
Towards Large-Scale Training of Pathology Foundation Models

kaiko.ai, Nanne Aben, Edwin D. de Jong, Ioannis Gatopoulos, Nicolas Känzig, Mikhail Karasikov,
Axel Lagré, Roman Moser, Joost van Doorn, Fei Tang†

kaiko.ai

Abstract— Driven by the recent advances in deep learning
methods and, in particular, by the development of modern
self-supervised learning algorithms, increased interest and
efforts have been devoted to build foundation models (FMs) for
medical images. In this work, we present our scalable training
pipeline for large pathology imaging data, and a comprehensive
analysis of various hyperparameter choices and training
techniques for building pathology FMs. We release and make
publicly available the first batch of our pathology FMs1 trained
on open-access TCGA whole slide images, a commonly used
collection of pathology images. The experimental evaluation
shows that our models reach state-of-the-art performance on
various patch-level downstream tasks, ranging from breast
cancer subtyping to colorectal nuclear segmentation. Finally,
to unify the evaluation approaches used in the field and to
simplify future comparisons of different FMs, we present an
open-source framework2 designed for the consistent evaluation
of pathology FMs across various downstream tasks.

I. INTRODUCTION

Pathology images contain a wealth of information about
patient health status, and deep learning-based methods have
become increasingly capable of automatically extracting vital
information about a patient’s condition from these images
[1]–[8]. While expert human pathologists are able to detect
certain subtle patterns from Whole Slide Images (WSIs),
such as Micro-Satellite Instability [9]–[11], AI methods are
increasingly able to detect ever subtler patterns that even
expert pathologists are unable to detect visually. For example,
Machine Learning (ML) models have been trained to predict
molecular biomarkers [12, 13] and RNA expression levels
from pathology images [14].

One of the clearest findings from the past decade of
machine learning research is that increasing training dataset
size and variety is a primary driver of increased model
performance. This trend can be traced from AlexNet [15]
and the subsequent development of convolutional neural
network architectures enabled by ImageNet, e.g. [16]–[18].
Self-Supervised Learning (SSL) then facilitated exploiting
seemingly unlimited further increases in dataset magnitude,
up to the internet-scale datasets that are used to train current
Large Language Models (LLMs) such as GPT-4 [19].

Hospitals worldwide are collecting data at an
unprecedented scale. With this data, new challenges
and opportunities arise: How can AI methods best be

†Correspondence E-mail: fei@kaiko.ai. Other authors are ordered
alphabetically.

1https://github.com/kaiko-ai/towards_large_
pathology_fms

2https://github.com/kaiko-ai/eva

employed to extract and make use of the wealth of
medically relevant information contained in large-scale
medical imaging datasets?

The work of Campanella et al. [1] was pivotal in
pathology machine learning for demonstrating that WSI-level
supervision (weak labels) is sufficient to effectively train
high-quality pathology models given sufficiently large
datasets (approx. 44k WSIs), thus obviating the need
for painstaking and time-consuming annotation efforts of
pathologists.

That early work and the simultaneous advancement of
Self-Supervised Learning (SSL) [20]–[25] paved the way
for the recent series of pathology SSL models trained on
increasingly large datasets. To the best of our knowledge,
the earliest work that applied SSL to pathology images is
“Self-supervision closes the gap between weak and strong
supervision in histology” [26]. HIPT [27] then used a
hierarchical setup where Vision Transformers (ViTs) are
trained with the self-supervised DINO [24] algorithm on
10,678 FFPE (formalin-fixed, paraffin-embedded) WSIs from
TCGA [28]. Lunit [29] trained on 19M patches from the
full set of 21k TCGA WSIs. Phikon (Owkin) [30] is an
iBOT ViT-Base model (80M parameters) trained on over
40M patches from 6k WSIs.

Chen et al. [31] trained the UNI model, and it is the
first work to use an order of magnitude more WSIs than
TCGA. The UNI model was trained on over 100M patches
from over 100k diagnostic H&E WSIs across 20 tissue
types and evaluated on 33 representative clinical pathology
tasks of varying difficulty. Campanella et al. [32] claimed
to have collected the largest pathology dataset at the time
(Oct 2023) and trained on 3B patches from over 423k WSIs,
comparing pre-training of vision transformer models using
a masked autoencoder (MAE) vs. DINO. However, these
numbers are surpassed remarkably by the 632M parameter
Virchow model trained on 1.5M WSIs [33].

