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4 A discretization of the iterated integral expression

of the multiple polylogarithm

Minoru Hirose, Toshiki Matsusaka, and Shin-ichiro Seki

Abstract. Recently, Maesaka, Watanabe, and the third author discovered a phe-
nomenon where the iterated integral expressions of multiple zeta values become dis-
cretized. In this paper, we extend their result to the case of multiple polylogarithms
and provide two proofs. The first proof uses the method of connected sums, while
the second employs induction based on the difference equations that discrete multiple
polylogarithms satisfy. We also investigate several applications of our main result.

1. Introduction

The multiple polylogarithm (MPL) Lixk (z) is defined as

Lixk (z) :=
∑

0<n1<···<nr

1

nk1
1 · · ·nkr

r

r∏

i=1

(
zi+1

zi

)ni

,

where a tuple k = (k1, . . . , kr), consisting of positive integers, is called an index, z =
(z1, . . . , zr) is a tuple of complex numbers, and zr+1 := 1. For convergence, we assume
that each |zi| ≥ 1 and (kr, zr) 6= (1, 1). For the index k = (k1, . . . , kr), we define its
depth as dep(k) := r and its weight as wt(k) := k1 + · · · + kr. When all zi = 1, we
denote Lik({1}

r) by ζ(k) and call it the multiple zeta value (MZV). Here, {1}r is a
shorthand notation indicating that the number 1 is repeated r times. An index k that
satisfies the convergence condition kr ≥ 2 is called an admissible index. In the notation
of iterated integrals

∫ 1

0

dt

t− a1
◦ · · · ◦

dt

t− ak
:=

∫

0<t1<···<tk<1

dt1
t1 − a1

· · ·
dtk

tk − ak
,

for k and z, we define Ik(z) as

Ik(z) :=

∫ 1

0

dt

t− z1
◦
dt

t
◦ · · · ◦

dt

t︸ ︷︷ ︸
k1 times

◦ · · · ◦
dt

t− zr
◦
dt

t
◦ · · · ◦

dt

t︸ ︷︷ ︸
kr times

.
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Then, the following iterated integral expression of the MPL holds ([G1, Theorem 0.16],
[G2, Theorem 2.2]):

(1.1) Lixk (z) = (−1)dep(k)Ik(z).

In particular, the iterated integral expression of the MZV,

(1.2) ζ(k) = (−1)dep(k)Ik({1}
dep(k)),

is obtained. Recently, a discretization phenomenon of this expression was discovered
by Maesaka, Watanabe, and the third author. Let N be a positive integer.

Theorem 1.1 (Maesaka–Seki–Watanabe [MSW]). For any index k = (k1, . . . , kr) and
any N , we have

∑

0<n1<···<nr<N

1

nk1
1 · · ·nkr

r

= (−1)r
∑

0<nj,1≤···≤nj,kj
<N (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 −N)nj,2 · · ·nj,kj

.

The sum on the right-hand side is a Riemann sum of the iterated integral, and taking
the limit of both sides as N → ∞, when k is admissible, yields (1.2). Theorem 1.1
asserts that the integral expression remains valid in a discrete form even before taking
the limit.

Building upon this work, it is desired to investigate how widely such a discretization
phenomenon of “series = integral” type expressions holds. Yamamoto [Y2] has already
shown that the integral expressions associated with the 2-posets of the multiple zeta-
star values given in [Y1], as well as those extended to the Schur multiple zeta values
of diagonally constant indices provided by the first author, Murahara, and Onozuka in
[HMO], are similarly discretized.

In this paper, we provide a discretization of the iterated integral expression of the
MPL (1.1). In the following, when dealing with finite sums, we describe them using
indeterminates xi instead of complex numbers zi.

As mentioned in [MSW], for example, we can consider the elementary equation

(1.3)
2N−1∑

n=1

(−1)n−1

n
=

N−1∑

n=0

1

n +N

as a discretization of

log 2 =

∞∑

n=1

(−1)n−1

n
=

∫ 1

0

dt

t+ 1
.

It seems to be natural to introduce the following approximate finite sums for Lixk (z)
and Ik(z), respectively: for k = (k1, . . . , kr) and x = (x1, . . . , xr) (xr+1 := 1),

Lix ,<N
k (x) :=

∑

0<n1<···<nr<N

1

nk1
1 · · ·nkr

r

r∏

i=1

(
xi+1

xi

)ni

,
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I
(N)
k (x) :=

∑

0<nj,1≤···≤nj,kj
<N (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 −Nxj)nj,2 · · ·nj,kj

.

However, comparing the values of Lix ,<N
k (x) and (−1)dep(k)I

(N)
k (x), while adjusting the

sum ranges with (1.3) in mind, generally does not reveal a simple relationship. On

the other hand, by modifying the definition of Lix ,<N
k (x), for example, the following

equation can be found: for a positive integer k,

N−1∑

n=1

(−1)n−1

nk

(
N−1
n

)
(
N+n
n

) =
∑

0<n1≤···≤nk<N

1

(n1 +N)n2 · · ·nk

or equivalently

N−1∑

n=1

1

nk

(
N−1
n

)
(
−N−1

n

) = −
∑

0<n1≤···≤nk<N

1

(n1 +N)n2 · · ·nk

.

By taking the limit of this equation as N → ∞, the expression Lixk (−1) = −Ik(−1)
can be obtained (cf. [LZ, Lemma 4.2]). In fact, this can be fully extended, and the
following is our main result. The generalized binomial coefficient

(
x
n

)
as a polynomial is

defined in the usual way for non-negative integer n:
(
x
n

)
:= x(x−1)···(x−n+1)

n(n−1)···1
(n ≥ 1) and(

x
0

)
:= 1.

Theorem 1.2 (Discretization of the iterated integral expression of the MPL). Let k =
(k1, . . . , kr) be an index and x = (x1, . . . , xr) a tuple of indeterminates with xr+1 = 1.
Then, for any positive integer N , we have

∑

0<n1<···<nr<N

1

nk1
1 · · ·nkr

r

r∏

i=1

(
Nxi+1−1

ni

)
(
Nxi−1

ni

)

= (−1)r
∑

0<nj,1≤···≤nj,kj
<N (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 −Nxj)nj,2 · · ·nj,kj

.

By abbreviating the left-hand side as L̃i
x ,(N)

k (x), it can be expressed as

(1.4) L̃i
x ,(N)

k (x) = (−1)dep(k)I
(N)
k (x).

For a fixed ni’s, it is clear that

(1.5) lim
N→∞

r∏

i=1

(
Nzi+1−1

ni

)
(
Nzi−1

ni

) =
r∏

i=1

(
zi+1

zi

)ni

.

Hence, when k and z satisfy the convergence condition and after substituting xi = zi,
we expect that the limit of (1.4) as N → ∞ yields (1.1). Strictly speaking, (1.5) alone
is insufficient as justification; however this is justified by Proposition 2.5.
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By substituting 1 for all xi in (1.4), it becomes exactly Theorem 1.1. Similar to
the proof of Theorem 1.1 in [MSW], Theorem 1.2 can be proved using the method of
connected sums.

Let
[
n
j

]
denote the (unsigned) Stirling number of the first kind defined by x(x +

1) · · · (x+ n− 1) =
∑n

j=0

[
n
j

]
xj . From our main result, as a discretization of

π

4
=

∞∑

n=0

(−1)n

2n+ 1
=

∫ 1

0

dt

t2 + 1
,

we have

(1.6)

N−1∑

n=1

a
(N)
n

n
=

N−1∑

n=1

N

n2 +N2
,

where

a(N)
n :=

(
n∏

i=1

N − i

i2 +N2

)
∑

0≤j<n/2

(−1)n+j+1

[
n+ 1

2j + 2

]
N2j+1

and

lim
N→∞

a(N)
n =

{
(−1)

n−1
2 if n is odd,

0 if n is even.

See Section 7 for the proof. In this way, it has observed that in the given “series
= integral” expression, the expression can sometimes be discretized not merely by
truncating the range of summation for the series, but also by replacing the summand
with one that asymptotically approaches the original summand as N → ∞.

It should be noted that, unlike MZVs, MPLs can be considered as functions with
variables, which makes them differentiable. In fact, it is known that MPLs satisfy the
following differential formula due to Goncharov.

Theorem 1.3 (Goncharov [G2, Theorem 2.1]). Let k = (k1, . . . , kr) be an index and

z = (z1, . . . , zr) complex variables with |zi| > 1. We use the following abbreviated

notation for 1 ≤ i ≤ r:

k∧
i := (k1, . . . , ki−1, ki+1, . . . , kr),

k
↓
i := (k1, . . . , ki−1, ki − 1, ki+1, . . . , kr) (ki > 1),

z∧
i := (z1, . . . , zi−1, zi+1, . . . , zr).

Then the following holds for each case.

(i) i = 1.
(a) k1 > 1.

∂

∂z1
Ik(z) = −

1

z1
I
k
↓
1
(z).

