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Abstract

Reinforcement Learning (RL) is a powerful method for controlling dynamic sys-
tems, but its learning mechanism can lead to unpredictable actions that undermine
the safety of critical systems. Here, we propose RL with Adaptive Control Reg-
ularization (RL-ACR) that ensures RL safety by combining the RL policy with
a control regularizer that hard-codes safety constraints over forecasted system
behaviors. The adaptability is achieved by using a learnable “focus” weight trained
to maximize the cumulative reward of the policy combination. As the RL policy
improves through off-policy learning, the focus weight improves the initial sub-
optimum strategy by gradually relying more on the RL policy. We demonstrate
the effectiveness of RL-ACR in a critical medical control application and further
investigate its performance in four classic control environments.

1 Introduction

A wide array of control applications, ranging from medical to engineering, fundamentally deals
with critical systems, i.e., systems of vital importance where control actions have to guarantee no
harm to the system functionality. Examples include managing nuclear fusion [Degrave et al., 2022],
performing robotic surgeries [Diana and Marescaux, 2015], and devising patient treatment strategy
[Komorowski et al., 2018]. Due to the critical nature of these systems, ensuring control safety and
reliability is paramount.

Reinforcement Learning (RL), which identifies the optimum policy through interactions with the
environment, has seen substantial success in controlling complex systems [Silver et al., 2016, Ouyang
et al., 2022]. However, RL’s search for optimal policy involves trial-and-error which can violate
safety constraints in critical system applications [Henderson et al., 2018, Recht, 2019, Cheng et al.,
2019b]. Despite RL’s potential in critical domains [Degrave et al., 2022], it remains a challenge to
develop reliable RL-based algorithms for real-world “single-life” applications, where the control
must succeed from the first trial [Chen et al., 2022]. The existing safe RL algorithms either fail to
ensure safety during the training phase [Achiam et al., 2017, Yu et al., 2022] or require significant
computational overhead for action verification [Cheng et al., 2019a, Anderson et al., 2020]. As
a result, traditional control methods are often favored for critical applications, even though their
performance is heavily dependent on the availability of accurate environment models.

Here, we address RL’s safety issue when an estimated model of the environment can be built to derive
a control prior. This scenario is representative of many critical real-life applications [Hovorka et al.,
2002, Liepe et al., 2014, Hippisley-Cox et al., 2017]. Consider an application where drug doses are
prescribed to regulate a patient’s health status, which is a single-life setting where no harm to the
patient is tolerated. An estimated model can be built from other patients’ records to predict patient
responses and guarantee adherence to safety bounds (set based on clinical knowledge). However,
individual variations in new patients’ responses, which deviates from the estimated model, pose a
significant challenge in control adaptability and patient-treatment performance.
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We propose a method, RL with Adaptive Control Regularization (RL-ACR), that simultaneously
shows “safety” and “adaptability” properties required for critical applications in single-life settings.
The method interacts with the actual environment using two parallel agents. The first (safe) agent
is initialized with the estimated model and solves a constrained optimization that hard-codes safety.
The second (adaptive) agent is a model-free RL agent which enables adaptability by learning from
the actual environment interactions. Our proposed method introduces a focus mechanism that
dynamically learns to combine the two agents’ policies, allowing the RL agent to explore the
environment’s dynamics while correcting its effect with the safe agent’s policy until the optimum
policy is found.

The idea of combining the RL policy with another policy is implemented in Cheng et al. [2019b]
as well, but with a fixed weight which prevents convergence to the optimum policy. To the best of
our knowledge, RL-ACR is the first work that automatically learns to combine a safe policy with
the RL policy, allowing for unbiased convergence to the optimum policy. Furthermore, RL-ACR is
readily applicable to the environment and ensures safe control even during training, which is another
significant benefit that promotes applications of RL in critical systems.

The proposed algorithm is tested under extensive numerical experiments including comparisons
with different baseline methods. We demonstrate the performance of the RL-ACR in real-world
critical control with an important medical application. Estimated models are widely available for this
problem, but the model parameters can differ considerably between patients making individualized
adaptation crucial for control performance.

2 Preliminaries

RL is a data-driven approach that learns from interactions with the environment. Instead of relying
on an explicit environment model, RL acts in each time step and observes the corresponding state
transition and reward. The objective of an RL agent is to learn a policy that maximizes the “cumulative
reward”, estimated from past observations. Formally, the environment is modeled as a Markov
Decision Process (MDP) defined by (S,A, P, r, γ), where S is the observation space, A is the action
space, P (s, a) : S × A → S is the state transition probability, r(s, a) : S × A → R is the reward
function, and γ ∈ (0, 1) is the discount factor that exponentially reduces future rewards to prioritize
immediate rewards. The expected future cumulative reward for state-action pair (s, a) ∈ S ×A is
characterized by the Q-function Qπ : S ×A → R, which is defined as follows:

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st, at)|π, s0 = s, a0 = a

]
, (1)

where π : S → A is a policy. At any state s ∈ S, the optimum policy is determined by π⋆ =
argmaxπ Q

π(s, π(s)) to maximize the expected cumulative reward. Therefore, the optimality of
π depends on an accurate Q-function estimation. A fundamental aspect of this estimation is the
application of the Bellman equation [Bellman, 1966]:

Qπ(s, a) = r(s, a) + γEs′∼P (s,a) [Q
π(s′, π(s′)] , (2)

In modern RL, Qπ and π are respectively approximated with neural networks Qϕ(·) and πθ, where ϕ
and θ are the learnable parameters. An approach to stabilize learning is using a Replay Buffer D,
where the experience in the environment is recorded as transitions et = (st, at, st+1, rt) at each time
step t and a batch B of transitions from D are sampled to update ϕ and θ [Silver et al., 2016].

