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Abstract. In this note, we show how certain everywhere-regular real rational func-
tion solutions of the KP1 equation (“multi-lumps”) can be constructed via the polyno-
mial analogs of theta functions from singular rational curves with cusps. The method
we use can be understood as producing a degeneration of the well-understood soli-
ton solutions from nodal singular curves. Hence it can be seen as a variation on
the long-wave limit technique of Ablowitz and Satsuma from [1, 12], as developed
by Zhang, Yang, Li, Guo, and Stepanyants, [13]. We present an explicit example
of a three-lump solution constructed via the polynomial analog of the theta func-
tion from a rational curve with two cuspidal singular points, each with semigroup
⟨2, 5⟩. (In the theory of curve singularities, these are known as A4 double points.)
We conjecture that these ideas will generalize to give similar M -lump solutions with

M = N(N+1)
2

for N > 2 starting from rational curves with two singular points with
semigroup ⟨2, 2N +1⟩ (A2N double points). Similar solutions have been constructed
by other methods previously; our contribution is to show how they arise from the
algebraic-geometric setting by considering singular curves with several cusps, as in
[2].

1. Introduction

We will consider the Kadomtsev-Petviashvili (KP) equation for u = u(x, y, t) in the
form

(1) (−4ut + 6uux + uxxx)x ± 3uyy = 0.

Solutions of these PDEs are of considerable interest in physics since they model several
different sorts of wave phenomena in two space dimensions and time. In the PDE
literature, taking the + sign on the final term gives what is called the KP2 equation,
while the − sign gives the KP1 equation. The differences between these cases are often
not emphasized by authors discussing the construction of solutions via the algebraic-
geometric techniques studied here. This is no doubt true because solutions of one form
of the equation can be taken to solutions of the other by a complex rescaling of the
independent variables taking y 7→ i · y. However, the behavior of the solutions for real
values of the space variables in the two cases is quite distinct. In particular, the regular
real rational function solutions that we are interested in arise only in the KP1 case.

The work of Mikio Sato and his school on construction of solutions via τ -functions
corresponding to points of the infinite-dimensional Sato Grassmannian, [11], has il-
luminated the structure of solutions and shown close connections with combinatorial
constructions such as Young diagrams for partitions and Schur polynomials.

Various classes of solutions to KP1 and KP2 (and other related soliton equations)
using techniques from algebraic geometry have been known since the late 1970’s, based
on the so-called Krichever construction, which shows how to produce points of the
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2 JOHN B. LITTLE

Sato Grassmannian starting from data from an algebraic curve. As a result, the KP
equation has generated a great deal of interest in algebraic geometry. In the most
spectacular connection, KP solutions play a key role in the results of Shiota, Mulase,
and many others on the Schottky problem of characterizing the Jacobian varieties
of smooth curves among all principally polarized abelian varieties. In the algebraic-
geometric context, the solutions produced from smooth curves via theta functions on
their Jacobians have received the greatest amount of attention. In the PDE context,
these are the so-called quasiperiodic solutions.

However, it has long been understood–and the details have become increasingly
clear–that other classes of KP solutions have connections with other classes of singular
curves in a very parallel manner. For instance, one of the classes of solutions that will
be very important for us here are the soliton solutions. These arise in the algebraic-
geometric context by considering the limit of the theta function as a family of smooth
curves of genus g degenerates to an irreducible rational curve with g ordinary double
points (“nodes”). The connections here were glimpsed very early and exploited by
Mumford for the construction of KdV and KP solitons in [10]. They have been studied
in much more detail recently in the works of many authors. The most relevant for
our purposes are the papers by Agostini, Fevola, Mandelshtam, and Sturmfels, [3], and
the related work of Fevola and Mandelshtam, [7]. The fact that all real regular KP
soliton solutions corresponding to τ -functions from points of the totally nonnegative
Grassmannian can be expressed by the theta functions on nodal singular curves has
recently been established by Kodama in [8].

The connection between rational function KP solutions, Schur polynomials and poly-
nomial analogs of theta functions from cuspidal singular curves also has a long history.
We mention in particular the foundational article of Buchstaber, Leykin, and Enolski,
[4]. More recently, this connection been studied in the article [2], which gives more de-
tails about the relation between the polynomial analogs of theta functions for cuspidal
curves and rational KP solutions. We will make use of several crucial results from that
article. We will also follow many of the notational and terminological conventions for
singular curves established there, so readers may wish to consult [2] for background
material.

