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Abstract

This work proposes a compilation flow using open-source compiler passes to build a framework to achieve
ninja performance from a generic linear algebra high-level abstraction. We demonstrate this flow with
a proof-of-concept MLIR project that uses input IR in Linalg-on-Tensor from TensorFlow and PyTorch,
performs cache-level optimizations and lowering to micro-kernels for efficient vectorization, achieving over
90% of the performance of ninja-written equivalent programs. The contributions of this work include: (1)
Packing primitives on the tensor dialect and passes for cache-aware distribution of tensors (single and multi-
core) and type-aware instructions (VNNI, BFDOT, BFMMLA), including propagation of shapes across the
entire function; (2) A linear algebra pipeline, including tile, fuse and bufferization strategies to get model-
level IR into hardware friendly tile calls; (3) A mechanism for micro-kernel lowering to an open source library
that supports various CPUs.

1 Introduction

Production high-performance code often needs to use highly-optimized libraries to achieve acceptable perfor-
mance on modern hardware. Using generic micro-kernel libraries allows users to combine low-level calls into
larger operations without worrying about the “last mile” optimizations or optimal hardware utilization. How-
ever, designing highly-optimized libraries requires intricate knowledge of the problem space and the target
architecture, thus leading to lack of generality. Furthermore, mapping those kernels on the existing applications
is still a sizeable challenge, inaccessible to most application programmers [1].

Other AI compiler frameworks (ex. IREE 1) have presented opportunities to accelerate application code by
combining language extensions, graph sharding and data reordering, IR compiler memory bandwidth and com-
pute density optimizations, and super-optimized libraries. However, due to the complexity of those frameworks
and the vast domains they need to cover, support for efficient execution gets limited by common high-level
patterns, leading to an explosion of problem-specific kernel implementations.

In our previous work on implementing a micro-kernel library for the Tensor Processing Primitives (TPP) [2],
we demonstrated that one can build a comprehensive set of deep learning and high-performance algorithms and
achieve state-of-the-art performance by selecting appropriate micro-kernels for the suitable tensor shapes. We
have implemented those primitives in the open-source micro-kernel library named libxsmm 2, which can reach
over 90% performance of the achievable peak (hand-written assembly).

This work3 builds on the success of TPP’s state-of-the-art performance of various algorithms on a variety
of CPUs by bringing a set of high-level linear algebra compiler passes to automatically choose the correct TPP
operations, in the right order, with the suitable flags, including packing tensors and adjusting iteration spaces
for optimal traversal and full utilization of hardware resources. More importantly, it is possible (and desirable)
to achieve this goal by having those passes in LLVM upstream, while adding a small low-level layer (dialect and
conversion passes) specific to the library being used.

Our compiler is based on the well-known MLIR [4] technology by extracting programs from existing high-
level frameworks (such as TensorFlow and PyTorch) through our tensor manipulation passes, into low level
library and hardware dialects for further lowering. This work exposes compiler heuristics via command line
flags, allowing users to identify what constraints work best for each case, and investigate the boundaries with
which to create a cost model that would drive this automatically. The construction and utilization of this cost
model is a subject for future work.

Our main contribution is to enable the ease of using frameworks and automatic compilers on high-level
programs with the performance of “ninja written” low-level libraries, taking advantage of the last drop of
hardware performance on a selection of architectures without resorting to user-specified schedules, pragmas,
hints or hand-crafted intrinsics and inline assembly.

1https://github.com/openxla/iree
2https://github.com/libxsmm/libxsmm
3https://github.com/plaidml/tpp-mlir
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2 MLIR and the Linalg Dialect

The MLIR compiler infrastructure is a project under the LLVM umbrella well-suited for multi-level IR rewriting.
MLIR provides an intermediate representation (IR) with only a few concepts being built, leaving most IR
customizable. Such IR allows compiler developers to match the right abstraction level for their problems by
introducing custom types, operations, and attributes. We use the static single-assignment (SSA) form, which
is suitable for imperative programming styles that machine learning (ML) and high-performance computing
(HPC) applications lower to.

A dialect is a basic structure that enables the MLIR to implement a stack of reusable abstractions, com-
posed of operations, types, attributes, etc. Each abstraction encodes and preserves transformation validity
preconditions directly in its IR, reducing the complexity and the cost of analysis passes.