In this work, we are interested in taking safe control actions that can differ from the learned RL policy.
RL approaches that allow different acting policy and learned policy are referred to as “Off-policy
RL”. A state-of-the-art off-policy RL algorithm is Soft Actor-Critic (SAC), which uses a stochastic
policy to capture environmental uncertainties and prevent sticking to sub-optimal policies. Similar
to [Fujimoto et al., 2018], SAC uses the clipped double Q-learning and maintains two Q-networks
Qϕi(·), i = 1, 2. To update the Q-networks, gradient descent is performed using:

∇ϕi

1

|B|
∑

(s,a,s′,r,d)∈B

(Qϕi
(s, a)− y)2, i = 1, 2 (3)

where d ∈ {0, 1} equals 1 if s′ is a terminal state of the environment, and equals 0 otherwise. The
objective y in Eq. (3) is given by:

y = r + γ(1− d)(min
i=1,2

Qϕtarg,i
(s′, a′)− α log πθ(a

′|s′)), a′ ∼ πθ(s
′), (4)
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where log πθ(a
′|s′) is the entropy regularization term introduced by Haarnoja et al. [2018] to encour-

age random actions and facilitate exploration. Target Q-networks ϕtarg,i(·) proposed by Lillicrap
et al. [2015] are used to reduce drastic changes in value estimates and stabilize training. The target
Q-network parameters are initialized with ϕtarg,i = ϕi, i = 1, 2. Each time ϕ1 and ϕ2 are updated,
ϕtarg,1, ϕtarg,2 slowly track the update using τ ∈ (0, 1):

ϕtarg,i = τϕtarg,i + (1− τ)ϕi, i = 1, 2. (5)

To update the policy network πθ(·), gradient ascent is performed using:

∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qϕ,i(s, πθ(s))− α log πθ(a|s)
)
. (6)

Note that the policy network relies on Q values estimated by Qϕi(·) instead of ϕtarg,i(·) to allow
quick policy updates in response to new information.

3 Methodology

update 𝛽𝛽 = argmax𝛽𝛽
1
ℬ
∑ℬ 𝑄𝑄𝜙𝜙

𝜋𝜋,𝛽𝛽

𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀

RL-ACR
s 𝑟𝑟

update

𝑎𝑎

𝑒𝑒 = (𝑠𝑠,𝑎𝑎, 𝑠𝑠𝑠, 𝑟𝑟, a𝑀𝑀𝑀𝑀𝑀𝑀)

𝑎𝑎𝑅𝑅𝑅𝑅
MPC

RL

Environment

“focus” module
𝑎𝑎 = 𝛽𝛽𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀 + (1 − 𝛽𝛽)𝑎𝑎𝑅𝑅𝑅𝑅

Replay buffer 𝒟𝒟 = {𝑒𝑒𝑖𝑖 | 𝑖𝑖 = 0 to 𝑡𝑡}

Samples ℬ 

Figure 1: RL-ACR schematic. The actual action is the weighted sum of MPC and RL actions. The
RL module and the focus weight β are updated using historical transitions in the replay buffer.

Here, we propose RL-ACR, an algorithm designed for the safe operation of critical dynamical
systems. A schematic view of the procedure in RL-ACR is shown in Fig. 1. RL-ACR is composed
of three main modules: The MPC module takes the form of a classic model predictive control
(MPC) implementation. The RL module follows an off-policy paradigm, enabling learning from the
combined MPC and RL policy, which is different from the RL strategy. The “focus” module learns a
focus weight β that determines how to mix the MPC action aMPC and RL action aRL. The three
modules function together when interacting with the environment, among them the RL module and
the focus module are dynamically updated from historical observations.

The workflow of RL-ACR is outlined as follows: i) the RL module allows stochastic exploration and
adaptation to the actual environment, ii) the Function Regularizer (the MPC module) generates a
policy with guaranteed safety within a forecasted period by considering hard-coded safety constraints
in an optimization problem, and iii) the adaptive action combination adjusts the focus weight β based
on observations in the actual environment, allowing gradual switch to the RL policy as the RL module
is trained. Algorithm 1 shows the pseudocode for updating RL-ACR. The detailed workflow will be
explained in the following sections. The details of the RL module follow the SAC [Haarnoja et al.,
2018] paradigm introduced in Section 2 and is omitted in this section.

3.1 Function regularizer

RL-ACR regularizes the RL action using an MPC module, which uses an in-built estimated system
model to forecast the system behavior under different policies. At any state st, the MPC module
finds an action at that optimizes the N -step system forecast (the horizon), while ensuring safety by
formalizing safety measures as constraints. During each step, the following constrained optimization
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Algorithm 1 RL-ACR
1: Initialization: empty replay buffer D; MPC with estimated system model f(·); policy network

πθ(·) with parameter θ; Q-networks Qϕi(·) with parameters ϕi, i = 1, 2; target Q-networks
Qϕtarg,i

(·) with parameters ϕtarg,i, i = 1, 2; focus weight β = 1; step t = 0.
2: Set ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

3: repeat
4: Observe state s.
5: Take action a = βaMPC + (1− β)πθ(s).
6: Store trajectory e = (s, a, s′, r, d, aMPC) in D.
7: if t > time to update then
8: Randomly sample a batch B of transitions from D.
9: Update Qϕi(·), i = 1, 2 by gradient descent with Eq. (3).

10: Update πθ(·) by gradient ascent with Eq. (6).
11: Update β by gradient ascent with:

∇β
1

|B|
∑
s∈B

min
i=1,2

Qϕi(s, βaMPC + (1− β)πθ(s))

12: Update Qϕtarg,i
(·), i = 1, 2, using Eq. (5).