Unfortunately, from the point of view of applied PDE, “most of” the rational KP
solutions produced from cuspidal singular curves as in [2] are probably of relatively
little interest because they tend to be non-regular at some real (x, y) for some or all
real t. This is because the denominator of the rational solution

(2) u(x, y, t) = 2
∂2

∂x2
ln(τ(x, y, t))

will “usually” vanish for some real (x, y, t) when τ(x, y, t) is a polynomial with real
coefficients. The same will be true more generally if τ is the product of an exponential
factor with exponent linear in x and a polynomial as in Theorem 4.11 from [2]. But in
fact we will be somewhat sloppy about the terminology here and essentially ignore any
such exponential factor that might be present, calling the polynomial factor itself the
τ -function. The reason this is harmless from our point of view is that in passing from
τ(x, y, t) to u(x, y, t) via (2) the exponential factor contributes nothing to the actual
KP solution. A simple observation here is that (the polynomial part of) τ(x, y, t) must
have even total degree in (x, y) in order to obtain everywhere-regular real KP solutions.
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The complex rescaling y 7→ i ·y to go from a KP2 solution to a KP1 solution can also
produce τ(x, y, t) and u(x, y, t) that take non-real values for some real (x, y, t). These
solutions are also of less interest for applications.

From this point of view, possibly the most interesting rational KP solutions are
rational “lump” solutions–rational functions u(x, y, t) which are real-valued for all real
x, y, t, whose denominators never vanish for real (x, y, t), and which decay to 0 in all
directions for all t. Motivated by questions concerning “rogue waves” and other actual
physical phenomena, quite a few such solutions have been constructed to date by several
authors, and in several different ways.

In this connection, we begin by mentioning the early work of Ablowitz and Satsuma,
[1, 12], which showed how to produce regular rational solutions from solitons by what
they called the “long-wave limit” process. In our terms, it can be seen easily that
their method amounts to taking the theta function from an irreducible rational nodal
curve and determining what happens when the nodes degenerate to ordinary cusps
(i.e. singular points analytically isomorphic to the origin on y2 − x3 = 0, or so-called
A2 double points). In our terms, the nodes come by identifying pairs of points {b, c}
on the normalization. We always assume our curves are irreducible and rational, so
this is just the complex projective line P1 (i.e. the Riemann sphere). Then Ablowitz
and Satsuma’s construction amounts to taking a limit as the pairs {b, c} coalesce to
single points. Special choices must then be made to ensure that the limit of the soliton
solution is regular, essentially by making the limiting polynomial τ -function expressible
as a sum of squares of real polynomials with a positive nonzero constant term. Those
conditions have also been realized by using other methods to find the limiting solutions,
most notably the Gram matrix techniques used by Chakravarty and Zowada in [5, 6],
and the perturbation processes described by Zhang, et al. in [13].

In this note, we will produce an example of a regular three-lump rational solution of
KP1 by using the constructions from [2] and the idea of degenerating a nodal curve to
a cuspidal curve (hence degenerating a soliton solution to a rational function solution)
in a particular well-chosen way. The idea is to start from a certain soliton solution
coming from the theta function of an irreducible nodal curve of arithmetic genus g = 4,
obtained by identifying four pairs of points {bi, ci}, i = 1, · · · , 4, on P1. By letting
{b1, c1, b2, c2} coalesce in a particular way, we produce a singular point with semigroup
⟨2, 5⟩ (an A4 double point). Simultaneously, {b3, c3, b4, c4} coalesce to a second, distinct
but analytically equivalent singular point, also with semigroup ⟨2, 5⟩. From [2], we know
that the total degree of the polynomial theta function will be 6 = 3 + 3 in this case
because the Young diagram for each of the singular points is the triangular diagram
corresponding to the partition 3 = 2 + 1. The connection with these particular Young
diagrams and the necessity of degenerating to a curve with two cuspidal singular points
was suggested by the results of [5, 6].

From the results of [2], we have a precise recipe for producing the point of the Sato
Grassmannian corresponding to the cuspidal curve of arithmetic genus g = 4. We also
know how the corresponding τ -function for the KP solution is related to the polynomial
analog of the theta function for the cuspidal curve. To be clear, we note that the results
of [2] are geared toward producing solutions of the KP2 equation. Hence we must apply
the complex rescaling y 7→ i · y to get a KP1 solution. We then conclude by finding
a τ -function, hence a solution u(x, y, t), that is real for all real (x, y, t). We also show
that our solution is regular for all real (x, y, t) by expressing the τ -function as a sum of
squares of real polynomials with a nonzero constant term. Throughout this work, we
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will report results whose derivations made rather heavy use of symbolic computation.
We used the Maple 2024 computer algebra system, [9], to work with some of the rather
complicated formulas involved.

