need to perform measurements on
a secondary carrier, thus reducing the energy consump-
tion, throughput degradation and the delay.

2) Positioning (PS): location estimation/prediction enables
advanced Location-based Services (LBS) and is also
helpful for emergency (911) scenarios. It is also helpful
in beam management (e.g., reducing search space of
initial beam search procedure) and thus, improves the
quality of service experienced by users.

3) Indoor/Outdoor link Classification (IN): It makes it pos-
sible to exploit the environmental context to enhance
network operations, in terms of better QoE e.g., handover
to indoor small cells, slice selection etc.

4) LoS/NLoS link Classification (LOS): identification of
LoS/NLoS links in higher bands e.g., mmWave commu-
nication is important for range-based localization since
utilizing NLoS measurements directly as LoS measure-
ments may result in large localization errors.

We have framed the MTL problem as follows: given the
reference signal received power (RSRP) on LTE carrier for
all cells, the objective is to predict: (a) RSRP on NR carrier
for all cells (b) distance to BSs (c), classify if UE is indoor
and (d) classify if user equipment (UE) has LoS link on
NR carrier for all cells. In real networks, this dataset can be
built by BSs using 3GPP standardized Minimization of Drive
Test reporting (MDT) feature. BSs receive MDT reports from
UEs that have information about their measured RSRPs for
both intra and inter-frequency bands carriers (input features,
secondary carrier prediction labels) and using it together with
geographical datasets containing 3D Earth terrain and building
layouts of the city to capture labels for location prediction
and LoS link classifications tasks. Once the MTL model is
trained, it can run in BSs requiring only intra-frequency radio
measurements from UEs and inferring labels for the four tasks
to be consumed in downstream tasks e.g., instructing UE to
handover to a specific beam. In our scenario, the input features
distribution would be the same across all tasks, as the RSRP
levels for intra-frequency cells serve as the input features
for each task. However, there is variation in the conditional
distribution of labels given input features across tasks, as the
labels differ among them. Loss function is also different across
the tasks.

Let each task t has a training dataset Dt, MTL aims to learn
a model on Dt to learn T tasks together to improve the learning

of a model for each task by using knowledge in all or some of
other tasks. The most common way of doing MTL is through
hard parameter sharing wherein NN parameters are split into
task-sharing parameter θsh and task-specific parameters θtsk.
Let Lt(Dt; θ

sh, θtsk) denote the average loss on Dt for task t
using (θsh, θtsk). The objective function of MTL is:

min
θsh,θtsk

T∑
t=1

ωtLt(Dt; θ
sh, θtsk) (1)

where ωt is the task weight for task t. It makes sense to share
some network structures, so each task doesn’t need to learn
everything from scratch independently. While hard parameter
sharing (HPS) [10] serves as the foundational and frequently
utilized structure in MTL, it can encounter challenges with
negative transfer. This is attributed to potential conflicts among
tasks, as parameters are shared directly. Some tasks have
loss functions on different scales (classification vs regression),
Some tasks are asymmetric in terms of importance, difficulty,
data availability or noise.

To cope with these challenges, we formulated the research
problem as follows: How to design MTL approach to improve
RAN task performances by analyzing the state-of-the-art MTL
approaches characterized by a tuple of {architecture, weighting,
distributed learning topology}. Searching for an optimal com-
bination of all these elements of tuple (optimization variables)
with all of their possible search space is prohibitively expen-
sive. Therefore for holistic optimization of MTL, we resorted
to heuristic strategy by first exhaustively searching all possible
combinations of architecture and weighting keeping distributed
learning topology fixed. With the best performing combination
of architecture and weighting, all possible distributed learning
topologies are then evaluated in context of four RAN tasks.
The search space for these elements used in experiments are
described in next subsections.

A. Architecture

To deal with task conflicts we investigate three additional
MTL model architectures (a) MMoE [11], (b) Deselect-k [12]
and (c) CGC [13] (see Fig. 2). In MMoE, the approach
differs from having a single shared bottom network for all
tasks. Instead, it employs a set of bottom networks, referred
to as experts, along with a gating network for each task.
The gating networks learns to assign weights to the experts
on a per-example basis, and MMoE produces an output as
a weighted combination of these experts. This per-example
weighting mechanism enables distinct tasks to leverage the
experts in varying ways making it more flexible and capable
of capturing intricate relationships among tasks.