In collaboration with the Netherlands Cancer Institute
(NKI-AvL), we are building one of the first large-scale
pathology FM on a European cohort. Together with NKI,
we intend to significantly increase the dataset size to 1M
and beyond, also in partnership with other cancer centers.
Working with data at this scale brings both infrastructure
and architectural challenges, which we address in this work.

Here, we present our scalable pipeline for training and
evaluating foundation models (FMs) on large pathology
imaging data. For seamless training, we developed Online
Patching, a technique for high-throughput loading of

ar
X

iv
:2

40
4.

15
21

7v
1

 [
cs

.C
V

]
 2

4
M

ar
 2

02
4

https://github.com/kaiko-ai/towards_large_pathology_fms
https://github.com/kaiko-ai/towards_large_pathology_fms
https://github.com/kaiko-ai/eva

TABLE I: Linear probing evaluation of FMs on patch-level downstream datasets. We compare the performance of a randomly initialized
model (ViT-S16 (rand.)), FMs trained on ImageNet (above the dashed line), and the pathology FMs (below the dashed line). The evaluation
was performed with eva. For BACH, CRC, MHIST, PCam, and TP53, the numbers represent the balanced accuracy averaged over 5 linear
probing runs (the respective standard deviations can be found in the extended version of Table VIII). For CoNSeP, we report the DICE
score on the foreground pixels. The best results are highlighted in bold. (*) For Virchow, the model weights were not publicly available.
The values were taken from [33], where they were computed in a different setup and may not be directly comparable to the other values.
(**) For TP53 and CoNSeP, the evaluation was done separately but will soon be supported in eva as well.

Model Training data BACH CRC MHIST PCam TP53** CoNSeP**

ViT-S16 (rand.) None 0.410 0.617 0.501 0.728 0.500 0.583
DINO ViT-S16 [24] ImageNet 0.695 0.935 0.831 0.849 0.519 0.611
DINO ViT-B8 [24] ImageNet 0.710 0.939 0.814 0.856 0.548 0.710

Lunit [29] TCGA (21k WSIs) 0.801 0.934 0.768 0.895 0.571 0.654
Phikon [30] TCGA (6k WSIs) 0.725 0.935 0.777 0.915 0.630 0.666
DINO ViT-S16 (ours) TCGA (29k WSIs) 0.797 0.943 0.828 0.893 0.633 0.649
DINO ViT-S8 (ours) TCGA (29k WSIs) 0.834 0.946 0.832 0.887 0.621 0.724
DINO ViT-B16 (ours) TCGA (29k WSIs) 0.810 0.960 0.826 0.898 0.651 0.658
DINO ViT-B8 (ours) TCGA (29k WSIs) 0.865 0.956 0.809 0.921 0.659 0.741
DINOv2 ViT-L14 (ours) TCGA (29k WSIs) 0.870 0.930 0.809 0.898 0.656 0.679
Virchow [33] Private (1.5M WSIs) n/a 0.962* 0.830* 0.933* n/a n/a

arbitrary image patches cropped from large WSIs residing
in blob storage (described in Section IV-B). With this,
we trained vision transformers of various sizes using the
DINO and DINOv2 SSL algorithms on TCGA WSIs, an
open-access pathology image dataset, which has been widely
used in the community for training pathology FMs. We
present our best-to-date FMs trained on TCGA and compare
them to state of the art. The evaluation shows that our FMs
perform on par or better than the existing state-of-the-art
FMs on most downstream tasks (Section II-A).

We also present an experimental study of various
hyperparameter and design choices for training pathology
FMs, such as the model initialization strategy (Section II-B),
effects of mixing different magnifications (Section II-C),
and effects of data sizes (Section II-D.1), which may be of
interest to other practitioners in the field of medical machine
learning and computational pathology to guide the future
development of pathology FMs.