Acknowledgments. This work is essentially a continuation of [2] and I would like

to thank Daniele Agostini and Türkü Özlüm Çelik for a number of helpful conversations
as this was developing. I would also like to thank Bernd Sturmfels once again for
facilitating contact with Daniele and Türkü starting in 2020 and for renewing my
interest in algebraic curves and applications to PDE.

2. Nodal curves and KP solitons

We begin by setting up some suitable notation for understanding irreducible rational
nodal curves and the corresponding soliton KP solutions. We follow notation from [3, 7].
We start from P1 and identify g pairs of points to produce an irreducible rational nodal
curve of arithmetic genus g. In one of the standard coordinate charts of P1, say the
points identified to give the ith node are z = bi, ci. Then a basis for the vector space
of dualizing, or Rosenlicht, differentials on the nodal curve is given by

ωi = −
(

1

z − bi
− 1

z − ci

)
dz,

since the sum of the residues at z = bi and z = ci vanishes.
For our purposes, it will be most convenient to change coordinates on P1, taking

u = 1
z as the local coordinate at the point at infinity. In terms of u,

ωi =

(
1

1/u− bi
− 1

1/u− ci

)
· 1

u2
du(3)

=
bi − ci

(1− biu)(1− ciu)
du.(4)

In terms of the coordinate u, these differentials can be expanded via geometric series
in the form

(5) ωi =
(
(bi − ci) + (b2i − c2i )u+ (b3i − c3i )u

2 + (b4i − c4i )u
3 + · · ·

)
du

It is well-known (see, for instance, [10, 3, 7, 8]) that the Riemann theta functions on
the Jacobians of a family of smooth curves degenerating to one of these rational nodal
curves have a limit of the form

θ(z1, . . . , zg) =
∑

m∈{0,1}g
exp 2πi

 ∑
1≤i<j≤g

mimjΩij +

g∑
i=1

mizi


for some constants Ωij . These are the limits of the off-diagonal terms in the period
matrices of the smooth curves, while the diagonal terms do not enter in the limit. It
is also possible to determine a shift vector h = (h1, . . . , hg) such that the analog of the
theta-divisor, that is, the Wg−1 subvariety of the generalized Jacobian of the rational
nodal curve, is given by the equation

θ(z1 − h1, . . . , zg − hg) = 0

(the vector h is analogous to the vector of “Riemann constants” which plays the same
role for the theta function from a smooth genus g curve).
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Soliton solutions of KP1 are then derived from these theta-functions first by substi-
tuting

zj = (bj − cj)x+ (b2j − c2j )i · y + (b3j − c3j )t+ ϕj ,

to yield KP1 τ -functions and then applying (2). The ϕj are arbitrary constant “phase
factors” whose values are then determined to produce real regular solutions.

In the article [13], Zhang, Yang, Li, Guo, and Stepanyants give examples of degen-
erations of the bi and ci depending on a parameter ε→ 0 such that the lowest nonzero
terms in the series expansion of the τ -function in powers of ε give rational functions
of x, y, t that yield “lump” solutions. However, they do not make the connection with
the cuspidal rational curves that are the limits of the nodal rational curves. Hence the
connection between their work and ours is that we will use similar degenerations, but
we will show explicitly how the limit curve gives a cuspidal rational curve and how the
limit theta function corresponds to the polynomial analog of the theta function on the
generalized Jacobian of the cuspidal curve.

But in fact, to do this, it will be most convenient to look at the corresponding family
of points in the Sato Grassmannian rather than looking explicitly at the limit of the
theta function. (That can also be done, of course, but the computations are more
awkward.) We will address these points in the next sections.

3. Degenerating to the bi-cuspidal curve, and the polynomial analog of
the theta function

From now on, we will specialize to the case g = 4 and a particular degeneration from a
rational nodal curve to a cuspidal curve with two singular points. The particular choice
we will analyze will be the family of curves constructed from P1 with the following four
pairs of points identified

b1 = 1 + 2ε and c1 = 1− 2ε,

b2 = 1 + ε and c2 = 1− ε,(6)

b3 = −1 + 2ε and c3 = −1− 2ε,

b4 = −1 + ε and c4 = −1− ε.