Dselect-k as opposed to MMoE uses sparse gates. CGC
differs from MMoE in that it incorporates both shared and
task-specific experts. Each expert module within CGC consists
of multiple sub-networks referred to as experts. Shared experts
in CGC focus on learning patterns that are common across
tasks, while task-specific experts are responsible for extracting
patterns specific to individual tasks.

STL HPS

MMoE CGC

Tower SC

Task SC

Tower PS

Task PS

Input

Tower IN

Task IN

Tower LOS

Task LOS

Tower SC

Task SC

Tower PS

Task PS

Input

Tower IN

Task IN

Tower LOS

Task LOS

G G G G

Tower SC

Task SC

Tower PS

Task PS

Input

Tower IN

Task IN

Tower LOS

Task LOS

G G G G

Input

Tower SC

Task SC

Input

Tower PS

Task PS

Input

Tower IN

Task IN

Input

Tower LOS

Task LOS

Fig. 2: MTL Architectures. Here blue box shows shared pa-
rameters and nodes named ’G’ are gates.

B. Weighting

In addition to architecture which decides which parame-
ters are shared and how to share, the other research thrust
is devising strategies to optimize MTL. Balancing multiple
training losses in MTL affects how task-shared parameters are
updated and so methods like (i) loss balancing and (ii) gradient
balancing are developed. Although, these two lines of research
have been pursued independently in literature as the opti-
mization methods are mainly related to the objective function,
while the design of the architecture is to learn relationships
between tasks. We in this work investigate loss balancing and
gradient balancing schemes combined with architectures to
cope with task negative correlation and further enhance MTL’s
performance. Instead of equally weighting (EW) all tasks
simultaneously, loss balancing methods aim at weighting task
losses computed dynamically according to different measures
such as homoscedastic uncertainty (UW) [14]. DWA [15] learns
to dynamically average task weighting over time by assessing
the rate of loss change for each task. GLS in [16] expresses
the total loss of a multi-task learning problem as the geometric
mean of individual task losses while RLW [17] uses normalized
random weights for the tasks.

From the gradient perspective, the update of task-sharing
parameters θ depends on all task gradients. Thus, gradient
balancing methods aim to aggregate all task gradients under
different constraints. For example, MGDA [18] formulates
MTL as a multi-objective optimization problem and directly
solves the optimal weights in every iteration by finding a
common descending direction among all the gradients via solv-
ing a quadratic programming problem. CAGrad [19] improves
MGDA by constraining the aggregated gradient to around
the average gradient. GradNorm [20] learns task weights by
constraining the gradient magnitude of each task to be similar.
PCGrad [21] projects the gradient of one task onto the normal
plane of the others if their gradients conflict while GradVac [22]
aligns the gradients regardless of whether the gradients conflict
or not. GradDrop ([23] randomly masks out the gradient values
with inconsistent signs.

C. Distributed Learning Topology

We also consider distributed learning mode depending upon
where training of MTL models happen within RAN context.

(a) local mode (MTL local, STL local) wherein each model
will reside in BS and have its own data and will train model
independently without sharing anything with centralized server,
(b) global mode (MTL global, STL global) wherein all sites’
data is aggregated into a global dataset at a centralized place
and a single global model is trained for all BSs, and (c) partial
federated approach wherein only the weights of shared layers
are used in federation. In this setting, eq (1) modifies to (2):

min
θsh,{θtsk

i }NBS
i=1

1

NBS

NBS∑
i=1

T∑
t=1

ωi,tLi,t(Di,t; θ
sh, θtski) (2)

where NBS is the total number of BSs. During each commu-
nication round (k = 1, 2, ..., K) of partial federation, the server
broadcasts the current global version of the shared parameters
(e.g., shared experts in CGC) to participants BSs. Each BS
uses the global shared representation part θsh received from the
server to join with the task-specific parameters θtski maintained
locally to obtain the local model. It then performs one or more
steps of (stochastic) gradient descent to update both the shared
parameters and the personal parameters (e.g., task specific
experts in CGC) and sends only the updated shared parameters
to the server for aggregation (Fig. 3). We explored two partial
federation algorithms FedAlt and FedSim [24] that differ in
way how local updates are performed:

• FedAlt: the BSs first update the personal parameters with
the received shared parameters fixed for τtsk head local
iterations and then update the shared parameters with the
new personal parameters fixed for τsh local iterations.