13: end if
14: t = t+ 1
15: until convergence is true

problem is solved in the MPC module:

min
at:t+N−1

t+N−1∑
k=t

Jk(sk, ak) + JN (st+N )

s.t.:
sk+1 = f(sk, ak)

smin ≤ sk+1 ≤ smax,∀k ∈ {t, . . . , t+N}
amin ≤ ak ≤ amax,∀k ∈ {t, . . . , t+N − 1},

(7)

where Jk(sk, ak) is the stage cost function at time step k, and JN (·) is the terminal cost function.
The estimated model f(·) characterizes the dynamics of the environment. Solving the optimization
problem in Eq. (7) yields a sequence of N actions at:t+N−1, with only the first term at adopted at
time step t, i.e. the MPC policy πMPC(st) = at. As the system transits from st to st+1 as a result
of at, the optimization (Eq. (7)) is performed again over the new horizon {t + 1 : t + 1 + N} to
obtain at+1. Thereby, MPC iteratively solves for the N-step optimum action in each time step and
steers the environment to the desired state. The optimization in Eq. (7) is efficiently solved using the
interior-point filter line-search algorithm [Wächter and Biegler, 2006].

3.2 Adaptive action combination

The combined policy in the focus module is as follows:

a(s) = βaMPC(s) + (1− β)aRL(s)

aMPC = πMPC , aRL(s) = πθ, β ∈ [0, 1].
(8)

The weight β is initialized to be 1, prioritizing the MPC’s policy when learning begins. As RL
gradually improves through interactions with the environment, the agent increases its confidence in
the RL policy by updating β to lower values. As proved in [Cheng et al., 2019b], the combined policy
in Eq. (8) is equivalent to regularizing the RL policy aRL with the function regularizer aMPC .
Lemma 1. Assuming the convergence of the RL policy πθ, the mean of the combined action ā(s) is
the solution to the following regularized optimization with regularization parameter λ = β

1−β :

ā(s) = argmin
a
∥a(s)− argmax

πθ

Q(s, πθ(s))∥Σ +
β

1− β
∥a(s)− aMPC(s)∥Σ. (9)
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The proof of Lemma 1 is provided in the appendix. During the early stage of training, β is close to
one, resulting in strong regularization from the MPC policy. The MPC module ensures safety using
two features: 1) hard-coded safe constraints and 2) predictive capability. When a breach of constraint
is forecasted, MPC sacrifices high rewards to ensure safety.

To enable updates of networks and the focus weight β, RL-ACR keeps track of the transition
e = (s, a, s′, r, d, aMPC) using a replay buffer D after each interaction with the environment.
Compared to the original replay buffer framework proposed by Lin [1992] and Mnih et al. [2013], we
store an augmented e with an additional term aMPC to enable the update of β.

The update of the focus weight β utilizes a batch B of randomly sampled past transitions fromD. The
objective is to find the β that generates the combined action a that maximizes the expected return:

argmax
β∈[0,1]

Es∼pπ
[Qπθ,β(s, βaMPC + (1− β)πθ(s)], (10)

where pπ denotes the state distribution induced by following the policy π. Assume RL converges to
the optimum policy π⋆ that satisfies Qϕ(s, π

⋆(s)) > Qϕ(s, a),∀a ∈ A\ π⋆(s), then the optmality in
Eq. (10) is achieved by β = 0. Because if β ̸= 0 then βπMPC(s) + (1− β)πθ(s) = βπMPC(s) +
(1 − β)π⋆(s) ̸= π⋆(s). The inequality follows because πMPC ̸= π⋆ as the MPC is based on a
sub-optimum model.

Theorem 1. Let DTV (·, ·) denote the total variance distance. The combined policy π has the
following bias:

DTV (π, π
⋆) ≥ DTV (πMPC , π

⋆)− (1− β)DTV (πMPC , πθ). (11)

However, assume RL converges to the optimum policy π⋆ that satisfies Qπ⋆

(s, π⋆(s)) >
Qπ(s, a),∀a ∈ A \ π⋆(s), the combined policy π is unbiased with DTV (π, π

⋆) = 0.

The proof of Theorem 1 is given in the appendix, which shows that by adaptively updating β, the
convergence of the combined policy can be achieved with common assumptions.

Practically, learning an optimal β can be seen as a separate update step after updating the Q-networks
and the policy network. To estimate Qπθ,β(·) in Eq. (10), we utilize the updated Q-networks of the
RL module. To stabilize training, the clipped double-Q learning [Fujimoto et al., 2018] was also used
in the β update. Suppose Qϕi(·), i = 1, 2, and πθ(·) are updated by a batch B of past experiences.
Then, β is updated by gradient ascent using:

∇β
1

|B|
∑

(s,aMPC)∈B

min
i=1,2

Qϕi
(s, βaMPC + (1− β)πθ(s)), (12)

Note that the updated Q-networks and policy network are used in Eq. (12) to allow quick response to
new information.

Although β converges to 0 theoretically, to avoid violation of the action bounds, β is clipped between
0 and 1 in practice. To allow adequate learning of the Q-networks and the policy network, the gradient
∇β is clipped to the range [−c, c], c > 0. With a fixed learning rate lr, the maximum reduction of
∇β in each step is bounded by c · lr.

4 Numerical Experiments

In this section, we validate RL-ACR in the practical setting mentioned in Section 1, where only the
estimated models are available to RL-ACR and baselines, but the actual environment models are
unknown. To simulate this, we set different model parameters for the estimated models and the actual
environment models (see Appendix D for details).