(b) r = 1 and k1 = 1.
∂

∂z1
Ik(z) =

1

z1 − 1
−

1

z1
.
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(c) r > 1 and k1 = 1.

∂

∂z1
Ik(z) = −

1

z1
Ik∧

1
(z∧

1 ) +
1

z1 − z2

(
Ik∧

1
(z∧

1 )− Ik∧
1
(z∧

2 )
)
.

(ii) r > 1 and 1 < i < r.
(a) ki−1 > 1, ki > 1.

∂

∂zi
Ik(z) =

1

zi

(
I
k
↓
i−1

(z)− I
k
↓
i
(z)
)
.

(b) ki−1 > 1, ki = 1.

∂

∂zi
Ik(z) =

1

zi

(
I
k
↓
i−1

(z)− Ik∧
i
(z∧

i )
)
+

1

zi − zi+1

(
Ik∧

i
(z∧

i )− Ik∧
i
(z∧

i+1)
)
.

(c) ki−1 = 1, ki > 1.

∂

∂zi
Ik(z) =

1

zi − zi−1

(
Ik∧

i−1
(z∧

i−1)− Ik∧
i−1

(z∧
i )
)
+

1

zi

(
Ik∧

i−1
(z∧

i )− I
k
↓
i
(z)
)
.

(d) ki−1 = ki = 1.

∂

∂zi
Ik(z) =

1

zi − zi−1

(
Ik∧

i−1
(z∧

i−1)− Ik∧
i
(z∧

i )
)
+

1

zi − zi+1

(
Ik∧

i
(z∧

i )− Ik∧
i
(z∧

i+1)
)
.

(iii) i = r > 1. By interpreting as zr+1 = 1 and Ik∧
r
(z∧

r+1) = 0, formulas identical to (ii)
hold.

We discretize Goncharov’s differential formula and determine the difference equa-
tions satisfied by discrete multiple polylogarithms. Here, we use the following notation:

∆(N)f(x)

∆(N)xi

:=
f(x1, . . . , xi−1, xi +N−1, xi+1, . . . , xr)− f(x)

N−1
,

f(x)
∣∣
xi+N−1 := f(x1, . . . , xi−1, xi +N−1, xi+1, . . . , xr) = f(x) +

1

N

∆(N)f(x)

∆(N)xi
.

Theorem 1.4 (Discretization of Goncharov’s differential formula). Let k = (k1, . . . , kr)

be an index and x = (x1, . . . , xr) a tuple of indeterminates. The symbols k∧
i , k

↓
i , and

x∧
i are used in a manner similar to their use in Theorem 1.3. Then the following holds

for each case.

(i) i = 1.
(a) k1 > 1.

∆(N)I
(N)
k (x)

∆(N)x1

= −
1

x1

I
(N)

k
↓
1

(x).

(b) r = 1 and k1 = 1.

∆(N)I
(N)
k (x)

∆(N)x1
=

1

x1 +N−1 − 1
−

1

x1
.
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(c) r > 1 and k1 = 1.

∆(N)I
(N)
k (x)

∆(N)x1

= −
1

x1

I
(N)

k∧
1
(x∧

1 ) +
1

x1 +N−1 − x2

(
I
(N)

k∧
1
(x∧

1 )− I
(N)

k∧
1
(x∧

2 )

∣∣∣∣
x1+N−1

)
.

(ii) r > 1 and 1 < i < r.
(a) ki−1 > 1, ki > 1.

∆(N)I
(N)
k (x)

∆(N)xi
=

1

xi

(
I
(N)

k
↓
i−1

(x)

∣∣∣∣
xi+N−1

− I
(N)

k
↓
i

(x)

)
.

(b) ki−1 > 1, ki = 1.

∆(N)I
(N)
k (x)

∆(N)xi

=
1

xi

(
I
(N)

k
↓
i−1

(x)

∣∣∣∣
xi+N−1

− I
(N)

k∧
i
(x∧

i )

)

+
1

xi +N−1 − xi+1

(
I
(N)

k∧
i
(x∧

i )− I
(N)

k∧
i
(x∧

i+1)

∣∣∣∣
xi+N−1

)

+
1

N

1

xi(xi +N−1 − xi+1)

(
I
(N)

(k↓
i−1)

∧
i

(x∧
i+1)

∣∣∣∣
xi+N−1

− I
(N)

(k↓
i−1)

∧
i

(x∧
i )

)
.

(c) ki−1 = 1, ki > 1.

∆(N)I
(N)
k (x)

∆(N)xi
=

1

xi − xi−1

(
I
(N)

k∧
i−1

(x∧
i−1)− I

(N)

k∧
i−1

(x∧
i )
)
+

1

xi

(
I
(N)

k∧
i−1

(x∧
i )− I

(N)

k
↓
i

(x)
)

+
1

N

1

xi(xi − xi−1)

(
I
(N)

(k↓
i )

∧
i−1

(x∧
i )− I

(N)

(k↓
i )

∧
i−1

(x∧
i−1)

)
.

(d) ki−1 = ki = 1.

∆(N)I
(N)
k (x)

∆(N)xi

=
1

xi − xi−1

(
I
(N)

k∧
i−1

(x∧
i−1)− I

(N)

k∧
i
(x∧

i )
)

+
1

xi +N−1 − xi+1

(
I
(N)

k∧
i
(x∧

i )− I
(N)

k∧
i
(x∧

i+1)

∣∣∣∣
xi+N−1

)
.

(iii) i = r > 1. By interpreting as xr+1 = 1 and

I
(N)

k∧
r
(x∧

r+1)

∣∣∣∣
xr+N−1

= I
(N)

(k↓
r−1)

∧
r

(x∧
r+1)

∣∣∣∣
xr+N−1

= 0,

formulas identical to (ii) hold.

Difference equations obtained by replacing each I
(N)
k (x) with (−1)dep(k)L̃i

x ,(N)

k (x)
also hold (Theorems 3.1 and 3.2). By independently proving the difference equations

with respect to x1 for each I
(N)
k (x) and L̃i

x ,(N)

k (x), an alternative proof of Theorem 1.2
can be obtained.
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This paper is organized as follows: In Section 2, we provide a proof of Theorem 1.2

using the method of connected sums and prove that the limit of L̃i
x ,(N)

k (z) as N → ∞
coincides with Lixk (z). In Section 3, we prove Theorem 1.4 and offer an alternative
proof of the main theorem. After the main theorem is proved, we explore several
applications. In Section 4, we present an alternative proof of the duality relations for
multiple polylogarithms. In Section 5, we investigate families of relations for finite
multiple zeta values derived from our main result. In Section 6, we give an alternative
proof of the extended double shuffle relations for multiple polylogarithms. In Section 7,
we exhibit a few equations obtained from our main result.

2. Proof of Theorem 1.2 by using the method of connected sums

In this section, we present a proof of Theorem 1.2 by using the method of connected
sums as performed by Maesaka, Watanabe, and the third author [MSW]. See [S1] for
the terms connector, connected sum, and transport relation.

We aim to prove the following theorem, which is not Theorem 1.2 itself but a slightly
modified version.

Theorem 2.1. Let k = (k1, . . . , kr) be an index and x = (x1, . . . , xr) a tuple of inde-

terminates. Then, for any positive integer N , we have

∑

0<n1<···<nr≤N

1

nk1
1 · · ·nkr

r

[
r−1∏

i=1

(
Nxi+1−1

ni

)
(
Nxi−1

ni

)
] (

N
nr

)
(
Nxr−1

nr

)

= (−1)r
∑

1≤nj,1≤···≤nj,kj
≤N (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 −Nxj)nj,2 · · ·nj,kj

.
(2.1)

2.1. Definition of the connector and the connected sum. Fix a positive
integer N . For an indeterminate x and non-negative integers n and m, we define a

connector C
(x)
N (n,m) as

C
(x)
N (n,m) :=

(
m
n

)
(
Nx−1

n

) .

For indices k = (k1, . . . , kr) and l = (l1, . . . , ls), let SN (k; l) be given by:



(n,m1, . . . ,ms) ∈ Zr × Zl1 × · · · × Zls

∣∣∣∣∣∣∣∣

0 < n1 < · · · < nr < m1,1,
mi,j ≤ N (1 ≤ i ≤ s, 1 ≤ j ≤ li),
mi,j ≤ mi,j+1 (1 ≤ i ≤ s, 1 ≤ j < li),
mi,li < mi+1,1 (1 ≤ i < s)





,

where n = (n1, . . . , nr) and mi = (mi,1, . . . , mi,li) (1 ≤ i ≤ s). Then, for a tuple of

indeterminates x = (x1, . . . , xr+s), we define a connected sum Z
(x)
N (k | l) as

Z
(x)
N (k | l) :=

∑

(n,m1,...,ms)∈SN (k;l)

Q
(x1,...,xr)
k (n) · C

(xr)
N (nr, m1,1 − 1) ·

s∏

j=1

P
(xr+j)
N,lj

(mj),
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where Q
(x1,...,xr)
k (n) and P

(x)
N,l (m) are defined by

Q
(x1,...,xr)
k (n) :=

1

nk1
1 · · ·nkr

r

[
r−1∏

i=1

(
Nxi+1−1

ni

)
(
Nxi−1

ni

)
]
, P

(x)
N,l (m) :=

1

(Nx−m1)m2 · · ·ml
,

respectively. Furthermore, we set

Z
(x1,...,xr)
N (k |) := L.H.S. of (2.1), Z

(x1,...,xr)
N (| k) := R.H.S. of (2.1).