(These are the z-coordinates of the points, but we will usually pass to the other coor-
dinate u = 1

z to work with the dualizing differentials and the abelian integrals.) We

assume ε is real and small enough in absolute value that all eight of these points of P1

are distinct. For ε ̸= 0, each pair of points yields a node; in the limit as ε → 0, two
nodes coalesce to a cuspidal singular point at u = 1 and the other two nodes coalesce
to a cuspidal singular point at u = −1. This is a flat family and the total δ-invariant
of the singular points (that is, the arithmetic genus of the whole curve) is constant,
equal to g = 4. Each of the limit singular points is an A4 double point with semigroup
⟨2, 5⟩. For instance, a local planar model of the degeneration of one pair of nodes to a
⟨2, 5⟩-cusp at (x, y) = (0, 0) is given by the family of parametrizations

x = t2(7)

y = t5 − 5ε2t3 + 4ε4t.

We change basis in the vector space of dualizing differentials on the nodal curves of
the family as follows to obtain differentials with “good” limits on the cuspidal curve as
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ε→ 0. We consider these linear combinations of the differentials from (3) above:

η1 =
1

ε
ω1

η2 =
1

ε3
(2ω2 − ω1),(8)

η3 =
1

ε
ω3, and

η4 =
1

ε3
(2ω4 − ω3).

It is easy to check that the limits of the differentials from (8) as ε→ 0 exist and give

ψ1 = lim
ε→0

η1 =
4

(u− 1)2
du

ψ2 = lim
ε→0

η2 =
12u2

(u− 1)4
du(9)

ψ3 = lim
ε→0

η3 =
4

(u+ 1)2
du

ψ4 = lim
ε→0

η4 =
12u2

(u+ 1)4
du.

In terms of the original affine coordinate z = 1
u , these can be written as

ψ1 =
4

(z − 1)2
dz, ψ2 =

12

(z − 1)4
dz, ψ3 =

4

(z + 1)2
dz, ψ4 =

12

(z + 1)4
dz,

which is exactly the expected form for the dualizing differentials on a curve with two
⟨2, 5⟩-cusps. (Note that as observed in [2], the exponents after integrating with respect
to z would correspond to the “gaps” 1, 3 of this semigroup.)

By the constructions from [2], the ⟨2, 5⟩-cusps correspond to the triangular Young
diagrams from the partition 3 = 2 + 1. Moreover, the total degree of the polynomial
analog of the theta function is 3 + 3 = 6 in this case. We can find an implicit equation
of theW3 subvariety of the generalized Jacobian of the cuspidal curve starting from the
usual abelian integral parametrization. We take the base point of the abelian integrals
as the point z = 0 or u = ∞ on P1, the normalization of the cuspidal curve:

(10) Zj =

∫ t1

∞
ψj +

∫ t2

∞
ψj +

∫ t3

∞
ψj , j = 1, . . . , 4.

Eliminating the ti via a Gröbner basis calculation yields an implicit equation involving
a polynomial analog of the theta function:

Z3
1Z

3
3 + 24Z3

1Z
2
3 − 24Z2

1Z
3
3 + 192Z3

1Z3 + 16Z3
1Z4 − 540Z2

1Z
2
3 + 192Z1Z

3
3

(11)

+ 16Z2Z
3
3 + 336Z3

1 − 4032Z2
1Z3 − 384Z2

1Z4 + 4032Z1Z
2
3 + 384Z2Z

2
3 − 336Z3

3 − 5904Z2
1

+ 27936Z1Z3 + 3072Z1Z4 + 3072Z2Z3 + 256Z2Z4 − 5904Z2
3 + 32256Z1 + 5376Z2

− 32256Z3 − 5376Z4 = 0.

As expected, the highest-degree term is the Z3
1Z

3
3 of total degree 6.
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4. The limiting Sato Grassmannian point and the τ-function

From Theorem 4.11 of [2], to produce a KP2 τ -function from this theta function
(up to an exponential factor that does not contribute anything when we apply (2) to
produce the actual KP1 solution u(x, y, t)), we need to compute a frame for the point of
the Sato Grassmannian corresponding to the cuspidal curve. In fact, we have already
done the relevant computations needed here, since the crucial part of this comes from
the series expansions of the dualizing differentials from (9) above. We have

ψ1 = (4 + 8u+ 12u2 + 16u3 + · · · ) du
ψ2 = (−12u2 − 48u3 + · · · ) du(12)