Each dialect models a specific domain. For example, the Linalg dialect 4 captures linear-algebra operations
on either tensor or buffer operands. Listing 1 shows a single layer of a multi-layer perceptron ML model, with a
matrix multiplication followed by a “bias” addition and rectifier (ReLU) implemented as max(x, 0.0). The op-
erations’ semantics describe the computation in the “inner loop” and define iteration order via “indexing maps”
and “iterator types”.

As is common in the MLIR ecosystem, we originally developed our own (TPP) tile dialect, between Linalg
on Tensors and our XSMM dialect, which allowed us to manipulate tiling, fusing, and bufferization on our
terms. However, through upstream discussions on a tile dialect design, we have concluded that the upstream
Linalg dialect should have such abstractions. We then updated the Linalg dialect with our operations and now
use only Linalg for both whole-tensor and tile semantics, on tensors and memrefs. This allows us to further our
mission to impact and reuse upstream high-level transformations for a common compilation infrastructure.

3 Compilation Strategy
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Figure 1: A simplified view of the proposed compiler strategy. In gray are external components,
in green are the upstream compiler technology while in blue are the potentially downstream
parts. Boundaries depend on which ingress format and which hardware abstractions are used.
XSMM is our choice of CPU library, and OpenCL is a potential choice for GPU libraries. The
proposal is equally valid with dialects and further compilers (ex. LLVM) down the line.

Our compilation strategy in figure 1 is based on five main components: 1 An ingress layer 5, that ex-

tracts MLIR from existing frameworks into Linalg-on-Tensor Intermediate Representation (IR); 2 A high-

level hardware-agnostic Linalg pipeline; 3 A low-level lowering dialect; 4 A pipeline for libxsmm; 5 An
execution strategy for the generated code, including runtime libraries and wrappers.

The ingress layer is based on external frameworks: IREE for TensorFlow models and torch-mlir 6 for PyTorch
Dynamo. On top of that, we have created a tool named mlir-gen that replicates the IR that IREE generates
from TensorFlow but is extensible enough to generate various shapes, number of layers, size of matrices, type
packing, etc. This IR generator aims at providing dynamic inputs to our compiler tests and replaces our
dependency on IREE, as seen in figure 1.

The second component is a Linalg-based pipeline built by composing upstream building blocks. Following
previous work [6], we have implemented a focused pipeline, using existing passes with our new operations
(tensor.pack and tensor.unpack) and their respective transformations.

While our implementation is not yet a fully flexible Linalg optimizing pipeline, we demonstrate the viability
of such a pure Linalg-based approach. In essence that means, relying on only using Linalg passes and reasonable
heuristics to achieve high performance by combining compiler passes with minimal vendor-optimized routines.
The idea is to leverage compilers for what they are good at: fusion, tiling, and data layout while relying on
vendor-optimized routines for optimizations like vectorization and instruction selection.

4https://mlir.llvm.org/docs/Dialects/Linalg
5https://github.com/plaidml/mlir-generator
6https://github.com/llvm-project/torch-mlir
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// Affine maps M,K * K,N -> M,N

# map-mk = affine_map<(d0, d1, d2) -> (d0, d2)>

# map-kn = affine_map<(d0, d1, d2) -> (d2, d1)>

# map-mn = affine_map<(d0, d1, d2) -> (d0, d1)>

// A perfectly nested affine fused mltiply and accumulate operation (matmul)

%0 = linalg.generic {

indexing_maps = [#map-mk, #map-kn, #map-mn],

// Reduction iterator type is the third, ie. ``d2'', which is the ``K'' dimension

iterator_types = ["parallel", "parallel", "reduction"]

}

// Inputs are A and B matrices, C is the initialized of the output (generally zero).

ins(%A, %B : tensor<128x256xf32>, tensor<256x512xf32>)

// Output is the C matrix, here representing initialization (C+= A * B), where C can be zero

outs(%C : tensor<128x512xf32>) {

^bb0(%in: f32, %in_1: f32, %out: f32):

%3 = arith.mulf %in, %in_1 : f32

%4 = arith.addf %out, %3 : f32

linalg.yield %4 : f32

} -> tensor<128x512xf32>

// Affine maps element-wise & broadcast

# map-ew = affine_map<(d0, d1) -> (d0, d1)>

# map-bc = affine_map<(d0, d1) -> (d1)>

// A binary operation on the output of the matmul above (ex. Bias Add)

%1 = linalg.generic {

indexing_maps = [#map-ew, #map-bc],

iterator_types = ["parallel", "parallel"]

}

// Inputs are C and Bias matrices.