The baseline methods used in the experiments are: 1) Soft Actor-Critic (SAC), a state-of-the-art
RL algorithm, 2) Constrained Policy Optimization (CPO), a commonly used risk-aware safe RL
benchmark based on the trust region method [Achiam et al., 2017], and 3) Model Predictive Control
(MPC), a widely adopted safe control method for critical systems. Since RL-ACR contains an
estimated model through the MPC module, to make the comparison fair, we also include 4) pretrained
SAC (SAC-PT) and 5) pretrained CPO (CPO-PT) in the comparison.
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Table 1: The number of failed episodes in the first 100 training episodes in the actual environment.
The definitions for failure for each environment are detailed in Section 4.1 and Section 4.2. PT stands
for pre-training using the estimated model.

SAC SAC-PT CPO CPO-PT MPC RL-ACR

GLUCOSE 100 100 100 100 0 0
ACROBOT 69 1 73 1 0 0
MOUNTCAR 2 1 2 24 0 0
PENDULUM 22 1 26 0 0 0
CARTPOLE 100 21 100 2 0 0

SAC’s implementation follows Stable-Baselines3 [Raffin et al., 2021] and Huang et al. [2022]. The
MPC implementation is based on do-mpc [Fiedler et al., 2023], in which the optimization in Eq. (7)
relies on Andersson et al. [2019] and Wächter and Biegler [2006]. CPO’s implementation follows
Sikchi [2021]. The set of hyperparameters used by RL-ACR is detailed in Table 3.

4.1 Bi-hormonal Glucose Regulation

Regulating the blood glucose level is a critical medical control problem. The objective is to inject
hormones for maintaining the blood glucose level, denoted by G, especially in the face of meal-
induced carbohydrate disturbances. Crossing certain safe boundaries of G can lead to catastrophic
health consequences (hyperglycemia or hypoglycemia). Here, a recent blood glucose model proposed
by Herrero et al. [2013] and Kalisvaart et al. [2023] is used, which extends the conventional single-
action (insulin injection) models by a second action (glucagon injection). The extended action space
leads to potentially better regulation performance but also increases the regulation complexity. The
system has 12 state variables modeled by a set of Ordinary Differential Equations (ODEs):

ẋ =[Q̇1, Q̇2, ẋ1, ẋ2, ẋ3, Ṡ1, Ṡ2, İ, Ż1, Ż2, Ṅ , Ẏ ]T

=f(x,a, UG),
(13)

where a = [aI , aN ] are the actions, with aI and aN being the amount of injected insulin and glucagon,
respectively. UG denotes the disturbance of carbohydrates in a meal. Among the 12 states, only
Q1 is observable through the measurable blood glucose level G since Q1 = GVG and VG is a fixed
parameter for glucose distribution volume. State feedback is applied to Q1 to maintain close-loop
control. See Appendix D.1 for the detailed system model in Eq. (13).

In this environment, a time-varying disturbance UG ∝ t · e−c·t derived by Hovorka et al. [2004] is
introduced over time to simulate the ingestion of 80 g of carbohydrates. The objective is to regulate
G to the target range between 3.9 and 7.8 mmol/L (shaded green in Fig. 2). Failure is defined as G
reaching G > 25 mmol/L (hyperglycemia) or G < 3 mmol/L (hypoglycemia); these unsafe ranges
are shaded red in Fig. 2. The parameters of the estimated model (available to the MPC module) and
the actual environment are listed in Appendix Table 4.

The RL reward for this environment is a piece-wise linear function given in Eq. (24) in the Appendix.
The MPC setting follows Kalisvaart et al. [2023], where the stage and terminal costs are given by
Jk(s,a) = JN (s,a) = 3e3 × (G − 6)2 + 8e4aI + 2e4aIaN + 1e6aN + 5e7 max(0, 6 − G). For
CPO, the constraint function is c = 10max(0, 6−G)2.

Safety test. We first compare the safety of the methods in regulating blood glucose. The first row of
Table 1 shows the number of failed episodes (G exceeding [3, 25] bounds) out of 100 consecutive
runs while the methods (except for MPC) learn the environment through interactions. It is seen that
CPO does not offer any safety guarantee during the initial stage of training. SAC consistently fails
during its policy exploration, which is unacceptable in critical applications. This issue persists even if
the SAC is trained by the estimated model. Only MPC and RL-ACR guarantee safety in all episodes
(SAC, SAC-PT, CPO, and CPO-PT failed in all 100 episodes).

Performance test. As indicated in Table 1, only MPC and RL-ACR can be safely applied to the
actual environment in a single-life setting. CPO, SAC, and SAC-PT violate the safety bounds every
run. SAC-PT, being trained on the estimated model, is overall safer compared to SAC and CPO (see
other rows of Table 1), so we keep it in the rest of our performance analysis.
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Figure 2: Performance comparison in the bi-hormonal glucose regulation environment. A disturbance
UG ∝ t · e−c·t is introduced to simulate meal ingestion. The objective is to regulate the blood glucose
level to the target range (the green shade) without violating safety bounds (the red shade).

Figure 3: The policy of RL-ACR depicted over time. We plot the actions proposed by the MPC
module, RL module, and their combination by the attention weight β. The figure shows the actions
of insulin injection aI (top) and glucagon injection aN (bottom).