• FedSim: the BS makes τsh,tsk local gradient-based up-
dates to both its shared and the task-specific layers syn-
chronously.

In the beginning, we let the BSs run their MTL locally for
few epochs (τinital) and then start federation rounds that
showed to improve performance as compared to starting fed-
eration from start like in FedVanila benchmark we used in
our experiments. We explored hyper-parameters for FedAlt
and FedSim and found that FedAlt is more sensitive to its
hyper-parameter values. For FedSim best parameters were
{τinital = 10, τsh,tsk = 10,K = 9} while for FedAlt,
{τinital = 10, τtsk = 17, τsh = 1,K = 5}. For FedAlt,
keeping τsh smaller than τtsk gave better performance. We
also experimented by sharing task specific parameters of CGC
in federation rounds while keeping shared experts out but the
performance degraded. We also compared performance with
FedVanila in which all model parameters are averaged by
server.

III. RESULTS AND DISCUSSION

We generated the dataset from Ericsson propriety radio
network simulator with propriety 3D ray tracing propagation
model. We generated data from multiple city scenarios each
having three base stations. Each base station has three sectors
supporting one primary LTE and one secondary NR carrier.
The simulated area consisted of a 2 km x 2 km slice of large
cities from Europe, Asia and USA containing several buildings

!!",$% !!",&% !!",'!"%

!!"%($!!"%($!!"%($

!!",$% … !!",&% … !!",'!"%

"##$%#&'%
!!"%($

!!",&%

!)!%,&%

we
igh
ts

Tower SCP

Task SCP

Tower PS

Task PS

Input

Tower IN

Task IN

Tower LOS

Task LOS

G G G G

Tower SCP

Task SCP

Tower PS

Task PS

Input

Tower IN

Task IN

Tower LOS

Task LOS

G G G G

Tower SCP

Task SCP

Tower PS

Task PS

Input

Tower IN

Task IN

Tower LOS

Task LOS

G G G G

Fig. 3: Partial Federated MTL.

of varying heights causing scattering effects. Each base station
data was divided into training/validation and testing with ratio
60/20/20. The input features are intra-RSRP measurements of
all cells that will be same for all RAN tasks. The task labels
are:

1) Secondary Carrier Prediction (SC): Measured inter-RSRP
on secondary frequencies for all cells with dimension
1×Nfs

cells.
2) Positioning (PS): Distance of UE to all BSs with dimen-

sion 1×NBS .
3) Indoor/Outdoor link Classification (IN): Binary scalar

indicator if UE is indoor.
4) LoS/NLoS link Classification (LOS): Binary indicator if

UE has LoS link for each of the secondary carrier cells
with dimension 1×Nfs

cells.

where Nfs
cells is the number of secondary carrier cells. The

input features and output task labels for each of the BSs
of a city comprises of cell measurements for only that city.
For the MTL architectures and weighting strategies, we used
the implementations available in python open-source library
LibMTL [25]. The network simulation parameters are given
in Table I. Mean Squared Error (MSE) loss was used for SC
and PS with mean absolute error (MAE) as their validation
metric while binary cross entropy loss was used for IN and LOS
tasks with accuracy as their validation metric. For MTL model
training, we set training budget in terms of 100 epochs and
we used Adam optimizer (lr = 0.0001, momentum = 0.9), 512
layer size for shared parameters, batch size of 64 and number
of experts to be 2. Each expert was single layer feed-forward
network. Rest of the parameters used were set to default values
as provided by [25].

First, we explored the MTL design search space with dis-
tributed learning topology fixed to local mode. Each experiment
is repeated multiple times and averaged results among all BSs
across all four cities are reported. The box plot depicted in Fig.
4 illustrates the variability in values for the objective function
Ω = AccuracyIN + AccuracyLOS − MAESC − MAEPS

across all conceivable combinations of MTL model architec-
tures and weighting strategies. In this context, higher values
indicate better performance. Based on lower 25 percentile, it
appears that CGC with UW and HPS-GLS perform best among
all. CGC with UW had better convergence and therefore this

combination was chosen for rest of experiments. Next, we
evaluate the performance for all four RAN tasks considering
all modes of distributed learning and performance is shown
in Figs. (5-9) for held-out test set. The inset bar plot shows
percentage improvement as compared to using STL in local
mode.