// Note: the bias is a 1D vector being broadcasted to add element-wise.

// Note: the C matrix is the initializer of the output, so it's in `outs`.

ins(%BIAS : tensor<512xf32>)

outs(%0 : tensor<128x512xf32>) {

^bb0(%in: f32, %out: f32):

%4 = arith.addf %in, %out : f32

linalg.yield %4 : f32

} -> tensor<128x512xf32>

// A unnary operation on the output of the binary above (ex. ReLU)

%ZERO = arith.constant 0.000000e+00 : f32

%2 = linalg.generic {

// Element-wise parallel operation only uses MN maps

indexing_maps = [#map-ew],

iterator_types = ["parallel", "parallel"]

}

// Input is just the result above.

// Note: the result is the initializer of the output, so it's in `outs`.

outs(%1 : tensor<128x512xf32>) {

^bb0(%out: f32):

%4 = arith.maximumf %out, %ZERO : f32

linalg.yield %4 : f32

} -> tensor<128x512xf32>

return %2

Listing 1: A simple multi-layer perceptron (MLP) layer represented in Linalg generic operations.
The affine maps in “indexing map” describe the iteration space of each input, the “iterator types”
the type of loop (parallel or reduction), while the inner region specifies the computation. The
arguments (“ins” and “outs”) are tensors created beforehand.

3



Our core mission is to have a Linalg-based optimization pipeline upstream in MLIR. Our first step in
this direction was the upstreaming of operations (tensor.pack, tensor.unpack and several Linalg named
operations) and creation and improvement of upstream passes (packing, tiling, fusion).

The fourth component is an in-house dialect (XSMM) that plays the role of interfacing with our “last-mile”
library: libxsmm. The XSMM dialect does not need to be upstream, as it represents a third-party library and
its semantics. As such, we show that it’s feasible to have an upstream Linalg-based compiler for the high-level
transformations and a downstream target-specific dialect to do low-level transformations. XSMM dialect is used
to perform transformations that are specific to the library, not necessarily the final target architecture. For
example, it exposes fused library calls that can implement a whole MLP layer (GEMM + Binary + Unary),
saving on loads/stores, register renaming, cache flushes, and buffer allocation. The high-level Linalg IR does
not need to know or care about this. Lowering Linalg on memrefs into other hardware specific dialects (such
as vector or GPU target dialects) is subject for future work.

The fifth and last component is a simple runtime wrapper for libxsmm and a just-in-time compiler infras-
tructure to get executable code. We reuse the upstream mlir-cpu-runner, extending it to include our dialects
and passes as well as to generate a benchmark loop for the kernels being tested (using a local perf dialect that
we’re discussing how to upstream).

3.1 Why Linalg on Tensors?

Different frameworks (e.g. TensorFlow, PyTorch) implement their own MLIR dialects (StableHLO, Torch) with
semantics equivalent to their internal graph formats. There are other high-level dialects (ex. TOSA7) but they
also have their individual semantics, which makes it hard to work on a common optimization infrastructure.

To avoid this complexity, compilers aim at converting those dialects into a common “compiler IR”: Linalg
on Tensor. These two dialects can describe a substantial part of ML applications with a small number of generic
operations (as seen in Listing 1) and are very amenable to transformations.

Being at a tensor value semantics, where each new operation materializes a new tensor, allows us to perform
most of the optimization we need, namely packing, kernel fusion, and tiling, without having to worry about
memory constraints. In addition, there are upstream passes that we want to reuse that run on either Linalg or
its interfaces, many of those to which we contributed substantially.

This set of dialects, with tiled and fused operations is then bufferized by the one-shot bufferization pass,
cleaned, canonicalized and further lowered to low level dialects such as XSMM, where library/hardware specific
passes can operate on an already memory-friendly shape.

4 Compiler Passes

The compiler pipeline consists of two parts: 2 high-level optimizations, generic to all targets and based on cost

models, heuristics-based decisions, and graph-rewrites, and 3 low-level optimizations, specific to each chosen
target, primarily adjusting the high-level decisions to the target expectations (low-level dialects, function calls,
intrinsic, etc).