Fig. 2 shows the performance comparison in the glucose regulation environment. SAC-PT causes
severe hypoglycemia when deployed to the actual model, but MPC and RL-ACR keep glucose levels
within the safe range. RL-ACR achieves the best performance, clearly improving the MPC policy
based on an estimated model. Fig. 3 shows the MPC action aMPC and the RL action aRL. The
combined action βaMPC + (1− β)aRL (the green line in Fig. 3) is the actual policy of RL-ACR. It
can be seen in Fig. 3 that MPC only injects small doses of insulin to avoid the danger of hypoglycemia,
which results in poor management of high G level under disturbance. Meanwhile, model-free RL
finds a better policy, resulting in better overall performance. The performance metrics are summarised
later in Table 2

4.2 Classic Control Environments

In this section, we perform experiments on the continuous versions of the four classic control
environments: Acrobot, Mountain Car, Pendulum, and Cart Pole [Towers et al., 2023]. Depending on
the specific environment, we define “failure” as either reaching states that violate the safety bounds
(for Cart Pole) or failing to reach the control objective within the allocated time frame (for Acrobot,
Mountain Car, and Pendulum). For more details, such as the MPC cost function and CPO constraint
functions, see Appendix E. Notice that, for environments where failure is defined as not achieving
the objective in a given time (Acrobot, Mountain Car, and Pendulum), CPO triggers the recovery
policy proposal and minimizes the constraint cost first [Achiam et al., 2017].

The Acrobot environment simulates two links connected by a joint, with one end of the connected
links fixed. The links start facing downward. The objective is to swing the free end (the tip) above a
given target height as quickly as possible by applying torque to the joint. Failure is defined as the tip

7



Figure 4: Performance comparison on classic control environments. The green line indicates the
target state. (a) The Acrobot environment. (b) The Mountain Car environment. (c) The Pendulum
environment. (d) The Cart Pole environment.

not reaching the target height in 200 time steps. The estimated model and the actual environment are
detailed in Appendix D.2.

The Mountain Car environment simulates a car placed in the valley of a sinusoidal. The objective is
to drive the car to the target location on the sinusoidal by applying force either left or right. Failure is
defined as the car not reaching the target location in 1000 time steps. The estimated model and the
actual environment are detailed in Appendix D.3.

The Pendulum environment simulates a hanging pole fixed at one end. The pendulum starts facing
downward. The objective is to swing the pole upright and keep it in that position. Failure occurs
if the pole does not attain and maintain an upward position (angular velocity not exceeding ±0.1)
within 300 time steps. The estimated model and the actual environment are detailed in Appendix D.4.

The Cart Pole environment simulates a pole attached to a cart that moves along a track. The pole
starts with a 6-degree tilt. The objective is to maintain an upright position of the pole by applying
force to the cart. Failure is defined as the tilt exceeding the ±12 degrees angle. The estimated model
and the actual environment are detailed in Appendix D.5.

Safety test. We first compare the safety of the methods using the concept of failure defined for each
environment. We run the methods for 100 consecutive episodes on each environment. Table 1 shows
the number of episodes that terminate with failure. CPO and SAC cause failures during training in
all environments. SAC-PT, even with a strategy trained by the estimated model, still fails due to
its stochastic policy exploration in the actual environment. Only MPC and RL-ACR can guarantee
safety in all episodes, as suggested by 0 failed episodes in all environments reported in Table 1.

Performance test. As indicated in Table 1, SAC-PT, being trained on the estimated model, is overall
safer compared to SAC and CPO, so we keep it in the performance analysis.

Fig. 4 shows the behavior of SAC-PT, MPC, and our RL-ACR in the classic control environments.
Fig. 4 (b) shows an instance where the SAC-PT strategy, although fully trained on an estimated
model, still has a biased understanding of the car position and fails in the actual environment. Despite
only having an inaccurate model, MPC achieves the control objectives without failures. Our results
suggest that RL-ACR learns similar strategies to MPC (note the similar trajectories in Fig. 4). This
shows that the off-policy RL module of RL-ACR effectively learns from the sub-optimum MPC
policy. However, the adaptation to the actual environment enabled by model-free RL allows RL-ACR
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Table 2: Summarized performance metrics (See Sections 4.2 and 4.1 for detail). The metrics are i)
the sum of absolute deviations (∥y − r∥1), ii) Response Time (RT) or Time Within Range (TWR)
depending on the nature of the problem, and iii) Normalized Control Effort (NCE). “N/A” indicates
failing to achieve the objective, or violating the environment’s safety bounds, in which case, the
performance metric cannot be calculated over the whole duration of the episodes.

ENVIRONMENT CRITERION SAC-PT MPC RL-ACR

GLUCOSE

∥y − r∥1 (×102) N/A 9.52 8.62
TWR N/A 0.67 0.76
NCE N/A 0.10 0.06

ACROBOT

∥y − r∥1 (×102) 1.22 1.14 1.09
RT 113 94 87

NCE 0.64 0.94 0.87

MOUNT CAR

∥y − r∥1 (×102) N/A 2.71 1.80
RT N/A 237 162

NCE N/A 0.99 0.95

PENDULUM

∥y − r∥1 (×103) 7.73 11.54 6.47
TWR 0.67 0.55 0.75
NCE 0.26 0.44 0.17

CART POLE

∥y − r∥1 (×101) 4.52 1.60 0.93
TWR 0.15 0.75 0.89

NCE (×10−1) 3.65 0.12 0.03

to achieve the control objective faster (see Fig. 4 (a), (b), and (c), and note the significantly lower
number of oscillations in the RL-ACR trajectory in Fig. 4 (d)).

Table 2 summarizes the performance metrics of SAC-PT, MPC, and RL-ACR on all environments. As
Table 2 shows, RL-ACR outperforms MPC in all environments. This demonstrates RL-ACR’s ability
to adapt to the actual environment and improve the original sub-optimum MPC policy. RL-ACR also
achieves lower NCEs in four out of five environments. This further testifies a better policy is found
by RL-ACR, as the stronger performance on other metrics does not come at the cost of taking more
drastic actions.