For secondary carrier prediction task with MAE as metric
(Fig. 5), FedAlt (1.9% improvement as compared to STL
local) and FedSim (1.8% improvement as compared to STL
local) outperformed all others then comes MTL global and
MTL local. The performance of STL global is worst. Both
global based approaches (MTL global and STL global) have
faster convergence while FedVanila has slowest convergence.
In STL, the difference between global and local is much larger
than in MTL local and global. Both global and local based
MTLs performed better than STLs. For location prediction
task with MAE as metric (Fig. 6), MTL global showed best
convergence and outperformed all by large margins (9.6% im-
provement) and later followed by FedSim and FedAlt. For both
MTLs and STLs, global performed better than local. FedVanila
has slowest convergence and STL local is worst. Difference
between STL global and local is much larger than MTL local
and global. Overall globals are better than locals and MTL is
better than STL. For indoor link classification with accuracy
as metric (Fig. 7), MTL local is slightly better by STL local
(0.05% improvement). This is contrary to previous two where
globals performed better than locals. Both MTL global and
STL global have quick convergence to suboptimal value and
at end STL global and MTL global are worst. For LoS link
classification task and accuracy as metric (Fig. 8), STL local is
best followed closely by MTL local. This is different from pre-
vious three where MTL performed best than STLs. FedVanila
has unstable progression and slowest convergence. Both locals
are better than global while MTL and STL are almost on par.

Overall, MTL performs either best among all or on par
with STL. This is still an improvement as LCM costs are
reduced i.e., one model instead of managing multiple models.
Federation with partial model is better than with full model
parameters. For secondary carrier prediction, collaboration
through partial federation and for location prediction, collab-
oration through aggregating training data for global model or
sharing model weights in partial federation is helpful. Global
based approach works best for location prediction and for
secondary carrier prediction, it is either on par with local
(MTL local) or show degraded performance (STL global)

TABLE I: Network Simulation Parameters.

Parameter Value
Num of cities 4
Num of BSs 3 per city

Propagation model 3D ray tracing
LTE carrier 900 MHz
NR carrier 4.5 GHz
UE density 1K uniformly distributed UEs per snapshot

Num of snapshots 350 for four cities

while both classification tasks are better in local modes. One
possible explanation for this can be the influence of local
context. For location prediction, distance to base station is
the task label that directly affects the input features (RSRPs
at primary carrier) and therefore aggregating the dataset from
diverse environments helps to learn a better general model as
this mapping of UE-to-BS distance and RSRP is not heavily
influenced by the environment. For other three tasks, mapping
of input features to task labels serve as proxy of environment
and local context is hard coded in this relation. Therefore tasks
labels are highly influenced by the local context (e.g., layout
of buildings within a particular city will affect line of sight
and indoor probability as well as secondary carrier strength).
Therefore for these three tasks, site-specific model outperforms
as compared to aggregating the data samples from diverse cities
and base stations for training a general model that hurts the
model performance.

Next we experimented with 1% training dataset size. For
space brevity, we have only included visualization for SC
task. For secondary carrier prediction (Fig. 9), both globals
have quickest convergence by a large margin and outperform
all at the end (around 59% improvement as compared to
STL local). FedVanila is worst. FedSim is better than FedAlt
and FedVanila. Difference between global and local in STL is
almost same as for MTL. All federation based methods fall
behind the locals and globals. For location prediction, overall
trend was similar with MTL global outperforming all (27.3%
improvement as compared to STL local) followed very closely
by STL global and both have very quick convergence. For
indoor classification, both globals are better than locals (11.8%
improvement). For LoS link classification, both locals are better
than both globals. Both globals and FedVanila perform worse
than all while others are on par with each other. Overall with
small training dataset availability, globals perform better than
locals except in LOS where MTL is on par with STL. For first
three tasks, either training a single global model or independent
local models is best while for LOS local mode is best. When
compared to full dataset size trained model, the performance
is worse with models trained on sparse data as can be seen by
comparing y-axis of Fig. 5 and Fig. 9.