High-level passes like packing, tiling, and fusing are hardware-agnostic (with hardware-specific costs) and
aim to reduce round-trip to memory by providing aggressive fusion strategies around contraction-like operations
(i.e., fuse element-wise operations with matmul). Tiling exposes scalar or parallel loops around operations that
can map 1:1 with micro-kernel operations in libxsmm (exposed by the XSMM dialect), but also fits common
CPU and GPU code generation patterns (using vector, gpu and other close-to-hardware dialects).

Low-level passes can then be done on the specific low-level dialects (such as XSMM and vector), where
target-specific transformations can be done at a representation closer to the hardware/library.

4.1 Pack, Unpack, and Propagation

Packing (or data-blocking) is a well-known transformation in high-performance libraries that copies a non-
contiguous block of data to a contiguous block in memory to reduce the number of TLB entries required
to access each page. When copying data, packing rearranges block elements to decrease the stride between
consecutive accesses, improving spatial locality and cache behavior.

Bringing it into the compiler has advantages, as we can propagate the layout through the IR instead of
paying the price for every invocation. We perform packing by introducing two new operations in the tensor
dialect: tensor.pack and tensor.unpack. The former takes a tensor as input and produces a re-layout tensor
as output, while the latter undoes the packing, bringing the tensor back to the original layout. Table 2 shows
one of the layouts we use for different matmul operations.

7https://mlir.llvm.org/docs/Dialects/TOSA
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Figure 2: Packed layout for GEMM operation. After tiling (smaller square), the tiles are trans-
posed whole (“block-transpose”). For optimal multi-threaded locality we also group different
blocks (single-colored areas) for each thread.

Currently, we employ very simple heuristics around packing: select an optimal tile size and divide the outer
dimensions around it, reordering the blocks of the second tensor to improve cache locality. The optimal tile size
is currently fixed but with the option to allow users to override it. A cost-model-based heuristics to select the
best tile size for a given architecture is subject to further work.

Each operation is packed as long as its iteration space has more iteration than the packing factor encoded
in the pass. Usually, if the iterations on each dimension are less than a certain architecture-specific amount,
the computation fits in the cache, and packing is unnecessary.

To amortize the cost of packing, packing operations are propagated through element-wise operations, and
a pair of unpack(pack(t)) are folded away when possible (figure 3). This allows us to be naive on the initial
packing, just looking at large matrix multiply and contractions, then expand the same shapes throughout the
following operations reaching the next stages (following layer, next step in the same layer), and remove all
intermediate packing operations except the first ones on inputs and last ones on return values.

Packing constants (weights and biases on inference models) can be done at compile time if we have access
to the data in the model (for example as a constant global or an arith.constant). However, more advanced
folding [5] can be done at run time even on models where the constant data is passed as arguments by packing
and computing the first time, caching and reusing the subsequent times. Moreover, zero-initialized buffers (for
example, the output C matrix tile for matmul) can be just reshaped at compile time, since it’s only a splat of
zeroes onto an arbitrary shape.

4.2 Tile and Fuse

We use upstream building blocks to assemble our tiling and fuse pass. The main idea is to consider contraction
operations and fuse them along the parallel dimensions with consumers’ or producers’ element-wise operations.

As in Listing 2, we fuse along the M and N parallel loop. Using a bottom-up traversal, we consider each
contraction and collect possible fusable consumers or producers looking at their iteration domain. This effectively
creates a cluster of element-wise operations around a contraction. We require each operation to belong to a

5



Figure 3: Pack propagation through a multi-layer model. Packed GEMMs propagate their layout
to the following element-wise operations, exposing canonicalization in between layers to elide all
intermediate packs and unpacks, leaving only the initial packs and final unpack.

single cluster domain, and we prevent recomputation by avoiding duplicating operations that belong to multiple
fusion domains.

// Convert tile-wise operations

for(MB, NB) {

for (KB) {

C[MB][NB][mb][nb] += A[MB][KB][mb][kb] * B[NB][KB][kb][nb]

}

C[MB][NB][mb][nb] = add(C[MB][NB][mb][nb], bias[mb][nb])

C[MB][NB][mb][nb] = max(C[MB][NB][mb][nb], 0)

}

// Into a parallel BRGEMM "tile" op + element-wise tail ops

parallel(MB, NB) {

-> extract { A, B, C } x [MB][NB][KB] as apporpriate

// Note: this is a batch-reduce GEMM into a "tile"

C[mb][nb] += A[KB][mb][kb] * B[KB][kb][nb]

C[mb][nb] = add(C[mb][nb], bias[mb][nb])

C[mb][nb] = max(C[mb][nb], 0)

<- insert into C[MB][NB]

}

Listing 2: The tile and fuse pass will materialize the two parallel loops MB and NB, because both are
parallel outer dimensions, i.e., there are no loop carried dependencies between the tile operations.