2.2. Transport relations. Fix a positive integer N and indeterminates x and x′.

Lemma 2.2. For non-negative integers n and m, we have

1

n
· C

(x)
N (n,m) =

∑

n≤b≤m

C
(x)
N (n, b) ·

1

b
(0 < n ≤ m),(2.2)

∑

n<a≤m

C
(x)
N (a,m) ·

1

m
= C

(x)
N (n,m− 1) ·

1

Nx−m
(n < m),(2.3)

(
Nx′−1

n

)
(
Nx−1

n

) · C
(x′)
N (n,m− 1) = C

(x)
N (n,m− 1) (n < m).(2.4)

Proof. Since we can easily see that

1

n
·
(
C

(x)
N (n, b)− C

(x)
N (n, b− 1)

)
= C

(x)
N (n, b) ·

1

b

for 0 < n < b ≤ m, and

C
(x)
N (a,m) ·

1

m
=
(
C

(x)
N (a− 1, m− 1)− C

(x)
N (a,m− 1)

)
·

1

Nx−m

for n < a ≤ m, we obtain the first two formulas. The last equation immediately follows
by definition. �

By using Lemma 2.2, we show the following transport relations.

Lemma 2.3. Let k be a positive integer, k and l indices. Let x be a tuple of indeter-

minates of appropriate length. Then we have

Z
(x)
N (k, k | l) = Z

(x)
N (k | k, l),

Z
(x)
N (k, k |) = Z

(x)
N (k | k),

Z
(x)
N (k | l) = Z

(x)
N (| k, l).

Proof. By repeatedly applying (2.2) k times, and subsequently using (2.3) and
(2.4) once each, the conclusion can be obtained from the definitions of connected sums.

�
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2.3. Proof of Theorem 2.1 and Theorem 1.2.

Proof of Theorem 2.1. Write k = (k1, . . . , kr). By repeatedly using Lemma 2.3
r times, we have

L.H.S. of (2.1) = Z
(x)
N (k1, . . . , kr |)

= Z
(x)
N (k1, . . . , kr−1 | kr)

= · · ·

= Z
(x)
N (| k1, . . . , kr) = R.H.S. of (2.1).

This completes the proof. �

Proof of Theorem 1.2. It can be deduced from Theorem 2.1 by replacing xj

with xj(1 + 1/N) and then changing N to N − 1. �

The above proof is a straightforward generalization of the proof of Theorem 1.1
in [MSW], but the process of changing the variables in the connector using (2.4) is
relatively new and interesting.

2.4. Behavior in the limit as N → ∞. In this subsection, we check that

lim
N→∞

L̃i
x ,(N)

k (z) = Lixk (z)

holds.

Lemma 2.4. For distinct indeterminates x, x′ and integers r, n with 0 ≤ r < n, we
have

∑

r<i≤n

(
x′+1
i

)
(
x
i

) =
x′ + 1

x− x′

((
x′

r

)
(
x
r

) −

(
x′

n

)
(
x
n

)
)
.

In particular, for a fixed z ∈ C with |z| ≥ 1 and z 6= 1,

S
(m,z)
N,n :=

∑

0<i≤n

(
N−m

i

)
(
Nz−m

i

) =
N −m

Nz −N + 1

(
1−

(
N−m−1

n

)
(
Nz−m

n

)
)

is bounded for any integers N, n,m satisfying 0 < m < N and 0 < n < N −m.

Proof. The first claim immediately follows from
(
x′+1
i

)
(
x
i

) =
x′ + 1

x− x′

((
x′

i−1

)
(

x
i−1

) −
(
x′

i

)
(
x
i

)
)
.

For the second claim, we observe that
∣∣∣∣∣

(
N−m−1

n

)
(
Nz−m

n

)
∣∣∣∣∣ =

n∏

j=1

N −m− j

|Nz −m− j + 1|
≤

n∏

j=1

N −m− j

N −m− j + 1
< 1

by our assumption that |z| ≥ 1. Since (N−m)/(Nz−N +1) is bounded because z 6= 1,
we obtain the desired result. �
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Proposition 2.5. For an index k = (k1, . . . , kr) and a tuple of indeterminates z =
(z1, . . . , zr) satisfying |zi| ≥ 1, where (kr, zr) = (1, 1) is also allowed, we have

L̃i
x ,(N)

k (z) = Lix ,<N
k (z) +O(N−1/3 logr N)

as N → ∞. The implied constant in Landau’s notation depends only on r.

Proof. Take 0 ≤ h ≤ r such that zh 6= 1 and zh+1 = · · · = zr = (zr+1 =)1. In

the case of h = 0, since L̃i
x ,(N)

k ({1}r) = Lix ,<N
k ({1}r) holds, we assume h > 0 in the

following. By a direct calculation, we obtain the expression

L̃i
x ,(N)

k (z) =
∑

0<n1<···<nr<N

1

nk1
1 · · ·nkr

r

r∏

i=1

(
zi+1

zi

)ni

·

h∏

i=1

z
ni−ni−1

i

(
N−ni−1−1
ni−ni−1

)
(
Nzi−ni−1−1

ni−ni−1

) ,

where n0 = 0. We decompose the sum into two parts based on the conditions nh < N1/3

or N1/3 ≤ nh. Since for n < n′ < N1/3,

zn
′−n
(
N−n−1
n′−n

)
(
Nz−n−1
n′−n

) =

n′−n∏

j=1

(
1 +

(1− z)(n + j)

Nz − n− j

)
=

n′−n∏

j=1

(1 +O(N−2/3))

holds, we have
h∏

i=1

z
ni−ni−1

i

(
N−ni−1−1
ni−ni−1

)
(
Nzi−ni−1−1

ni−ni−1

) = 1 +Or(N
−1/3)

under the condition nh < N1/3. Here, the subscript attached to O indicates that the
implied constant depends on that parameter. Therefore, the first part equals

∑

0<n1<···<nr<N
nh<N1/3

1

nk1
1 · · ·nkr

r

r∏

i=1

(
zi+1

zi

)ni

(1 +Or(N
−1/3))

and the absolute value of the error term is bounded above by

Or

(
N−1/3

∑

0<n1,...,nr<N

1

n1 · · ·nr

)
= Or(N

−1/3 logr N)

by our assumption |zi| ≥ 1. Next, the second part is

∑

0<n1<···<nh−1<nh+1<···<nr<N

1

nk1
1 · · ·n

kh−1

h−1 n
kh+1

h+1 · · ·nkr
r

h−1∏

i=1

(
N−ni−1−1
ni−ni−1

)
(
Nzi−ni−1−1

ni−ni−1

)

×
∑

nh−1<nh<nh+1

N1/3≤nh

1

nkh
h

(
N−nh−1−1
nh−nh−1

)
(
Nzh−nh−1−1

nh−nh−1

) .
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(In the case of h = r, the description needs to be slightly modified, but the proof is
entirely similar.) Here, the inner sum is evaluated as

∑

n′
h−1≤nh<nh+1

1

nkh
h

(
N−nh−1−1
nh−nh−1

)
(
Nzh−nh−1−1

nh−nh−1

)

=
∑

n′
h−1≤nh<nh+1

1

nkh
h

(S
(nh−1+1,zh)
N,nh−nh−1

− S
(nh−1+1,zh)
N,nh−nh−1−1)

=
∑

n′
h−1≤nh<nh+1

(
1

nkh
h

−
1

(nh + 1)kh

)
S
(nh−1+1,zh)
N,nh−nh−1

+Ozh(N
−1/3)

= Ozh(N
−1/3)

by applying the boundedness of S
(m,z)
N,n shown in Lemma 2.4, where n′

h−1 := max{nh−1+

1, N1/3} and S
(m,z)
N,0 := 0. Since the remaining sum is O(logr−1N) by |zi| ≥ 1, the second

part is bounded above by O(N−1/3 logr N). In conclusion, we have

L̃i
x ,(N)

k (z) =
∑

0<n1<···<nr<N
nh<N1/3

1

nk1
1 · · ·nkr

r

r∏

i=1

(
zi+1

zi

)ni

+Or(N
−1/3 logr N).