Lastly, we analyzed the effect of grouping of tasks and
their effect on MTL learning performances using CGC-UW
combination and keeping distributed learning fixed to local
mode. The convergence were almost on par with each other.
Overall,

1) For SC: grouping with PS and LOS outperform all
(2.09% improvement as compared to STL) and second
best is with PS (2.06%). Just having SC as STL is worst.

2) For PS: grouping with IN outperform all (8.02% im-
provement) and second best is with SC (7.38%). Just
PS is worst.

3) For IN: grouping with all is best (0.09% improvement)
and second best is grouping with SC, PS and IN (0.08%).
Just IN is worst.

4) For LOS: having it as STL outperformed all and followed

Fig. 4: Effect of MTL architectures and weighting strategies.

Fig. 5: Secondary Carrier prediction task performance.
Improvement over STL local = {MTL global: 1.31%,
MTL local: 1.2%, STL global: -4.12%, FedAlt: 1.89%, Fed-
Sim: 1.79%, FedVanila: -0.43%}

very closely by grouping it with SC and LOS. Grouping
together with PS and LOS is worst.

In addition to loss/accuracy metric, model sizes and commu-
nication costs are also important. MTL using CGC has 62650
trainable parameters while MTL using HPS has much less
(16406) trainable parameters. For comparison, STL has 9737,
6657, 5633 and 9737 trainable parameters for the four RAN
tasks respectively. Communication cost is highest in global
mode then comes FedVanila followed by FedSim and FedAlt
and least with local mode.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this work, we have benchmarked the performance of
state-of-the-art multi-task learning (MTL) approaches applied
to RAN related tasks. As per results, MTL was found to
perform either best among all or on par with STL. SC, PS
and IN tasks benefited from knowledge sharing (global model
or partial federation) while LOS performance degraded. With
sparse training data, collaboration through dataset aggregation

Fig. 6: Location Prediction task performance. Improvement
over STL local = {MTL global: 9.64%, MTL local: 6.83%,
STL global: 5.43%, FedAlt: 7.78%, FedSim: 7.81%, Fed-
Vanila: 3.62%}

for a single global model helped significantly but MTL was
found to be on par with STL. Federation with partial parameters
is much better than full federation with MTL model. The gain
of MTL can be further analyzed by devising a utility value
based on model performance and resource utilization costs. For
future work, we will investigate scenarios where UEs collect
some of the labels of these tasks at the same spatiotemporal
point and so labels for all tasks are not available as well as its
generalization ability for unseen tasks. We will also investigate
distributed algorithms to search for optimal MTL related hyper-
parameters of edge nodes (e.g., MTL architecture per node,
weighting strategy per node, task grouping per node, number
of experts, learning rate etc).

REFERENCES

[1] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of ma-
chine learning techniques applied to self-organizing cellular networks,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2392–2431,
2017.

[2] H. Ryden, J. Berglund, M. Isaksson, R. Cöster, and F. Gunnarsson,
“Predicting strongest cell on secondary carrier using primary carrier
data,” in IEEE WCNC Workshops, 2018, pp. 137–142.

Fig. 7: Indoor link classification task performance. Improve-
ment over STL local = {MTL global: -2.73%, MTL local:
0.05%, STL global: -3.5%, FedAlt: -0.06%, FedSim: -0.04%,
FedVanila: -0.83%}

Fig. 8: LoS link classification task performance. Improvement
over STL local = {MTL global: -0.8%, MTL local: -0.06%,
STL global: -0.88%, FedAlt: -0.12%, FedSim: -0.08%, Fed-
Vanila: -0.87%}

[3] Y. Gao, J. Chen, Z. Liu, L. Liu, and N. Hu, “Deep learning based location
prediction with multiple features in communication network,” in IEEE
WCNC, 2021, pp. 1–5.

[4] S. A. Hamideche, M. L. Alberi Morel, K. Singh, and C. Viho, “Indoor-
outdoor detection using time series classification and user behavioral
cognition,” in IFIP WMNC, 2022, pp. 7–14.

[5] A. Kirmaz, D. S. Michalopoulos, I. Balan, and W. Gerstacker, “Los/nlos
classification using scenario-dependent unsupervised machine learning,”
in IEEE 32nd PIMRC, 2021, pp. 1134–1140.

[6] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586–
5609, 2022.