4.3 Lowering to Hardware Dialects

After the hardware independent passes, we run the upstream bufferization pass to move from a value-based
tensors to memory buffer memrefs. After bufferization, the Linalg on buffers IR, now operating in tile shapes
inside parallel loops, is lowered to our XSMM dialect, which acts as an interface to libxsmm. After low-level
dialect-specific optimization passes, XSMM is lowered to function calls that invoke libxsmm through a simple
C runtime.

6



4.3.1 The XSMM dialect

The XSMM dialect maps the behavior of the libxsmm library and enables library-specific optimizations, for
example, call fusion.

The libxsmm library is a JIT-ing library and is split into two stages: dispatch and invoke. The dispatch
stage receives the shapes of the buffer, leading dimensions, broadcast, and fusion flags and compiles the micro-
kernel in memory, returning a pointer into its implementation. The second time a dispatch function is called,
it just returns a cached pointer to the same implementation. The invoke stage calls that function pointer with
the actual tensor data (usually a tile into a larger buffer with the appropriate strides), which computes the
operation, writing the result to the output buffer.

XSMM exposes only five operations: unary, binary, gemm, brgemm and fused brgemm. unary are element-
wise unary operations like ReLU, but also broadcasts, transposes and reductions. binary are element-wise
binary operations like add or multiply. gemm represents General Matrix Multiplications mirroring the BLAS
interface; brgemm is a more powerful abstraction that carries an extra reduction dimension on the input operands,
allowing reducing tiles of A and B in the same C tile. Finally, fused brgemm allows register fusion between
BRGEMM and an element-wise prologue and epilogue.

The last operation above demonstrates the power of library-specific (not just hardware-specific) compiler
optimizations. To allow for better low-level optimization, libxsmm implements a fused BRGEMM, which can
add the following arbitrary binary and unary operations to the BRGEMM, including broadcast semantics.

// Convert multiple XSMM calls

%3 = xsmm.unary.dispatch zero [...] flags = (none)

%4 = xsmm.brgemm.dispatch [none] flags = (none)

%5 = xsmm.binary.dispatch add [...] flags = (bcast_col_in0)

%6 = xsmm.unary.dispatch relu [...] flags = (none)

scf.parallel (MB, NB) {

%subview_A = memref.subview ... // into A

%subview_B = memref.subview ... // into B

%subview_C = memref.subview ... // into C

// C[MB][NB] = { 0.0 }

xsmm.zero(..., %3, %subview_C)

// C[MB][NB] = BRGEMM(A[MB][NB], B[MB][NB], C[MB][NB])

xsmm.brgemm(data_type = f32, %4, %subview_A, %subview_B, %subview_C, %c0)

// C[MB][NB] = ADD(broadcast(Bias[NB]), C[MB][NB])

xsmm.binary add(..., %5, %BIAS, %subview_C, %subview_C)

// C[MB][NB] = ReLU(C[MB][NB])

xsmm.unary relu(..., %6, %subview_C, %subview_C)

}

// Into a single fused one with all flags

%3 = xsmm.fused_brgemm.dispatch [...][add,relu] flags = (beta_0)

binary_flags = (bcast_col_in0) unary_flags = (none)

scf.parallel(MB, NB) {

%subview_A = memref.subview ... // into A

%subview_B = memref.subview ... // into B

%subview_C = memref.subview ... // into C

// C[MB][NB] = { 0.0 }

// C[MB][NB] = BRGEMM(A[MB][NB], B[MB][NB], C[MB][NB])

// C[MB][NB] = ADD(broadcast(Bias[NB]), C[MB][NB])

// C[MB][NB] = ReLU(C[MB][NB])

xsmm.fused_brgemm(..., %3, %subview_A, %subview_B, %subview_C, %BIAS %c4)

}

Listing 3: XSMM pass that fuses multiple XSMM calls into a fused call to improve register and
memory usage.