Finally, since

∑

0<n1<···<nr<N
N1/3≤nh

1

nk1
1 · · ·nkr

r

r∏

i=1

(
zi+1

zi

)ni

= O(N−1/3 logr N)

also holds by the method of Abel’s summation, we obtain the desired result. �

From this proposition and the fact that I
(N)
k (z) is a Riemann sum approximating

Ik(z), it can be considered that Theorem 1.2 indeed provides a discretization of (1.1).

3. Discretization of Goncharov’s differential formula

In this section, we fix a positive integer N , an index k = (k1, . . . , kr), and a tuple
of indeterminates x = (x1, . . . , xr). See Section 1 for the definition of the difference

quotient ∆(N)

∆(N)xi
and the abbreviated notation

∣∣
xi+N−1 , k

∧
i , k

↓
i , and x∧

i .

3.1. Difference equations for L̃i
x ,(N)

k (x).

Theorem 3.1. When k1 > 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)x1
= −

1

x1
L̃i

x ,(N)

k
↓
1

(x);
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when r = 1 and k1 = 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)x1
=

1

x1
−

1

x1 +N−1 − 1
;

when r > 1 and k1 = 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)x1
=

1

x1
L̃i

x ,(N)

k∧
1

(x∧
1 )−

1

x1 +N−1 − x2

(
L̃i

x ,(N)

k∧
1

(x∧
1 )− L̃i

x ,(N)

k∧
1

(x∧
2 )

∣∣∣∣
x1+N−1

)
.

Proof. Since

L̃i
x ,(N)

k (x) =
∑

0<n1<···<nr<N

1

nk1
1 · · ·nkr

r

r∏

i=1

(
N−ni−1−1
ni−ni−1

)
(
Nxi−ni−1−1

ni−ni−1

)

with n0 = 0, we have

∆(N)L̃i
x ,(N)

k (x)

∆(N)x1

= N
∑

0<n1<···<nr<N

1

nk1
1 · · ·nkr

r

((
N−1
n1

)
(
Nx1

n1

) −

(
N−1
n1

)
(
Nx1−1

n1

)
)

r∏

i=2

(
N−ni−1−1
ni−ni−1

)
(
Nxi−ni−1−1

ni−ni−1

)

= −
1

x1

∑

0<n1<···<nr<N

1

nk1−1
1 nk2

2 · · ·nkr
r

r∏

i=1

(
N−ni−1−1
ni−ni−1

)
(
Nxi−ni−1−1

ni−ni−1

) .

If k1 > 1, it equals −x−1
1 L̃i

x ,(N)

k
↓
1

(x). If r > 1 and k1 = 1, by Lemma 2.4, we compute

−
1

x1

∑

0<n1<n2

(
N−1
n1

)
(
Nx1−1

n1

)
(
N−n1−1
n2−n1

)
(
Nx2−n1−1

n2−n1

)

= −
1

x1

(
N−1
n2

)
(
Nx2−1

n2

)
∑

0<n1<n2

(
Nx2−1

n1

)
(
Nx1−1

n1

)

=

(
1

x1
−

1

x1 +N−1 − x2

) (
N−1
n2

)
(
Nx2−1

n2

) + 1

x1 +N−1 − x2

(
N−1
n2

)
(
Nx1

n2

)

for each fixed n2, and hence we have the desired result. The case r = 1 and k1 = 1 is
also calculated by using Lemma 2.4. �

This calculation will be used later for an alternative proof of Theorem 1.2. On the

other hand, for i > 1, we only directly calculate
∆(N)I

(N)
k

(x)

∆(N)xi
, and derive the difference

equations for ∆(N)L̃i
x ,(N)
k (x)

∆(N)xi
as a consequence of combining it with Theorem 1.2.

Theorem 3.2. We assume that r > 1 and i > 1. When ki−1 > 1 and ki > 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)xi
=

1

xi

(
L̃i

x ,(N)

k
↓
i−1

(x)

∣∣∣∣
xi+N−1

− L̃i
x ,(N)

k
↓
i

(x)

)
;
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when ki−1 > 1 and ki = 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)xi
=

1

xi

(
L̃i

x ,(N)

k
↓
i−1

(x)

∣∣∣∣
xi+N−1

+ L̃i
x ,(N)

k∧
i

(x∧
i )

)

−
1

xi +N−1 − xi+1

(
L̃i

x ,(N)

k∧
i

(x∧
i )− L̃i

x ,(N)

k∧
i

(x∧
i+1)

∣∣∣∣
xi+N−1

)

−
1

N

1

xi(xi +N−1 − xi+1)

(
L̃i

x ,(N)

(k↓
i−1)

∧
i
(x∧

i+1)

∣∣∣∣
xi+N−1

− L̃i
x ,(N)

(k↓
i−1)

∧
i
(x∧

i )

)
;

when ki−1 = 1 and ki > 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)xi
= −

1

xi − xi−1

(
L̃i

x ,(N)

k∧
i−1

(x∧
i−1)− L̃i

x ,(N)

k∧
i−1

(x∧
i )
)

−
1

xi

(
L̃i

x ,(N)

k∧
i−1

(x∧
i ) + L̃i

x ,(N)

k
↓
i

(x)
)

−
1

N

1

xi(xi − xi−1)

(
L̃i

x ,(N)

(k↓
i )

∧
i−1

(x∧
i )− L̃i

x ,(N)

(k↓
i )

∧
i−1

(x∧
i−1)
)
;

when ki−1 = ki = 1,

∆(N)L̃i
x ,(N)

k (x)

∆(N)xi

= −
1

xi − xi−1

(
L̃i

x ,(N)

k∧
i−1

(x∧
i−1)− L̃i

x ,(N)

k∧
i

(x∧
i )
)

−
1

xi +N−1 − xi+1

(
L̃i

x ,(N)

k∧
i

(x∧
i )− L̃i

x ,(N)

k∧
i

(x∧
i+1)

∣∣∣∣
xi+N−1

)
.

For the case i = r, we should interpret as xr+1 = 1 and

L̃i
x ,(N)

k∧
r

(x∧
r+1)

∣∣∣∣
xr+N−1

= L̃i
x ,(N)

(k↓
r−1)

∧
r
(x∧

r+1)

∣∣∣∣
xr+N−1

= 0.

Proof. This follows from Theorem 1.2 and Theorems 3.4, 3.5, 3.6 and 3.7. �

3.2. Difference equations for I
(N)
k (x).

Theorem 3.3. When k1 > 1,

∆(N)I
(N)
k (x)

∆(N)x1
= −

1

x1
I
(N)

k
↓
1

(x);

when r = 1 and k1 = 1,

∆(N)I
(N)
k (x)

∆(N)x1
=

1

x1 +N−1 − 1
−

1

x1
;

when r > 1 and k1 = 1,

∆(N)I
(N)
k (x)

∆(N)x1
= −

1

x1
I
(N)

k∧
1
(x∧

1 ) +
1

x1 +N−1 − x2

(
I
(N)

k∧
1
(x∧

1 )− I
(N)

k∧
1
(x∧

2 )

∣∣∣∣
x1+N−1

)
.
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Proof. By definition, we have

∆(N)I
(N)
k (x)

∆(N)x1
= N

∑

0<nj,1≤···≤nj,kj
<N (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

(
1

n1,1 − 1−Nx1
−

1

n1,1 −Nx1

)

×
1

n1,2 · · ·n1,k1

r∏

j=2

1

(nj,1 −Nxj)nj,2 · · ·nj,kj

.

If k1 > 1, then for each fixed n1,2, we have

N
∑

0<n1,1≤n1,2

(
1

n1,1 − 1−Nx1
−

1

n1,1 −Nx1

)
= −

n1,2

x1
·

1

n1,2 −Nx1
,

which implies that

∆(N)I
(N)
k (x)

∆(N)x1
= −

1

x1
I
(N)

k
↓
1

(x).

The case r = 1 and k1 = 1 is easy. If r > 1 and k1 = 1, then for each fixed n2,1, we have

N
∑

0<n1,1<n2,1

(
1

n1,1 − 1−Nx1

−
1

n1,1 −Nx1

)
1

n2,1 −Nx2

= −
1

x1
·

1

n2,1 −Nx2
+

1

x1 +N−1 − x2

(
1

n2,1 −Nx2
−

1

n2,1 −N(x1 +N−1)

)
,

which implies the desired result. �

Theorem 3.4. We assume that r > 1 and i > 1. When ki−1 > 1 and ki > 1,

∆(N)I
(N)
k (x)

∆(N)xi

=
1

xi

(
I
(N)

k
↓
i−1

(x)

∣∣∣∣
xi+N−1

− I
(N)

k
↓
i

(x)

)
.