ψ3 = (4− 8u+ 12u2 − 16u3 + · · · ) du
ψ4 = (−12u2 + 48u3 + · · · ) du

Hence, taking

Z1 = 4x+ 8iy + 12t+ ϕ1

Z2 = −12t+ ϕ2(13)

Z3 = 4x− 8iy + 12t+ ϕ3

Z4 = −12t+ ϕ4

and substituting into (11), we obtain what is essentially a τ -function for KP1 solution
(note that the complex rescaling of y to i · y has been incorporated here). To clean up
the form a bit, we can also divide by the constant factor 4096. The ϕj are arbitrary
constant parameters (analogous to “phase factors” for soliton solutions). They must
be chosen appropriately to obtain a regular real solution. In fact, for “most” values of
the ϕj the resulting KP1 solutions produced by this recipe will still be non-regular, and
they will also take non-real values at some real (x, y, t). We will see how to overcome
these difficulties in the next section.

5. Finding a real regular solution

We begin with a simple observation related to the form of (11) and (13). As long
as x, t are taken to be real, the only possible terms contributing non-real values in the
substituted theta function are those containing odd powers of y–that is, y, y3, and y5–
together with arbitrary powers of x, t giving a total degree at most 6. The coefficient
of y5 yields the terms

(−24ϕ1 + 24ϕ3 + 384)i

Hence, if ϕ1−ϕ3 = 16, the coefficient of y5 will be zero. When ϕ1 = 16+ϕ3 is substituted
into the coefficient of y3, a rather surprising amount of cancellation happens and the
only remaining terms are

(44− 2ϕ4 + 2ϕ2)i.

If also ϕ2 − ϕ4 = −22, then the coefficient of y3 is zero. Moreover, these choices also
make the coefficient of y equal to zero, so the KP1 solution from (2) takes only real
values for real (x, y, t). The “phase factors” ϕ3, ϕ4 are still arbitrary, so to produce an
explicit solution, we take ϕ3 = ϕ4 = 0. The following is essentially a τ -function for the
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solution we are considering:

198x+ (3033/2)x2t+ (6615/2)x2t2 + (8883/2)xt2 + 1494xt+ 2592y2xt2 + x6 + 6561xt3
(14)

+ 306x2y2 + 576y4t+ 2970y2t2 + 3240x2t3 + 180x4t+ 96x3y2 + 1080x3t2

+ 741x3t+ 2592y2t3 + 1710ty2 + 4860t4x+ 522xy2 + 192xy4 + 1458xt5 + 432y4t2

+ 972y2t4 + 135x4t2 + 540x3t3 + 18x5t+ 1215x2t4 + 48x2y4 + 12x4y2 + 864x2y2t

+ 144x3ty2 + 648x2t2y2 + 1908xy2t+ 1296xy2t3 + 288xy4t+ 729t6 + 64y6 + 405y2

+ 2916t5 + 228y4 + 12x5 + 261x2 + 2142t2 + 513/8 + (8667/2)t3 + (345/2)x3

+ (1125/2)t+ (249/4)x4 + (19521/4)t4.

(We say “essentially” because as always the actual τ -function also includes an expo-
nential factor that is linear in x, hence does not contribute when (2) is applied.)

Theorem 1. The KP1 solution from the polynomial in (14) is real and regular for all
real (x, y, t).

Proof. That the u(x, y, t) produced by (2) takes only real values for real (x, y, t) is a
consequence of the determination of the ϕj described above and is also clearly visible
from the form of (14). To show that this is a regular solution (a “multi-lump”) we will
show that the polynomial in (14) is a sum of squares of real polynomials with a nonzero
constant term. This will complete the proof. To begin, we note that the polynomial
analog of the theta function from (11) above can actually be rewritten in the form

(Z3
1 − 24Z2

1 + 192Z1 + 16Z2 − 336)(Z3
3 + 24Z2

3 + 192Z3 + 16Z4 + 336)(15)

+ 36(Z1Z3 + 10Z1 − 6Z3 − 56)(Z1Z3 + 6Z1 − 10Z3 − 56).