4.4 Parallelism

We support parallelism using OpenMP by converting scf.forall into scf.parallel to expose CPU thread
parallelism by running the upstream OpenMP conversion passes and linking with LLVM’s OpenMP library.

We force the OpenMP affinity to guarantee the correct distribution of the tiles onto the appropriate threads
with the setting KMP AFFINITY to granularity=fine, verbose, compact,1,0.
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4.4.1 2D parallelism

We perform 2D parallelism transformation on the loops around the XSMM dialect (see figure 2. This trans-
formation distributes the OpenMP threads across the appropriate tile regions to increase reuse and minimize
core-to-core traffic in a multi-core chip by best possible leveraging matrix multiplication’s algorithmic proper-
ties. Different tile region shapes are optimal for different number of threads, micro-architecture extensions and
XSMM-specific behaviour, so this pass is done at the low-level pipeline to extract the most of it.

This pass further tiles the outer parallel dimension loops into smaller iteration spaces (multiple of the number
of threads) and creates sequential loops inside each thread, guaranteeing the execution of all tiles in the same
group to be on the same thread. Getting that balance right (memory bandwidth, caching, compute distribution)
is not trivial.

Compiler command line options are introduced to select the best known factor for each run on our bench-
marks. However, as above, this technique is only being used to collect data on costs to support high-level
heuristics decisions and will be subject to future work.

4.4.2 AMX tile configuration hoisting

The Intel AMX matrix unit needs to be configured via a status register before usage and reset after usage. This
configuration is expensive as it resets the unit twice inside the inner loop.

Without further information, libxsmm must setup and reset around every loop according the ABI as both
the configuration of the status register and the actual registers are defined as volatile. To avoid this extra cost,
the compiler splits the GEMM operation into a triplet: tile config + GEMM + tile reset, and because the tile
operations do not use any data from inside the inner loop (all dominators are outside), we can hoist the call
outside of the loop.

However, as shown in figure 4, we must setup and reset the tiles at least once per thread, so we only hoist the
tile calls past the sequential loops, not past the outer parallel loop (that will be executed on different threads).

Figure 4: Each layer is executed across all cores (data parallelism). For data locality, we block
each thread within a single block (of tiles) within the original matrix (see figure 2). To amortize
the cost of using the matrix extension on Sapphire Rapids, we hoist the setup and reset calls
within each thread.

5 Results

We compare our compiler’s performance against libxsmm hand-written code (from its libxsmm-dnn repository),
which, after micro-architecture analysis, is known to reach higher than 90% of the achievable total performance
of each CPU we target. Our compiler emits calls to the same micro-kernels, so the delta between the hand-
written and compiler versions is due to the automatic parallelization of the input IR and not the low-level
hardware optimizations.

The benchmarks use an MLP model to demonstrate the critical optimization in machine learning, not as a
measure of output performance in existing ML models (such as ResNet, DLRM, and BERT). Our test kernels
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mimic a 3-layer MLP with batch size 256 and hidden sizes 1024. We consider only inference where weights
and biases are constants. Using such motifs for workload abstraction is common practice. It has been used by
Google when introducing the TPU hardware or Meta when proposing the DLRM benchmark.

The CPU architectures we run on from AWS instances are:

• (c6a): AMD(R) EPYC 7R13 (Zen3), supporting AVX2 (BF16 emulated)

• (c6i): Intel(R) Xeon(R) Platinum 8375C (CLX), supporting AVX512 (BF16 emulated)

• (c7i): Intel(R) Xeon(R) Platinum 8488C (SPR), supporting AMX (BF16 native)

• (c7a): AMD(R) EPYC 9R14 (Zen4), supporting AVX512 bf16 (BF16 native)

• (c7g): AWS Graviton 3 (Gvt3), ARM V1 core supporting SVE (BF16 native)

The c6 architectures do not support native BF16 float types and were benchmarked to demonstrated our
strategy works for 32-bit floating point on older hardware. As the BF16 types are emulated, we achieve lower
performance than 32-bit, which is expected, since we cannot use 16-bit floats natively.

The c7 architectures all have native BF16 support and show our results in three different vendors. On Intel
Sapphire Rapids (c7i), we use the AMX extension for 2D matrix operations; On AMD Genoa Zen4 (c7a) we
use the AVX512 bf16 extension; On AWS Graviton 3 (c7g), we use SVE’s scalable vector BFMMLA extension
for fast BF16 matrix operations.