To aid the evaluation of FMs, we introduce a new
unsupervised metric that can be used to compare models
of different sizes and show that it correlates well with
downstream performance and, hence, can be a valuable
addition to supervised metrics (Section IV-D.1 and C).

Lastly, we developed eva (described in Section IV-D.2),
an open-source framework for evaluating FMs on clinically
relevant downstream tasks in a straightforward and unified
way. We will be extending eva with more downstream
tasks in the future and invite other practitioners in the field
to contribute more downstream tasks to eva in order to
build a standardized evaluation workflow and to ensure the
evaluation results are comparable across different studies.

II. RESULTS AND DISCUSSION

A. Training state-of-the-art FMs with online patching

In most existing work, a patch dataset is typically
pre-constructed from WSIs offline before training, which
results in a fixed set of patches. Moreover, for larger

datasets, this approach becomes inefficient for the following
reasons: 1) For every new patch extraction strategy, the
dataset has to be re-created from scratch, which is costly
and time-consuming. 2) In addition, every time a patch
dataset is created, it requires a large storage space overhead,
which makes dynamic patch sampling and experiments with
sampling strategies practically impossible.

To address these issues, we developed Online Patching
(see Methods, Section IV-B), a method that allows for the
online high-throughput extraction of patches of arbitrary
size and resolution from WSIs residing in blob storage.
Not only does online patching improve data processing
efficiency, but it also introduces a key difference to the offline
patching approach: the patches are created dynamically. As a
result, dynamic patch sampling strategies can be seamlessly
incorporated into the training procedure.

Even for a single WSI with 105×105 pixels, there can be
up to 1010 distinct sampled patches. With Online Patching,
almost every sampled patch is new because it is sampled
at a random position. Thus, the number of distinct patches
our models have seen during training is typically much
larger than for other models trained with offline patching.
Moreover, this number grows with the number of training
epochs. On the other hand, many of the patches, despite
being unique, do overlap with many other neighboring
patches. It is currently unclear how the number of unique
patches and their similarity impact the performance of the
trained FM. In our experiments, we implicitly show that
sampling all patches at random coordinates does not have a
negative impact on the performance of the trained FM, and
we leave a more comprehensive analysis for future work.

Using online patching, we trained several vision
transformer models of different sizes using both the DINO
and DINOv2 algorithms on the whole set of 29k open-access
Flash-Frozen (FF) and FFPE diagnostic tissue slides from
TCGA. We evaluated the resulting models and compared
them to the existing state-of-the-art models.

TABLE II: Magnification ablation study: evaluating downstream benchmark performance through different patch magnifications in
pre-training phase. All results were generated using eva. All runs have, on average, a standard deviation of (±0.002). (*) The images from
BACH were downsampled from an mpp of 0.42 µm/px (20×) to 2.88 µm/px (3.47×).

Downstream task 40× 20× 10× 5× {20, 40}× {5, 10, 20}× {5, 10, 20, 40}×
BACH (3.47×)* 0.639 0.685 0.659 0.679 0.689 0.683 0.753
CRC (20×) 0.935 0.945 0.939 0.927 0.942 0.944 0.947
MHIST (5×) 0.744 0.746 0.648 0.710 0.746 0.744 0.771
PCam/val (10×) 0.879 0.898 0.873 0.859 0.887 0.870 0.887
PCam/test (10×) 0.824 0.874 0.834 0.820 0.874 0.858 0.876

For training our FMs, we mainly followed the original
recipes from DINO [24] and DINOv2 [25]. More specifically,
we deviate from the original recipes in the following:
1) We start from the models pre-trained on ImageNet
published in [24] and [25], respectively; 2) Our FMs
are trained on patches extracted from TCGA WSIs at
different magnification levels; 3) We use fewer GPUs and,
consequently, a smaller global batch size. (For example,
for ViT-B8, the original config from the DINO repository
specified 176 GPUs, while we only use 8 GPUs.) We used
the linear and square root scaling law for the learning rate
in DINO and DINOv2, respectively. For more details, see
Section IV-C.