Proof. This follows from

N
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni,1≤ni,2

1

ni−1,ki−1

(
1

ni,1 − 1−Nxi
−

1

ni,1 −Nxi

)
1

ni,2

= N
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni,2

1

ni−1,ki−1

(
1

ni−1,ki−1
−Nxi

−
1

ni,2 −Nxi

)
1

ni,2

=
1

xi

∑

ni−1,ki−1−1≤ni−1,ki−1
<ni,2

(
1

(ni−1,ki−1
−Nxi)ni,2

−
1

ni−1,ki−1
(ni,2 −Nxi)

)

and
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni,2

1

ni−1,ki−1
−Nxi

·
1

ni,2
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=
∑

ni−1,ki−1−1<ni,1≤ni,2

1

ni,1 −N(xi +N−1)
·

1

ni,2

. �

Theorem 3.5. We assume that r > 1. When 1 < i < r, ki−1 > 1, and ki = 1,

∆(N)I
(N)
k (x)

∆(N)xi
=

1

xi

(
I
(N)

k
↓
i−1

(x)

∣∣∣∣
xi+N−1

− I
(N)

k∧
i
(x∧

i )

)

+
1

xi +N−1 − xi+1

(
I
(N)

k∧
i
(x∧

i )− I
(N)

k∧
i
(x∧

i+1)

∣∣∣∣
xi+N−1

)

+
1

N

1

xi(xi +N−1 − xi+1)

(
I
(N)

(k↓
i−1)

∧
i

(x∧
i+1)

∣∣∣∣
xi+N−1

− I
(N)

(k↓
i−1)

∧
i

(x∧
i )

)
;

when kr−1 > 1 and kr = 1,

∆(N)I
(N)
k (x)

∆(N)xr
=

1

xr
I
(N)

k
↓
r−1

(x)

∣∣∣∣
xr+N−1

+

(
1

xr +N−1 − 1
−

1

xr

)
I
(N)

k∧
r
(x∧

r )

−
1

N

1

xr(xr +N−1 − 1)
I
(N)

(k↓
r−1)

∧
r

(x∧
r ).

Proof. The case i < r follows from

N
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni,1<ni+1,1

1

ni−1,ki−1

×

(
1

ni,1 − 1−Nxi
−

1

ni,1 −Nxi

)
1

ni+1,1 −Nxi+1

= N
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni+1,1

1

ni−1,ki−1

×

(
1

ni−1,ki−1
−Nxi

−
1

ni+1,1 − 1−Nxi

)
1

ni+1,1 −Nxi+1

=
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni+1,1

[
1

xi

(
1

ni−1,ki−1
−Nxi

−
1

ni−1,ki−1

)
1

ni+1,1 −Nxi+1

+
1

xi +N−1 − xi+1
·

1

ni−1,ki−1

(
1

ni+1,1 −Nxi+1
−

1

ni+1,1 −N(xi +N−1)

)]

and
∑

ni−1,ki−1−1≤ni−1,ki−1
<ni+1,1

1

ni−1,ki−1
−Nxi

·
1

ni+1,1 −Nxi+1

=
∑

ni−1,ki−1−1<ni,1≤ni+1,1

1

ni,1 −N(xi +N−1)
·

1

ni+1,1 −Nxi+1
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=
∑

ni−1,ki−1−1<ni,1<ni+1,1

1

ni,1 −N(xi +N−1)
·

1

ni+1,1 −Nxi+1

+
1

N
·

1

xi +N−1 − xi+1

(
1

ni+1,1 −N(xi +N−1)
−

1

ni+1,1 −Nxi+1

)
.

The cases i = r is similar. �

Theorem 3.6. We assume that r > 1 and i > 1. When ki−1 = 1 and ki > 1,

∆(N)I
(N)
k (x)

∆(N)xi

=
1

xi − xi−1

(
I
(N)

k∧
i−1

(x∧
i−1)− I

(N)

k∧
i−1

(x∧
i )
)
+

1

xi

(
I
(N)

k∧
i−1

(x∧
i )− I

(N)

k
↓
i

(x)
)

+
1

N

1

xi(xi − xi−1)

(
I
(N)

(k↓
i )

∧
i−1

(x∧
i )− I

(N)

(k↓
i )

∧
i−1

(x∧
i−1)

)
.

Proof. This follows from

N
∑

ni−2,ki−2
<ni−1,1<ni,1≤ni,2

1

ni−1,1 −Nxi−1

(
1

ni,1 − 1−Nxi

−
1

ni,1 −Nxi

)
1

ni,2

= N
∑

ni−2,ki−2
<ni−1,1<ni,2

1

ni−1,1 −Nxi−1

(
1

ni−1,1 −Nxi

−
1

ni,2 −Nxi

)
1

ni,2

=
∑

ni−2,ki−2
<ni−1,1<ni,2

[
1

xi − xi−1

(
1

ni−1,1 −Nxi
−

1

ni−1,1 −Nxi−1

)
1

ni,2

+
1

xi
·

1

ni−1,1 −Nxi−1

(
1

ni,2
−

1

ni,2 −Nxi

)]

and

1

xi − xi−1

(
1

ni,2 −Nxi
−

1

ni,2 −Nxi−1

)
1

ni,2
+

1

xi
·

1

ni,2 −Nxi−1
·

1

ni,2

=
1

N

1

xi(xi − xi−1)

(
1

ni,2 −Nxi
−

1

ni,2 −Nxi−1

)
. �

Theorem 3.7. We assume that r > 1. When 1 < i < r and ki−1 = ki = 1,

∆(N)I
(N)
k (x)

∆(N)xi
=

1

xi − xi−1

(
I
(N)

k∧
i−1

(x∧
i−1)− I

(N)

k∧
i
(x∧

i )
)

+
1

xi +N−1 − xi+1

(
I
(N)

k∧
i
(x∧

i )− I
(N)

k∧
i
(x∧

i+1)

∣∣∣∣
xi+N−1

)
;

when kr−1 = kr = 1,

∆(N)I
(N)
k (x)

∆(N)xr

=
1

xr − xr−1

(
I
(N)

k∧
r−1

(x∧
r−1)− I

(N)

k∧
r
(x∧

r )
)
+

1

xr +N−1 − 1
I
(N)

k∧
r
(x∧

r ).
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Proof. This follows from

N
∑

ni−2,ki−2
<ni−1,1<ni,1<ni+1,1

1

ni−1,1 −Nxi−1

×

(
1

ni,1 − 1−Nxi
−

1

ni,1 −Nxi

)
1

ni+1,1 −Nxi+1

= N
∑

ni−2,ki−2
<ni−1,1<ni+1,1

1

ni−1,1 −Nxi−1

×

(
1

ni−1,1 −Nxi
−

1

ni+1,1 −N(xi +N−1)

)
1

ni+1,1 −Nxi+1

=
∑

ni−2,ki−2
<ni−1,1<ni+1,1

[
1

xi − xi−1

(
1

ni−1,1 −Nxi
−

1

ni−1,1 −Nxi−1

)
1

ni+1,1 −Nxi+1

+
1

xi +N−1 − xi+1
·

1

ni−1,1 −Nxi−1

(
1

ni+1,1 −Nxi+1
−

1

ni+1,1 −N(xi +N−1)

)]

for the case i < r. The case i = r is similar. �

3.3. Proof of Theorem 1.2 by using the difference equations. We use the
difference equations with respect to x1.

An alternating proof of Theorem 1.2. We prove (1.4) by induction on wt(k).
By Theorems 3.1 and 3.3, and the induction hypothesis, we have

∆(N)L̃i
x ,(N)

k (x)

∆(N)x1
= (−1)dep(k) ·

∆(N)I
(N)
k (x)

∆(N)x1
.

For the case where k = (1), it holds without any assumptions. In particular, by setting

F (x1) := L̃i
x ,(N)

k (x) − (−1)dep(k)I
(N)
k (x), we see that F (x1 + N−1) = F (x1) holds. By

definition, one can decompose F (x1) as

F (x1) =

N−1∑

n=1

Cn(x2, . . . , xr)

Nx1 − n
.

If there exists n such that Cn 6= 0, then F (x1) has a pole at x1 = 0 by F (x1 + n/N) =

F (x1). However, it is impossible by the definition of L̃i
x ,(N)

k (x) and I
(N)
k (x). Hence we

have all Cn = 0 and F (x1) = 0. �

4. Duality for multiple polylogarithms

In [MSW], a new proof of the duality for MZVs is provided through the manipula-
tion of finite sums as an application of Theorem 1.1. Here, we present a similar proof
of the duality for MPLs as an application of Theorem 1.2.
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4.1. Notation and the statement. Any admissible index k 6= ∅ is uniquely
expressed as k = ({1}a1−1, b1 + 1, . . . , {1}ah−1, bh + 1), where h, a1, . . . , ah, b1, . . . , bh
are positive integers. Then, its dual index k† is defined as k† := ({1}bh−1, ah +
1, . . . , {1}b1−1, a1+1). Here, we also consider the empty index ∅ as an admissible index,
and set ∅† := ∅, dep(∅) := 0. The symbol B denotes {z ∈ C | |z| ≥ 1, |1−z| ≥ 1}∪{1}.
We say that a pair

(
z

k

)
, consisting of an index k 6= ∅ with dep(k) = r and a tuple of

complex numbers z = (z1, . . . , zr), satisfies the dual condition if zi ∈ B for all 1 ≤ i ≤ r,
and additionally, if k is non-admissible, then it is required that zr 6= 1. A pair

(
z

k

)

satisfying the dual condition is uniquely expressed as
(z
k

)
=

(
{1}r1,

l1,

{1}a1−1,

{1}a1−1,

w1

b1

, . . . ,

, . . . ,

{1}rd,

ld,

{1}ad−1,

{1}ad−1,

wd,

bd,

{1}rd+1

ld+1

)
,

where d is a non-negative integer, a1, . . . , ad, b1, . . . , bd are positive integers, all w1, . . . , wd

are not 1, l1, . . . , ld+1 are admissible indices, and rj := dep(lj) for 1 ≤ j ≤ d+ 1. Then

its dual pair
(
z

k

)†
is defined by

(z
k

)†
=

(
{1}sd+1,

(ld+1)†,

{1}bd−1,

{1}bd−1,

1− wd,

ad,

{1}sd

(ld)†
, . . . ,

, . . . ,

{1}b1−1,

{1}b1−1,

1− w1,

a1,

{1}s1

(l1)†

)
,

where sj := dep(l†j) for 1 ≤ j ≤ d+ 1. For z, set ι(z) := d.