5 Conclusions and Discussion

Controlling critical systems, where unsafe control actions have catastrophic consequences, has
huge applications from engineering to medicine. We show that appropriate embedding of a control
regularization can ensure safety as RL exploration searches for the optimum policy. The proposed
method, RL-ACR, dynamically tunes the combination of an RL agent and a control regularizer via a
learnable focus weight, which prevents early incorporation of poorly learned RL policy. As revealed
in extensive numerical experiments in a single-life setting, the safety of RL-ACR outperforms the
baselines. Meanwhile, RL-ACR was able to learn from explorations in the actual environment and
find policies with stronger performance.

One limitation of our setting is the assumption that the estimated model has a reasonable accuracy
to ensure safety in the actual environment. Although this assumption is common in the safe RL
literature, one possible direction for future works is to design algorithms with more flexibility against
deviations of the estimated model from the actual environment. A potential approach is to update the
estimated model parameters using observations in the actual environment. However, one practical
concern is that all parameters are assumed to be unknown and need updating, but only a small
number of transitions are observed in the actual environment. In this case, managing controllability,
convergence, and safety requires careful design and tuning.
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6 Related Works

Similar to the characterization by Garcıa and Fernández [2015] and Krasowski et al. [2022], we divide
existing safe RL works into roughly two categories. The first category does not require knowledge of
the system dynamics. These methods often rely on probabilistic approaches [Geibel and Wysotzki,
2005, Liu et al., 2022] or constrained MDP [Achiam et al., 2017, Yang et al., 2020]. In more recent
works, learned models are used to filter out unsafe actions [Bharadhwaj et al., 2020]. However, these
methods need to observe failures to estimate the safety cost, thus do not ensure safety during training.
Since this work requires safety while training in the actual environment, these methods do not apply.

The second category assumes known system dynamics. Some works use the control barrier function
to enforce safety [Cheng et al., 2019b]. However, these works require a given valid safe set, which
is unobtainable when the estimated model and the actual environment are different. Some methods
compute a model-based projection to verify the safety of actions [Bastani, 2021, Kochdumper et al.,
2023, Fulton and Platzer, 2018]. However, the scalability of these verification-based methods is a
huge problem. Although Anderson et al. [2020] proposed to use neurosymbolic representations to
alleviate the computational cost of verification, the computational cost is still high.

Gros and Zanon [2019] and Zanon et al. [2020] proposed to use MPC as the policy generator, and use
RL to dynamically tune the MPC parameters in the cost functions and the system model. Assuming
the discrepancy between the estimated model and the actual environment exists in the form of model
parameters, the tuning increases MPC performance. However, this is a strong assumption since there
are other discrepancies, such as neglected dynamics, discretization errors, etc. Instead, RL-ACR in
this work can theoretically converge to the optimum policy.

It is important to note that, although the MPC policy accelerates the learning of the RL agent, RL-
ACR is not a special case of transferring a learned policy. The main role of MPC in RL-ACR is to
keep the actions safe in the actual environment, instead of transferring knowledge. Transfer learning
in RL studies the effective reuse of knowledge, especially across different tasks [Taylor and Stone,
2009, Glatt et al., 2020]. By reusing prior knowledge, transferred RL agents skip the initial random
trial-and-error and drastically increase sampling efficiency [Karimpanal et al., 2020, Da Silva and
Costa, 2019]. However, transferred RL agents are not inherently risk-aware, and thus can still steer
the actual environment into unsafely. For this reason, transferred RL policies are rarely considered a
valid method for ensuring safety. On the other hand, the control regularizer in this work forecasts
system behaviors and hard-codes safety into constrained optimizations.
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Appendix

A Proof of Lemma 1

Lemma 1. Assuming the convergence of the RL policy πθ, the mean of the combined action ā(s) is
the solution to the following regularized optimization with regularization parameter λ = β

1−β :

ā(s) = argmin
a
∥a(s)− argmax

πθ

Q(s, πθ(s))∥Σ +
β

1− β
∥a(s)− aMPC(s)∥Σ. (14)

Proof. For a fixed β, the proof is similar to the proof by Cheng et al. [2019b]. Because the RL
policy is a Gaussian distributed policy, i.e. πθ(a|s) ∼ N (āRL(s),Σ), the combined policy is also a
Gaussian distribution:

a(s) ∼ N (βaMPC + (1− β)āRL(s), (1− β)2Σ). (15)

The distribution is equivalent to the product of two multivariate Gaussian distributions:

N (βaMPC + (1− β)āRL(s), (1− β)2Σ) =
1

1− β
N (aMPC ,

1

β
Σ) · N (āRL(s),

1

1− β
Σ) (16)

Define ∥a1 − a2∥Σ = (a1 − a2)
TΣ−1(a1 − a2). The probability density function can be written as:

f(a(s)) =(1− β)−1(2π)−k/2β−k/2|Σ|1/2 exp
(
−β

2
∥a(s)− aMPC(s)∥Σ

)
× (2π)−k/2(1− β)−k/2|Σ|1/2 exp

(
−1− β

2
∥a(s)− āRL(s)∥Σ

)
=c exp

(
1− β

2

(
−∥a(s)− āRL(s)∥Σ −

β

1− β
∥a(s)− aMPC(s)∥Σ

))
,

c =
1

(2π)kβk/2(1− β)(k+2)/2|Σ|
.