We pin all our single-core benchmarks on core 3 and use OpenMP affinity from core 1 onward to avoid noise
in benchmark results as core 0 is being used by the kernel.

Figure 5: Single-thread results for all CPUs. The compiler’s performance is on par against all
hand-written results except c7i (SPR), where compute density can be affecting memory band-
width. Note, the scale on the first three plots are up to 250 GFLOPS, while the last two are up
to 2 TFLOPS.

5.1 Single-thread performance

Figure 5 compares two types of runs:

1. LIBXSMM-DNN, using hand-written C++ code calling libxsmm micro-kernels in the optimal shapes
for maximum known performance. This is our baseline.

2. TPP-MLIR, using our compiler to call the same micro-kernels above, but with the optimal configurations
selected by the compiler. The model shapes here are in 4D, since the hand-written code does not do online
packing. This allows a fair performance comparison.

On 32-bit floats (FP32), the compiler achieves the same overall performance as the hand-written code on
all machines, with a deviation of less than 5%. The compiler is slightly slower on Intel machines (c6i and c7i),
equally fast on Arm (c7g) and slightly faster on AMD machines (c6a and c7a). This is due to the hand-written
code being optimized on Intel machines and the compiler being a more generic approach.

This is not too surprising, given that small variations can be seen with different choices for loop order,
tile sizes and tensor caching that parlooper [3] finds with an exhaustive search. We have seen our compiler
“get lucky” a few times when comparing with hand-written code. Future work is needed to explore that space
systematically and always produce the most efficient configuration for every target.

We have identified a further difference between the hand-written code and the compiler, where the former
allocates a single (strongly aligned) arena region to use as scratchpad, while the compiler relies on individual
(not necessarily aligned) memory allocations. While this is unrelated to micro-kernel execution, it is a high-level
decision that needs to be in the compiler’s tool kit. Further analysis and implementation of these fixes is subject
to future work.

On 16-bit “brain” floats (BF16), the picture requires a bit more explanation. Neither Zen3 nor CLX have
native support for BF16, so we emulate it with older instruction sets, and therefore the performance is lower
than FP32. However, they’re still the same as the hand-written code on all machines except c7i.
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Sapphire Rapids (c7i) uses the AMX extension, which provides a much higher compute density than FP32,
and therefore the effects of memory bandwidth are more apparent. Especially, if some of those loads and stores
are done on unaligned memory, we can get a pathological case that is 4x slower than peak, which can easily
lead to a 30% performance degradation. Similar effects can be happening on Graviton 3’s SVE extensions, but
at a lower rate given the smaller compute density.

Figure 6: Comparison of mlir-gen (TensorFlow-like) IR with and without compiler packing ap-
plied. This shows that the cost of packing can be easily hidden with constant packing and fusion
with consumers and producers.

5.2 Single-thread packing costs

Figure 6 compares two types of runs:

1. Pre Packed, where mlir-gen creates the model shapes in their already packed (4D) versions. This is
the TPP-MLIR results above and are our baseline.

2. Packing, where mlir-gen creates the model shapes in their original (2D) versions, using our compiler to
find and perform tensor packing (at compile or run time).

These results show the impact of compile and run time packing performed by the compiler, which are on
average 1% for all machines and data types. Sapphire Rapids (c7i) on BF16 shows a greater impact (7%) due
to the compute density problem identified above.

Figure 7: Comparison of mlir-gen (TensorFlow-like) IR that we based our work on against
PyTorch IR that we extracted through Torch Dynamo and torch-mlir at the end of the project.

5.3 Models from new frameworks

Figure 7 compares two types of runs:

1. Generated, where mlir-gen creates the model shapes in their original (2D) versions, using our compiler
to find and perform tensor packing. This is the Packing results above and are our baseline.

2. PyTorch, where we extract MLIR from PyTorch on a similar kernel as the above, and pass it through our
compiler. This shows how our compiler performs when encountering new IR that it hadn’t seen before.

These results show, at least for the PyTorch case, that as long as the frameworks lower the same models
in similar ways, the compiler can perform the same transformations and achieve roughly the same performance
(2% on average).