Theorem 4.1 (Duality for MPLs [BBBL, Section 6.1], [KMS, Theorem 3.4]). Let(
z

k

)
be a pair satisfying the dual condition. Write

(
z

k

)†
as
(

z′

k′

)
. Then we have

Lixk (z) = (−1)ι(z)Lixk′(z′).

In [BBBL], this theorem was proved using the iterated integral expression (1.1),
but a proof via series manipulation was considered to be difficult. In contrast, [KMS]
successfully provided an alternative proof through the manipulation of infinite series1.
Following [MSW], we present a proof by manipulating finite sums as an application of
our main theorem. While [KMS] excludes the case of conditional convergence, here,
we include and discuss that case as well.

4.2. Error estimates. We prepare a lemma on the necessary error estimates,
including those used in Section 6.

Definition 4.2. For positive integers N , k, non-negative integers a1, b1, . . . , ak, bk sat-
isfying all ai + bi ≥ 1, and a tuple of complex numbers

z = (z1,1, . . . , z1,a1 , z2,1, . . . , z2,a2 , . . . , zk,1, . . . , zk,ak) ∈ Ca1+···+ak

satisfying all |zi,j| ≥ 1, we set

R<N (a1, . . . , ak; b1, . . . , bk) :=
∑

0<n1<···<nk<N

k∏

i=1

1

(N − ni)ain
bi
i

,

1Note that the definitions of multiple polylogarithms are slightly different; their Lix
k
(z1, . . . , zr)

corresponds to our Lix
k
(z−1

1
, . . . , z−1

r
).
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R
(z)
<N (a1, . . . , ak; b1, . . . , bk) :=

∑

0<n1<···<nk<N

k∏

i=1

1

(ni −Nzi,1) · · · (ni −Nzi,ai)n
bi
i

.

Lemma 4.3. In the setting of Definition 4.2, we have

R
(z)
<N(a1, . . . , ak; b1, . . . , bk) = O(logk N)

as N → ∞. Furthermore, assuming that a1 ≥ 1, we assume that one of the following

three conditions is satisfied:

• there exists at least one 1 ≤ i ≤ k satisfying ai + bi ≥ 2 and bi ≥ 1.
• there exist 1 ≤ i < j ≤ k satisfying ai ≥ 2 and bj ≥ 1.
• there exist 1 ≤ i ≤ j ≤ k, 1 ≤ l ≤ aj satisfying ai ≥ 2 and zj,l 6= 1.

Then we have

R
(z)
<N(a1, . . . , ak; b1, . . . , bk) = O(N−1 logk N)

as N → ∞. The implied constant in Landau’s notation depends on zj,l under the third

condition.

Proof. Since

|R
(z)
<N(a1, . . . , ak; b1, . . . , bk)| ≤ R<N(a1, . . . , ak; b1, . . . , bk)

holds, except for the case of the last condition, it follows from [MSW, Lemma 2.1]
and [S2, Lemma 2.2]. To avoid cumbersome notation, we will only prove a simple case
where the last condition is satisfied. Let z1, z2, and w be complex numbers satisfying
|z1| ≥ 1, |z2| ≥ 1, |w| ≥ 1, and w 6= 1. Then,

|R
(z1,z2,w)
<N (2, 1; 0, 0)| ≤

∑

0<n<m<N

1

(N − n)2|Nw −m|

=
∑

0<m′<n′<N

1

|N(1− w)−m′|(n′)2

<
∑

0<m′<n′<N

1

|N(1− w)−m′|m′n′

≤
1

N |1− w|

(
∑

0<m′<n′<N

1

|N(1− w)−m′|n′
+

∑

0<m′<n′<N

1

m′n′

)

=
1

N |1− w|

(
∑

0<n<m<N

1

(N − n)|Nw −m|
+R<N (1, 1; 0, 0)

)

≤
2R<N(1, 1; 0, 0)

N |1− w|
= Ow(N

−1 log2N)

as N → ∞. The general case can be proved in exactly the same manner. �
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4.3. Proof of Theorem 4.1. Let
(
z

k

)
and

(
z′

k′

)
as in the statement of Theorem 4.1.

Note that wt(k) = dep(k) + dep(k′)− ι(z).

Theorem 4.4 (Asymptotic duality).

I
(N)

k′ (z′) = (−1)wt(k)I
(N)
k (z) +O(N−1 logwt(k)N)

as N → ∞.

Proof. After applying the change of variables “ni 7→ N − nwt(k)+1−i” in the def-

inition of I
(N)

k′ (z′) (the summation indices are appropriately relabeled), it suffices to
decompose the difference into a sum of R<N -values and then apply Lemma 4.3. �

Proof of Theorem 4.1. By combining Proposition 2.5, Theorems 1.2 and 4.4,
we have

Lix ,<N
k (z)− (−1)ι(z)Lix ,<N

k′ (z′) = L̃i
x ,(N)

k (z)− (−1)ι(z)L̃i
x ,(N)

k′ (z′) + o(1)

= (−1)dep(k)I
(N)
k (z)− (−1)ι(z)+dep(k′)I

(N)

k′ (z′) + o(1)

= o(1).

Therefore, by taking the limit N → ∞, we have the duality. �

5. Relations for finite multiple zeta values derived from Theorem 1.2

In [MSW], new proofs of both the duality for MZVs and the duality for finite
multiple zeta values were provided using Theorem 1.1. Furthermore, in the previous
section, the new proof of the duality for MZVs was extended to a new proof of the
duality for MPLs. Consequently, one might hope that our main result could yield a
new proof of the duality for finite multiple polylogarithms (= [SS, Theorem 1.3 (1),

Theorem 3.12]). However, since the left-hand side of (1.4) is L̃i
x ,(N)

k (x) rather than

Lix ,<N
k (x), unfortunately, employing a similar argument to [MSW, Section 3] does not

yield a relation for finite multiple polylogarithms. Nevertheless, from our main result,
we are able to derive some relations among finite multiple zeta values that we will
discuss below.

Let ζ<N(k) denote Lix ,<N
k ({1}dep(k)). After Kaneko and Zagier, for an index k, the

finite multiple zeta value (FMZV) ζA(k) is defined as

ζA(k) := (ζ<p(k) mod p)p∈P ∈ A,

where P is the set of all prime numbers and

A :=

(
∏

p∈P

Z/pZ

)/(
⊕

p∈P

Z/pZ

)
.

It is known that a certain kind of duality for FMZVs holds as follows. For two indices
k and l, the relation l � k means that l is obtained by replacing some commas in
k = (k1, . . . , kr) by plus signs.
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Theorem 5.1 (Hoffman [H, Theorem 4.7]). For an index k, we have

ζA(k) = (−1)dep(k)
∑

k�l

ζA(l).

Following [MSW], when setting N = p in (1.4), all variables disappear, leaving us
with merely Theorem 5.1. However, by setting N = p − 1 in (2.1), a generalization
with variables is obtained.

Theorem 5.2. Let p be a prime number, (k1, . . . , kr) an index, and (x1, . . . , xr) a tuple

of indeterminates. Then we have

∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

[
r−1∏

i=1

(xi+1 + 1)ni

(xi + 1)ni

]
(nr)!

(xr + 1)nr

≡ (−1)r
∑

0<nj,1≤···≤nj,kj
<p (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 + xj)nj,2 · · ·nj,kj

(mod p),

where (x)n denotes the rising factorial, that is, (x)n = x(x+ 1) · · · (x+ n− 1).

In particular, by comparing coefficients in the case of a single variable, the following
relations among FMZVs can be obtained.