Part of this reflects the general patterns determined in the proof of Theorem 5.3 of
[2]. The two factors of degree 3 on the first line are actually the implicit equations of
the theta-divisors for the two partial normalizations of the bicuspidal curve, where one
of the cusps is smoothed and the other one remains untouched. The other term is of
lower total degree 4 and it happens to factor in this way in this case. When the values
from (13) with ϕj as above are substituted into this polynomial, the two factors of total
degree 3 in the term on the first line become complex conjugates, and the product has
the form (A+iB)(A−iB) = A2+B2, where A,B are polynomials with real coefficients.
The factors on the second line yield

36((4x+ 12t+ 10)2 + 64y2 + 4)((4x+ 12t+ 6)2 + 64y2 + 4)

which is also a sum of squares of real polynomials. It is easy to see that the value
of the whole polynomial when x = y = t = 0 is a strictly positive constant. Hence
the corresponding KP1 solution is regular for all real (x, y, t). It decays to zero as
(x2 + y2)−2 as x2 + y2 → ∞. □

We include some numerically-generated plots of the solution given by (14) to demon-
strate how it evolves over time.

From Figures 1 and 3, we see that there are three local maxima (the “lumps”)
contained in the graph of u(x, y, t) for t outside a central region. In Figure 2, however,
we see that the lumps are undergoing an interesting interaction where two lumps have
apparently coalesced and exchanged form with the taller single lump. This means
that our solution is not the same as the traveling wave 3-lump solutions found in [13].



KP1 “LUMP” SOLUTIONS FROM CUSPIDAL CURVES 9

Figure 1. The solution (14) at t = −1.375.

Figure 2. The solution (14) at t = −0.9375.

The reason is that the authors of [13] actually started from an analog of the Boussinesq
equation in which dependence of u on t is omitted and a solution v(x, y) of that equation
is then used to generate a KP solution by setting u(x, y, t) = v(d(x+V t), y) where d, V
are constants and V represents a wave speed. Solutions like ours have been produced
by other authors by different methods, though. We refer the interested reader to the
literature review and the bibliography of [13] for pointers to the relevant articles.
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Figure 3. The solution (14) at t = −0.4375.

6. Comments and Generalizations

By analogy with other physical situations, multi-lump solutions of KP1 such as the
one from (14) have been called “bound states” in [13] and elsewhere. There are also
other configurations of lumps that have been constructed by other methods and we do
not understand whether or how the ideas here might be applied to all those other sorts
of examples yet.

On a more hopeful note, much of the construction we have presented, starting from
the choice of the pairs of points from (6) for the family of nodal curves generalizes
immediately to give families degenerating to cuspidal curves with two A2N double
points for all N ≥ 1. The forms of the dualizing differentials on the cuspidal limits will
be parallel, and the results of [2] yield a similar factorization of the leading terms of
the polynomial analog of the theta function on the cuspidal curve. Theorem 4.11 of [2]
applies in general as here to give KP1 solutions.

Conjecture 1. We conjecture that the methods used to generate this example will

generalize to give similar real regular M -lump solutions with M = N(N+1)
2 for all

N ≥ 1 starting from rational curves with two cusps with semigroup ⟨2, 2N + 1⟩ (A2N

double points). We expect these solutions will have triangular configurations of lumps
with N rows containing 1, 2, . . . , N lumps respectively.

In additional support of this conjecture, we include a plot of a similar solution
constructed from a bicuspidal curve with two ⟨2, 7⟩ cusps (A6 double points) following
the same plan as that used in the calculations reported above. This comes from a
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Figure 4. The case N = 3—another KP1 solution with 6 lumps.

family of rational nodal curves as in (6), but with

b1 = 1 + 3ε and c1 = 1− 3ε,

b2 = 1 + 2ε and c2 = 1− 2ε,

b3 = 1 + ε and c3 = 1− ε,(16)

b4 = −1 + 3ε and c4 = −1− 3ε,

b5 = −1 + 2ε and c5 = −1− 2ε.

b6 = −1 + ε and c6 = −1− ε,

The polynomial analog of the theta function in this case has degree 12. The polynomials
involved are too complicated to be readily understandable, so they are omitted. The
pattern established in Theorem 5.3 of [2] is clear, though. The highest degree term in
the polynomial analog of the theta function is Z6

1Z
6
4 since the corresponding partition

for each cusp is the triangular 6 = 3 + 2 + 1.
The plot in Figure 4 shows the surface of u(x, y, t) from above for the one value

t = −3 so the lump arrangement is visible. The lumps seem to coalesce for t around 0,
then emerge in a reflected version of this same pattern as t increases.

The obstacle that we have not overcome as of yet is proving that there will always
be choices of the “phase factors” ϕj as above that produce real regular KP1 solutions.
This will require more detailed information about the form of the terms of lower total
degree in the polynomial analog of the theta function on the cuspidal limit curve. This
seems somewhat similar to, but more complicated than, the form seen in (15) when
N ≥ 3. We hope to return to this in the future.
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