(17)

Since β is in range (0, 1), f(a(s)) monotonically decreases. Therefore, the probability of a(s) is
maximized when the exponential term is minimized, leading to the following optimization problem:

ā(s) = argmin
a
∥a(s)− āRL(s)∥Σ +

β

1− β
∥a(s)− aMPC(s)∥Σ. (18)

Assuming the RL policy πθ converges to argmaxπθ
Q(s, πθ(s)), Eq. (18) can be written as:

ā(s) = argmin
a
∥a(s)− argmax

πθ

Q(s, πθ(s))∥Σ +
β

1− β
∥a(s)− aMPC(s)∥Σ. (19)

B Proof of Theorem 1

Theorem 1. Let DTV (·, ·) denote the total variance distance. The combined policy π has the
following bias:

DTV (π, π
⋆) ≥ DTV (πMPC , π

⋆)− (1− β)DTV (πMPC , πθ). (20)

However, assume RL converges to the optimum policy π⋆ that satisfies Qπ⋆

(s, π⋆(s)) >
Qπ(s, a),∀a ∈ A \ π⋆(s), the combined policy π is unbiased with DTV (π, π

⋆) = 0.

Proof. The proof for the lower bound is similar to the proof Cheng et al. [2019b]. First, we expand
the total variance distance between the MPC policy and the combined policy as:

DTV (πMPC , π) = sup
(s,a)∈S×A

|πMPC − βπMPC − (1− β)πθ|

= (1− β)DTV (πMPC , πθ)
(21)
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Following triangle inequality, the total variance distance between the combined policy and the optimal
policy is as follows:

DTV (π, π
⋆) ≥ DTV (πMPC , π

⋆)−DTV (πMPC , πθ) (22)

To prove the upper bound on DTV (π, π
⋆) after convergence, we first examine the convergence of

β. According to the assumption, for state s, there exists one optimum policy Qπ⋆

(s, π⋆(s)) >
Qπ(s, a),∀a ∈ A \ π⋆(s). If RL learns the optimum action (i.e. πθ(s) = π⋆(s)), then the optimum
in Eq. (10) is achieved by β = 0. Because if β ̸= 0 then βπMPC(s)+ (1−β)πθ(s) = βπMPC(s)+
(1 − β)π⋆(s) ̸= π⋆(s). The inequality follows as πMPC ̸= π⋆ because the MPC is based on a
sub-optimum model. Because β = 0, the combined policy has variance equals to πθ and mean equals
to the following according to Lemma 1:

ā(s) = argmin
a
∥a(s)− argmax

πθ

Q(s, πθ(s))∥Σ +
β

1− β
∥a(s)− aMPC(s)∥Σ

= argmin
a
∥a(s)− argmax

πθ

Q(s, πθ(s))∥Σ = āRL.
(23)

Thus the the combined policy π is unbiased with DTV (π, π
⋆) = DTV (πθ, π

⋆) = 0

C Hyperparameters

The same set of parameters was utilized in all environments to demonstrate the robustness of RL-ACR
against the selection of hyperparameters. The hyperparameters in RL-ACR are given in Table 3.

Table 3: RL-ACR Hyperparameters

HYPERPARAMETER VALUE

discount factor γ 0.99
target network coefficient τ 0.05

entropy regularization coefficient α 0.2
time to update 500

update frequency 1
policy frequency 2
batch size |B| 256

attention weight learning rate lrβ 1× 10−5

Q-network learning rate lrQϕ(·) 1× 10−3

policy network learning rate lrπθ(·) 3× 10−4

clip rate c for ∇β 10
action minimum log std. log σθ(s)min -5

action maximum log std. log σθ(s)max 2

D Estimated models and the actual environment models

D.1 Bi-hormonla Glucose Model

The blood glucose model used in this work contains 12 state variables regulated by the ODEs given
below:

Q̇1 = −F c
01(G)− x1Q1 + k12Q2 − FR

+ (1− x3)EGP0 + cconvUG + Y Q1

Q̇2 = x1Q1 − (k12 + x2)Q2

ẋ1 = −ka1x1 + kb1I

ẋ2 = −ka2x2 + kb2I

ẋ3 = −ka3x3 + kb3I

Ṡ1 = uI −
S1

tmax,I
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Ṡ2 =
S1

tmax,I
− S2

tmax,I

İ =
S2

VItmax,I
− keI

Ż1 = uN −
Z1

tmax,N

Ż2 =
Z1

tmax,N
− Z2

tmax,N

Ṅ = −kN (N −Nb) +
Z2

VN tmax,N

Ẏ = −pY + pSN (N −Nb),

The last four equations form the glucagon subsystem proposed by Herrero et al. [2013] and Kalisvaart
et al. [2023]. These newly proposed dynamics allow an expanded action space. While conventional
blood glucose models have one action, insulin injection [Hovorka et al., 2004], the glucose model
in this work has two actions uI and uN , representing the injection of insulin and glucagon. The
measurable blood glucose mass G = Q1/VG is lowered by insulin injection and raised by glucagon
injection. The intermediate variables depend on the value of G, as shown below:

F c
01 =

{
F01, G ≥ 4.5mmol L−1

F01G/4.5, otherwise
,

FR =

{
0.003(G− 9)VG, G ≥ 9mmol L−1

0, otherwise
.

The term UG represents the time-varying disturbance caused by the injection of DG of carbohydrates:

UG =
DGAG

t2max,G

· t · e−t/tmax,G ,

the model parameters adopted by the estimated model and the actual environment are given by Table 4.
The reward function for blood glucose regulation is a piece-wise linear function given below:

r =



−400× (6−G), G < 6

0, 6 ≤ G < 7.8

− 40
7.2 ,×(G− 7.8) 7.8 ≤ G < 20

−300, 7.8 ≤ G < 25

−2000, G ≥ 25

. (24)

D.2 Acrobot Implementation

In this work, the system model utilized by MPC and RL-ACR for the Acrobot environment is defined
as:

θ̈1 =
−(d2θ̈1 + ϕ1)

d1

θ̈2 =
a+ d2ϕ1/d1 −m2l1l2cθ̇

2
1 sin θ2 − ϕ2

m2l22c
2 + I2 − d22/d1

,

where a is the action, the default model parameters are given in Table 5, and the intermediate variables
are:

d1 = m1l
2
1c

2 +m2(l
2
1 + l22c

2 + 2l1l2c cos θ2) + I1 + I2

d2 = m2(l
2
2c

2 + l1l2c cos θ2) + I2
ϕ2 = m2l2cg cos(θ1 + θ2 − π/2)

16



Table 4: Glucose parameters for the estimated model and the actual environment

PARAMETER UNIT ESTIMATED MODEL ACTUAL ENVIRONMENT

DG kg 0.08 0.08
VG L/kg 0.18 0.14
k12 min−1 0.0343 0.0968
F01 mmol/(kg min) 0.0121 0.0199
EGP0 mmol/(kg min) 0.0148 0.0213
Ag - 0.8 0.8
tmax,G min 40 40
tmax,I min 55 55
VI L kg−1 0.12 0.12
ke min−1 0.138 0.138
ka1 min−1 0.0031 0.0088
ka2 min−1 0.0752 0.0302
ka3 min−1 0.0472 0.0118
kb1 L/(min2 mU) 29.4×10−4 86.1×10−4

kb2 L/(min2 mU) 0.9 ×10−4 4.7 ×10−4

kb3 L/(min mU) 401×10−4 720×10−4

tmax,N min 32.46 20.59
kN min−1 0.620 0.735
VN mL kg−1 16.06 23.46
p min−1 0.016 0.074
SN · 10−4 mL/pg min−1 1.96 1.98
Mg g/mol 180.16 180.16
BW kg 68.5 68.5

ϕ1 = −m2l1l2cθ̇
2
2 sin θ2 − 2m2l1l2cθ̇1θ̇2 sin θ2 + (m1l1c+m2l1)g cos(θ1 − π/2) + ϕ2.

For this particular environment, we utilized a custom RL reward function. This allows SAC and CPO
to achieve the control objective within 100 episodes, thus benefiting the comparison in Table 1. The
reward function is:

r =

{
−2− l1 cos θ1 − l2 cos θ(θ1 + θ2), −l1 cos θ1 − l2 cos θ(θ1 + θ2) < l2
+100, otherwise

.

Table 5: Acrobot parameters for the estimated model and the actual environment

PARAMETER ESTIMATED MODEL ACTUAL ENVIRONMENT

m1 (kg) 1.0 1.0
m2 (kg) 1.0 1.0
l1 (m) 1.0 1.1
l2 (m) 1.0 1.0
c 0.5 0.5
I1 (kg ·m2) 1.0 1.0
I2 (kg ·m2) 1.0 1.0
g (m · s−2) 9.8 9.8

D.3 Mountain Car Implementation

In this work, the system model utilized by MPC and RL-ACR for the Mountain Car environment is
defined as:

x′ = x+ v

v′ = v + acf − 0.0025 cos(3(x+ x0)),

where a is the action, the default model parameters are given in Table 6.
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Table 6: Mountain Car parameters for the estimated model and the actual environment

PARAMETER ESTIMATED MODEL ACTUAL ENVIRONMENT

cf 0.0015 0.0015
x0 0 0.4

D.4 Pendulum Implementation

In this work, the system model utilized by MPC and RL-ACR for the Pendulum environment is
defined as:

θ′ = θ + θ̇∆t

θ̇′ = θ̇′ + (
3g

2l
sin θ +

3

ml2
a)∆t,

where a is the action, the default model parameters are given in Table 7.

Table 7: Pendulum parameters for the estimated model and the actual environment

PARAMETER ESTIMATED MODEL ACTUAL ENVIRONMENT

g (m · s−2) 9.8 9.8
m (kg) 1.0 1.0
l (m) 1.0 0.9
∆t (s) 0.05 0.05

D.5 Cart Pole Implementation

In this work, the system model utilized by MPC and RL-ACR for the Acrobot environment is defined
as:

θ̈ =
g sin θ − d cos θ

l(4/3−mp cos2 θ/(mp +mc))

ẍ = d− mplθ̈ cos θ

mp +mc
,

where a is the action, the default model parameters are given in Table 8, and the intermediate variable
d is:

d =
acf +mplθ̇

2 sin θ

mp +mc

Table 8: Cart Pole parameters for the estimated model and the actual environment

PARAMETER ESTIMATED MODEL ACTUAL ENVIRONMENT

g (m · s−2) 9.8 9.8
mc (kg) 1.0 0.8
mp (kg) 0.1 0.3
l (m) 0.5 0.6
cf 10.0 10.0

E MPC Costs and CPO constraints for the Classic Control Environments

Here we illustrate the CPO constraints and the MPC cost functions in the classic control environments
in Section 4.
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For the Acrobot environment, the CPO constraint function we utilized was c = 1+ cos θ1 +cos(θ1 +
θ2). The MPC costs we utilized are:

Jk(s,a) = JN (s,a) = 100× (2 + cos θ1 + cos(θ1 + θ2))
2.

For the Mountain Car environment, the CPO constraint function we utilized was c = max(0, 0.45−
x)2. The MPC costs we utilized are:

Jk(s,a) = JN (s,a) = max(0, 0.45− x)2.

For the Pendulum environment, the CPO constraint function we utilized was c = 2max(0, |θ| − 4)2.
The MPC costs we utilized are:

Jk(s,a) = 10θ2 + 0.1θ̇2

JN (s,a) = 80θ2 + 0.1θ̇2.

For the Cart Pole environment, the CPO constraint function we utilized was c = max(0, |θ| − 6)2.
The MPC costs we utilized are:

Jk(s,a) = JN (s,a) = 100x2 + 100θ2.
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