To state the theorem and for its proof, we introduce some notation. For a tuple of
non-negative integers l = (l1, . . . , lr) and an index k = (k1, . . . , kr), we set

l⊕ k := (l1 + k1, . . . , lr + kr), l ⊘ k := (l1 + 1, {1}k1−1, . . . , lr + 1, {1}kr−1),

and wt(l) := l1+ · · ·+ lr. The symbol k⋆ denotes the formal sum
∑

h�k h. Let R be the
space of formal Q-linear combinations of indices. A Q-bilinear mapping ∗ : R×R → R
is defined by k ∗ l = ((k− ∗ l), k) + ((k− ∗ l−), k+ l), where k = (k−, k) and l = (l−, l).
Here, ∗ is the usual harmonic product, that is, ζ<N(k)ζ<N(l) = ζ<N(k∗l). For a positive
integer N and an index k, set s<N(k) := ζ<N+1(k)− ζ<N(k) and ζ⋆≤N(k) := ζ<N+1(k

⋆).
For N , k, and an index l, we can check that

s<N(k)ζ<N+1(l) = s<N(k ∗ l)

holds. Here, we consider ζ<N , s<N , and ζA as being extended as mappings over R,
Q-linearly.

Theorem 5.3. Let k be an index and m a non-negative integer. Then we have

ζA(k ∗ ({1}m)⋆) = (−1)dep(k)
∑

l∈Z
dep(k)
≥0

wt(l)=m

∑

l⊕k�h�l⊘k

ζA(h).

For the case m = 0, the left-hand side is interpreted as ζA(k).
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Proof. Let p be a prime number and k = (k1, . . . , kr) an index. In Theorem 5.2,
by setting x1 = · · · = xr = x, we obtain the following congruence:

∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

(nr)!

(x+ 1)nr

≡ (−1)r
∑

0<nj,1≤···≤nj,kj
<p (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 + x)nj,2 · · ·nj,kj

(mod p).

By an expansion

(nr)!

(x+ 1)nr

=

nr∏

i=1

(x
i
+ 1
)−1

=

nr∏

i=1

∞∑

mi=0

(−x)mi

imi

=

∞∑

m=0

(−x)m
∑

m1+···+mnr=m

1

1m12m2 · · ·n
mnr
r

=

∞∑

m=0

ζ⋆≤nr
({1}m)(−x)m,

we compute

∑

0<n1<···<nr<p

1

nk1
1 · · ·nkr

r

(nr)!

(x+ 1)nr

=

p−1∑

nr=1

∞∑

m=0

s<nr(k)ζ
⋆
≤nr

({1}m)(−x)m

=
∞∑

m=0

p−1∑

nr=1

s<nr(k ∗ ({1}m)⋆)(−x)m

=

∞∑

m=0

ζ<p(k ∗ ({1}m)⋆)(−x)m.

On the other hand, by a simple expansion (n+ x)−1 =
∑∞

l=0(−x)l/nl+1, we compute

∑

0<nj,1≤···≤nj,kj
<p (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

(nj,1 + x)nj,2 · · ·nj,kj

=

∞∑

m=0

(−x)m
∑

l1+···+lr=m
lj≥0 (1≤j≤r)

∑

0<nj,1≤···≤nj,kj
<p (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

n
lj+1
j,1 nj,2 · · ·nj,kj

.

Since
∑

0<nj,1≤···≤nj,kj
<p (1≤j≤r)

nj,kj
<nj+1,1 (1≤j<r)

r∏

j=1

1

n
lj+1
j,1 nj,2 · · ·nj,kj

=
∑

l⊕k�h�l⊘k

ζ<p(h)

holds, we have the conclusion. �
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This theorem might be considered as a finite analogue of the relations among MZVs
derived by Kawashima ([K, Proposition 5.3]), due to the somewhat similar form of the
expressions.

6. Extended double shuffle relations for multiple polylogarithms

In [S2], a quite simple proof of the extended double shuffle relations (EDSR) for
MZVs, not utilizing integrals and using Theorem 1.1, is provided by the third author.

His proof can be summarized as follows: The double shuffle relations (DSR), which
is needed for the proof of the EDSR, is usually proved using (1.2). Theorem 1.1 allows
for an alternative proof of the DSR based on manipulations of finite sums. As the
sums are finite, this manipulations are possible even for non-admissible indices; this
extension of the DSR is referred to as the asymptotic double shuffle relations (ADSR).
The proof using (1.2) is only valid for admissible indices. Hence, in the typical proof
of the EDSR (such as [IKZ]), two types of regularization of MZVs are introduced, and
the regularization theorem (Reg), which compares them, is proved. Then the EDSR is
proved by combining the DSR and the Reg. In the new proof, the EDSR can be easily
derived from the ADSR, and in this process, neither the shuffle regularization nor the
Reg is necessary.

In this section, we extend his proof to offer a simple proof of the extended double
shuffle relations for MPLs. While a description exactly similar to Theorem 6.2 may not
be found, essentially the same has been studied by Goncharov [G2], Racinet [R], and
Arakawa–Kaneko [AK].

6.1. Notation and the statement. Let N denote a positive integer. For each
complex number z, we prepare an indeterminate ez, and consider the non-commutative
polynomial ring H := Q〈ez | z ∈ C〉. Let ez,k := eze

k−1
0 for each complex number z and

each positive integer k. For each index k = (k1, . . . , kr) and a tuple of complex numbers
z = (z1, . . . , zr), we put ez,k := ez1,k1 · · · ezr ,kr . We define a subspace H1 of H as

H
1 := Q+

∑

z∈C×

ezH.

We also define a subring H
x
of H and subspaces H1

x
and H0

x
as follows:

H
x
:= Q〈e0, ez | |z| ≥ 1〉 ⊃ H

1
x
:= Q+

∑

|z|≥1

ezHx

⊃ H
0
x
:= Q+

∑

|z|≥1

ezHx
e0 +

∑

|z|,|w|≥1,w 6=1

ezHx
ew.

We define a Q-linear mapping ⊤ : H1
x
→ H by ⊤(1) := 1 and

⊤(ez1,k1 · · · ezr ,kr) := ez2/z1,k1 · · · ezr/zr−1,kr−1
ez−1

r ,kr
.

Set H1
∗ := ⊤(H1

x
) ⊂ H. The harmonic product ∗ on H1 is defined by rules w ∗ 1 =

1 ∗ w = w for any word w ∈ H1, and

weξ1,k1 ∗ w
′eξ2,k2 = (w ∗ w′eξ2,k2)eξ1,k1 + (weξ1,k1 ∗ w

′)eξ2,k2 + (w ∗ w′)eξ1ξ2,k1+k2
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for any words w,w′ ∈ H1, k1, k2 ∈ Z>0, and ξ1, ξ2 ∈ C×, with Q-bilinearity. The shuffle

product x on H
x
is defined by rules w x 1 = 1x w = w for any word w ∈ H

x
, and

wu1 x w′u2 = (w x w′u2)u1 + (wu1 x w′)u2

for any words w,w′ ∈ H
x
, u1, u2 ∈ {ez | z = 0 or |z| ≥ 1}, with Q-bilinearity. We can

check that the image of H1
∗ × H1

∗ under ∗ is included in H1
∗ and the image of H1

x
× H1

x

under x is included in H1
x
.

For an index k = (k1, . . . , kr) and a tuple of complex numbers ξ = (ξ1, . . . , ξr), we

define Li∗,<N
k (ξ) by

Li∗,<N
k (ξ) :=

∑

0<n1<···<nr<N

ξn1
1 · · · ξnr

r

nk1
1 · · ·nkr

r

.

If (kr, ξr) 6= (1, 1) and
∣∣∣
∏r

j=i ξj

∣∣∣ ≤ 1 for all 1 ≤ i ≤ r, then the limit lim
N→∞

Li∗,<N
k (ξ)

exists and the limit value is denoted by

Li∗k(ξ) =
∑

0<n1<···<nr

ξn1
1 · · · ξnr

r

nk1
1 · · ·nkr

r

.

There is a simple relationship between the two types of multiple polylogarithm symbols
Li∗k and Lixk :

Li∗k(ξ1, . . . , ξr) = Lixk

(
r∏

j=1

ξ−1
j ,

r∏

j=2

ξ−1
j , . . . , ξ−1

r−1ξ
−1
r , ξ−1

r

)
,

Lixk (z1, . . . , zr) = Li∗k

(
z2
z1
, . . . ,

zr
zr−1

,
1

zr

)
.

The notation log•N means the existence of some positive integer m independent of N ,
represented as logmN .

Proposition 6.1 (cf. [R, Corollaire 2.1.8]). We assume

∣∣∣
∏r

j=i ξj

∣∣∣ ≤ 1 for all 1 ≤ i ≤ r.

Then there exists a polynomial L∗
k,ξ(x) ∈ C[x] such that

Li∗,<N
k (ξ) = L∗

k,ξ(logN + γ) +O(N−1 log•N)

as N → ∞. Here γ is Euler’s constant. Furthermore, the coefficient of xi in L∗
k,ξ(x) can

be expressed as a Q-linear combination of converging multiple polylogarithms associated

with indices of weight wt(k) − i. In particular, the coefficient of xwt(k) is a rational

number.