[7] Z. Ali, L. Giupponi, M. Miozzo, and P. Dini, “Multi-task learning for
efficient management of beyond 5g radio access network architectures,”
IEEE Access, vol. 9, pp. 158 892–158 907, 2021.

[8] M. L. A. Morel, I. Saffar, K. D. Singh, and C. Viho, “Multi-task deep
learning based environment and mobility detection for user behavior
modeling,” in WiOPT, 2019, pp. 1–7.

[9] A. Jagannath and J. Jagannath, “Multi-task learning approach for auto-
matic modulation and wireless signal classification,” in ICC 2021 - IEEE
International Conference on Communications, 2021, pp. 1–7.

[10] R. Caruana, “Multitask learning: A knowledge-based source of inductive
bias,” in ICML, ser. ICML’93, 1993, pp. 41–48.

Fig. 9: Secondary carrier prediction task performance with
sparse data. Improvement over STL local = {MTL global:
59.39%, MTL local: -1.67%, STL global: -59.38%, FedAlt:
-9.31%, FedSim: -3.93%, FedVanila: -28.35%}
[11] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi, “Modeling task

relationships in multi-task learning with multi-gate mixture-of-experts,”
in Proceedings of the 24th ACM SIGKDD, 2018, pp. 1930–1939.

[12] H. Hazimeh, Z. Zhao, A. Chowdhery, M. Sathiamoorthy, Y. Chen,
R. Mazumder, L. Hong, and E. Chi, “Dselect-k: Differentiable selection
in the mixture of experts with applications to multi-task learning,” in
Advances in Neural Information Processing Systems, vol. 34, 2021, pp.
29 335–29 347.

[13] H. Tang, J. Liu, M. Zhao, and X. Gong, “Progressive layered extraction
(ple): A novel multi-task learning (mtl) model for personalized recom-
mendations,” in ACM RecSys, 2020, pp. 269–278.

[14] R. Cipolla, Y. Gal, and A. Kendall, “Multi-task learning using uncertainty
to weigh losses for scene geometry and semantics,” in 2018 IEEE/CVF
CVPR, jun 2018, pp. 7482–7491.

[15] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with
attention,” in 2019 IEEE/CVF CVPR, jun 2019, pp. 1871–1880.

[16] S. Chennupati, G. Sistu, S. Yogamani, and S. A. Rawashdeh, “Multi-
net++: Multi-stream feature aggregation and geometric loss strategy for
multi-task learning,” in 2019 IEEE/CVF CVPRW, jun 2019, pp. 1200–
1210.

[17] B. Lin, F. YE, Y. Zhang, and I. Tsang, “Reasonable effectiveness of
random weighting: A litmus test for multi-task learning,” in Transactions
on Machine Learning Research, 2022.

[18] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimiza-
tion,” in Advances in Neural Information Processing Systems, vol. 31,
2018.

[19] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu, “Conflict-averse gradient
descent for multi-task learning,” in NeurIPS, 2021.

[20] Z. Chen, V. Badrinarayanan, C.-Y. Lee, and A. Rabinovich, “Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks,” in ICML, 2018.

[21] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn, “Gradi-
ent surgery for multi-task learning,” in Advances in Neural Information
Processing Systems, vol. 33, 2020, pp. 5824–5836.

[22] Z. Wang, Y. Tsvetkov, O. Firat, and Y. Cao, “Gradient vaccine: Investi-
gating and improving multi-task optimization in massively multilingual
models,” in ICLR, 2021.

[23] Z. Chen, J. Ngiam, Y. Huang, T. Luong, H. Kretzschmar, Y. Chai, and
D. Anguelov, “Just pick a sign: Optimizing deep multitask models with
gradient sign dropout,” in Advances in Neural Information Processing
Systems, vol. 33, 2020, pp. 2039–2050.

[24] K. Pillutla, K. Malik, A. rahman Mohamed, M. G. Rabbat, M. Sanjabi,
and L. Xiao, “Federated learning with partial model personalization,” in
ICML, 2022.

[25] B. Lin and Y. Zhang, “Libmtl: A python library for multi-task learning,”
in arXiv preprint arXiv:2203.14338, 2022.

	Introduction
	Related Work
	Contributions

	Multi-Task learning for RAN distributed workloads
	Architecture
	Weighting
	Distributed Learning Topology

	Results and Discussion
	Conclusions and Future Research Directions
	References