The main differences between these PyTorch models and our generator were:

1. TensorFlow lowers ReLU as maxf(0, x) while PyTorch lowers it as max(0, x) + select(0, x), which
needed to be recognized as an XSMM operation to lower and fuse correctly.
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2. PyTorch passes constants as arguments, so we had to force PyTorch to disable auto-grad and some other
features to generate a similar kernel.

3. PyTorch stores its weights in a transposed way, which incurs in additional memory-bound operations.

4. PyTorch lowers the matmul and the following element wise operations writing to different buffers, so fusion
does not work our of the box.

Sapphire Rapids (c7i) on BF16 shows again a greater impact (5%) due to the compute density problem
identified above, since most of the changes are bandwidth related (optimal traversal, stray memory allocations,
weight transposes).

Figure 8: Scalability of the compiler results on c7a (Zen4), c7g (Gvt2) and c7i (SPR) architec-
tures, compared to libxsmm-dnn. The numbers on top represent speed improvement over their
own single-threaded baseline. Very good scalability across the board.

5.4 Parallel scalability

Figure 8 compares two types of runs:

1. LIBXSMM-DNN, our hand-written C++ code with OpenMP for multi-threaded execution. This is our
baseline.

2. TPP-MLIR, using our compiler on 4D shapes as above, with OpenMP for multi-threaded execution.

We use OpenMP to test thread scalability on 2, 4, 8 and 16 threads on each hardware architecture. We
use KMP AFFINITY as granularity=fine,verbose,compact,1,0 to distribute the threads across all cores (not
hyper-threads) from core 1 (since 0 is being used by the kernel).

Our results show very good scalability across the board, on both FP32 and BF16 data types. The compiler
shows similar multi-threaded performance as the hand-written code, which means the same scalability on both
Zen4 and Graviton 3, but increased scalability on Sapphire Rapids due to the lower single-threaded performance,
while the absolute reach multi-thread performance is identical, hence the compiler delivers the same performance
as the handwritten library on all platforms.

6 Conclusion and Future Work

In this work, we demonstrate one can achieve comparable ninja performance on ML models using our high-level
MLIR compiler that, in turn, uses low-level tile-based building blocks without needing user input. Using a ninja-
based heuristic, we have shown how to select the appropriate micro-kernels for known high-level operations.
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It’s important to emphasize that by upstreaming our high-level logic, we can reduce the maintenance cost
for generic abstractions that are not architecture-specific, and participate in the design the the MLIR compi-
lation infrastructure to define an industry standard, guiding design of future compilers, libraries and hardware
architectures.

We have also shown the benefits of the micro-kernel approach in compilers towards separating the concerns
between what a compiler can do well (high-level optimizations like tiling, fusion, and data layout) from what it
is hard to achieve in practice: efficient vectorization, optimal instruction selections, pipelined register allocation.
This also allows downstream experimentation on pre-production hardware extensions without having to re-write
the entire stack or inject high maintenance changes into production compilers.

As future work, we plan to develop a cost model to drive the compiler heuristics, extend the programs we
can optimize into more DL/HPC workloads (ex. transformers), expand the micro-kernels into other targets
(GPU, accelerators), look into the interaction between micro-kernels, IR kernels and compiler vectorization on
general code generations, improve the heuristics search for optimal tiling strategies and loop orders, and improve
integration of downstream passes into the upstream pipeline to improve collaboration between the two worlds.
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A Appendix: Reproducing results

Our benchmarks were executed on AWS public instances: c6a.metal (Zen3), c6i.metal (Cooper Lake),
c7i.metal-24xl (Sapphire Rapids), c7a.metal-48xl (Zen4), hpc7g.16xlarge (Graviton 3) for the results
outlined above.

Most instances are metal instances to avoid other users interfering with our measurements. The only one
that isn’t is the Graviton 3, which has scalability problems on the metal instances but not on the HPC instances.
For this reason we reserve an entire virtualized Graviton 3 instance in order to achieve the same result and not
allow other tenants on our machines. We use a standard Amazon Linux OS on those instances.

We have fixed the state of our git repository in Github by creating a branch called cgo-c4ml-2024, from
which these benchmarks were executed. To reproduce the benchmark, clone our repository on that branch,
enter the scripts/benchmarks directory and run the build and run.sh script, following the instructions in
the README file 8.

We have used these instructions directly to run all of the numbers on this paper.

8https://github.com/plaidml/tpp-mlir/tree/cgo-c4ml-2024/scripts/benchmarks
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