Proof. The proof is standard, so it is described in a sketchy manner. First, prove

Li∗,<N
k (ξ) = Li∗k(ξ) +O(N−1 log•N)

as N → ∞ in the case where (kr, ξr) 6= (1, 1) is satisfied. Then, in the case k =
(k′, {1}s) and ξ = (ξ′, {1}s) for some positive integer s and some pair (k′, ξ′) satisfying
the convergence condition, prove the desired assertion by induction on s based on
the decomposition of ζ<N(1)Li

∗,<N
(k′,{1}s−1)

(ξ′, {1}s−1) using the harmonic product formula

(Proposition 6.3 below). �
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Let L∗(eξ,k) be the constant term of L∗
k,ξ(x) for each eξ,k ∈ H1

∗, and together with

L∗(1) := 1, extend it to a Q-linear mapping L∗ : H1
∗ → C. Any image of an element

in H1
∗ under L∗ can be expressed as a Q-linear combination of converging multiple

polylogarithms.
The purpose of this section is to provide a simple proof of the following theorem.

Theorem 6.2 (Extended double shuffle relations for MPLs). For any w1 ∈ H1
x
, w0 ∈

H0
x
, we have

L∗(⊤(w1) ∗ ⊤(w0)−⊤(w1 x w0)) = 0.

6.2. Product formulas. The Q-linear mapping L<N : H1
∗ → C is defined by

L<N(1) := 1 and L<N(eξ,k) := Li∗,<N
k (ξ).

Proposition 6.3 (Harmonic product formula). For y, y′ ∈ H1
∗, we have

L<N(y)L<N(y
′) = L<N (y ∗ y

′).

Proof. This is straightforward and well-known. �

The Q-linear mapping I(N) : H1
x

→ C is defined by I(N)(1) := 1 and I(N)(ez,k) :=

I
(N)
k (z).

Proposition 6.4 (Asymptotic shuffle product formula). For w1 ∈ H1
x
, w0 ∈ H0

x
, we

have

I(N)(w1)I
(N)(w0) = I(N)(w1 x w0) +O(N−1 log•N)

as N → ∞.

Proof. It is understood that I(N) satisfies the shuffle product formula up to error
terms through the same mechanism used to prove the shuffle product formula for MPLs
using their iterated integral expressions. (The difference lies in decomposing the range
of summation rather than decomposing the range of integration.) All error terms can
be handled by Lemma 4.3. For details, refer to [S2, Propositions 2.3 and 2.4] as the
procedure is almost the same, if necessary. Note that terms of the form (n−Nz)(n−Nz′)

do not appear in each I
(N)
k (z), and that w0 is an element in H0

x
. �

6.3. Proof of Theorem 6.2.

Theorem 6.5 (Asymptotic double shuffle relations). For w1 ∈ H1
x
, w0 ∈ H0

x
, we have

L<N(⊤(w1) ∗ ⊤(w0)−⊤(w1 x w0)) = O(N−1/3 log•N)

as N → ∞.

Proof. By Proposition 6.3, we see that

L<N(⊤(w1))L<N(⊤(w0)) = L<N(⊤(w1) ∗ ⊤(w0))

holds. On the other hand, by Proposition 6.4, Theorem 1.2 and Proposition 2.5, we
have

L<N(⊤(w1))L<N(⊤(w0)) = L<N(⊤(w1 x w0)) +O(N−1/3 log•N)

as N → ∞. By combining these two, the conclusion is obtained. �
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Proof of Theorem 6.2. The proof deriving Theorem 6.2 from Theorem 6.5 and
Proposition 6.1 is exactly the same as in [S2, Section 3]. �

7. Miscellaneous

In this section, we provide a proof of (1.6) mentioned in Section 1 and a reformula-
tion of special cases of our main result using certain types of multiple harmonic sums
that do not involve binomial coefficients. This is a generalization of the equation (1.3),
and the authors initially discovered these formulas through numerical experiments.

Proof of (1.6). In this proof, i denotes the imaginary unit. By employing Theorem 1.2,
for x = ±i, we obtain

N−1∑

n=1

1

n

(
N−1
n

)
(
±Ni−1

n

) = −

N−1∑

n=1

1

n∓Ni
.

Combining these yields

N−1∑

n=1

N

n2 +N2
=

1

2i

N−1∑

n=1

1

n

( (
N−1
n

)
(
−Ni−1

n

) −
(
N−1
n

)
(
Ni−1

n

)
)

=
1

2i

N−1∑

n=1

1

n

(
n∏

j=1

N − j

N2 + j2

)(
n∏

l=1

(Ni− l)−
n∏

l=1

(−Ni − l)

)
.

By the definition of the Stirling number of the first kind, we have
n∏

l=1

(±Ni− l) = (−1)n
n∑

l=0

[
n+ 1

l + 1

]
(∓Ni)l,

which implies

1

2i

(
n∏

l=1

(Ni− l)−
n∏

l=1

(−Ni − l)

)
= (−1)n

∑

0≤l<n/2

(−1)l+1

[
n + 1

2l + 2

]
N2l+1.

Thus, the proof completes. �

When r = 1 and x1 = −1, the equation (2.1) becomes

(7.1)

N∑

n=1

(−1)n

nk

(
N
n

)
(
N+n
n

) = −
∑

1≤n1≤···≤nk≤N

1

(n1 +N)n2 · · ·nk
.

We give another expression for this quantity.

Theorem 7.1. Let N and k be positive integers. Then we have

∑

1≤n1≤···≤nk≤N

1

(n1 +N)n2 · · ·nk

=





1

2

∑

1≤m1≤···≤mr≤N

1

m2
1 · · ·m

2
r

if k = 2r,

∑

1≤n≤2m1≤···≤2mr≤2N

(−1)n−1

nm2
1 · · ·m

2
r

if k = 2r + 1.
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Proof. Let aN,k and bN,k be the left and right hand side, respectively. We prove
the claim by induction on N and k. The case N = 1 follows from a1,k = 1

2
= b1,k. The

case k = 1,

(7.2)

N∑

n=1

1

n+N
=

2N∑

n=1

(−1)n−1

n
,

is equivalent to (1.3). Let N > 1 and k > 1. Then we have

aN,k =
∑

1≤n1≤···≤nk≤N−1

1

(n1 +N)n2 · · ·nk
+

∑

1≤n1≤···≤nk=N

1

(n1 +N)n2 · · ·nk

=
∑

1≤n1≤···≤nk≤N−1

1

(n1 +N)n2 · · ·nk

+
1

N

∑

1≤n1≤···≤nk−1≤N

1

(n1 +N)n2 · · ·nk−1

.

Since
n2∑

n1=1

1

n1 +N
=

n2∑

n1=1

1

n1 +N − 1
+

1

n2 +N
−

1

N
=

n2∑

n1=1

1

n1 +N − 1
−

n2

N(n2 +N)
,

we have
∑

1≤n1≤···≤nk≤N−1

1

(n1 +N)n2 · · ·nk

=
∑

1≤n1≤···≤nk≤N−1

1

(n1 +N − 1)n2 · · ·nk
−

1

N

∑

1≤n2≤···≤nk≤N−1

1

(n2 +N)n3 · · ·nk

= aN−1,k −
1

N

∑

1≤n1≤···≤nk−1≤N−1

1

(n1 +N)n2 · · ·nk−1
.

Thus, by induction hypothesis, we have

aN,k = aN−1,k +
1

N

∑

1≤n1≤···≤nk−1=N

1

(n1 +N)n2 · · ·nk−1

= aN−1,k +
1

N2
aN,k−2

= bN−1,k +
1

N2
bN,k−2 = bN,k.

Here, we have set aN,0 = bN,0 =
1
2
. This completes the proof. �

Remark 7.2. We can also directly prove that the left-hand side of (7.1) equals −bN,k

using the method of connected sums. We consider a connected sum

∑

1≤n≤m1≤···≤mb≤N

(−1)n

na

(
m1

n

)
(
m1+n

n

) 1

m2
1 · · ·m

2
b
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for positive integers a and b. After repeatedly applying the transport relation [HHT,
Lemma 2.1 (2.4)],

1

n2

(
m
n

)
(
m+n
n

) =
∑

n≤m′≤m

(
m′

n

)
(
m′+n

n

) 1

(m′)2
,

the desired formula is proved by applying

∑

1≤n≤m

(−1)n
(
m
n

)
(
m+n
n

) = −
1

2

(this follows from Lemma 2.4) once when k is even and applying

∑

1≤n≤m

(−1)n

n

(
m
n

)
(
m+n
n

) =
∑

1≤n≤2m

(−1)n

n

(this follows from (7.1) for the case k = 1 and (7.2)) once when k is odd. When k is
even, this was already proved in [HHT, Corollary 2.4].
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