The overview and the performance of our best models is
presented in Table I, descriptions for each downstream task
can be found in Data section in IV-A. The ViT-S16 model
we trained is comparable to the state-of-the-art models of
similar size on all considered downstream tasks. Notably, on
BACH, CRC, and MHIST, it achieves higher accuracy than
the larger Phikon model, which is a ViT-B16 model trained
with iBOT.

Similar to what is reported in DINO [24], reducing
the patch size used in the vision transformer considerably
improves the model performance. This is especially
prominent in the segmentation task, where the top two
performing models are ViT-B8 and ViT-S8 surpassing the
next in line, ViT-L14, by a large margin, despite the fact
that the ViT-L14 has more parameters and was trained with
DINOv2 with the additional patch-level objectives.

On the other hand, unlike what was observed in
DINO [24], scaling up the model size has shown on TCGA
a limited impact on the performance (e.g., the performance
on PCam changed from 0.893 for ViT-S16 to 0.921 for
ViT-B8, and to 0.898 for ViT-L14.). We hypothesize that the
impact could be limited for two possible reasons. First, the
performance on some downstream tasks might have reached
its maximum, and hence, we can no longer observe any
differences between the FMs. Secondly, the larger models
might have not reached their full capacities, either because
the effective data size of the TCGA images is too small due
to the limited diversity or because the larger models were not
trained long enough. Virchow [33], for example, achieved
superior performance on PCam and CRC with a ViT-H/14
trained on almost two orders of magnitude more WSIs.

B. Starting from FMs pre-trained on ImageNet yields faster
convergence

We seek to leverage the advantages of publicly available
pre-trained models in conjunction with domain-aligned
pre-training. To investigate this, we assess the impact of
initializing from models pre-trained on ImageNet compared
to starting from scratch. We use the DINO ViT-S16
architecture with default parameters and train it for 120
epochs. The results are shown in Fig. 1.

25 50 75 100
epoch

55

60

65

70

75
Ac

cu
ra

cy

BACH

25 50 75 100
epoch

82

84

86

88

Ac
cu

ra
cy

PatchCamelyon

25 50 75 100
epoch

51

54

57

60

63

Ac
cu

ra
cy

TP53

from ImageNet
from scratch

Fig. 1: Validation performance over the course of training a
ViT-S16 initialized with random weights (blue) and from a model
pre-trained on ImageNet (orange) with DINO. Left: Linear probing
performance on BACH. Center: Linear probing performance on
PCam, Right: Linear probing performance on TP53.

Our findings indicate that initializing the FM from
pre-trained weights accelerates its convergence and improves
the computational efficiency. While training from scratch
shows a gradual improvement in performance over the
training, it does not converge as fast as fine-tuning a
pre-trained model. We hypothesize that initializing from
pre-trained weights allows the model to prioritize intricate
details within image patches, which is particularly crucial
for medical images. As a result, it may be able to converge
to a higher level than the models initialized from random
weights. A similar effect has also been observed in other
works, e.g., in [34]. We expect to re-evaluate this effect on
larger datasets in the future.

C. Training FMs at multiple magnifications improves
robustness

Analyzing pathology images often requires adjusting
magnification levels to suit specific contextual demands
across different tasks. Lower magnification aids in capturing
the overall tissue context, which is particularly beneficial
for tasks such as grading prostate cancer. Conversely,
tasks focused on individual cell classification benefit from
higher magnification to achieve finer resolution. Thus, an
ideal pathology FM should be applicable on a range
of magnification levels for diverse tasks. We, therefore,

introduce patches of various magnification levels during
training in the hope that this will enhance the model’s
versatility and performance across a wider range of
downstream tasks, as in [29]. We evaluate the impact
of training an FM using various magnifications, both
individually and mixed. For this purpose, we employ a
randomly initialized ViT-S16 and train it on TCGA with
DINO for 100 epochs. In addition to the resolutions
commonly used in the literature, namely, 40× and 20×, we
include two additional resolutions, 10× and 5×. The results
are presented in Table II.

Our analysis reveals that the model trained exclusively
on the 20× magnification level surpasses all other models
trained on individual magnifications. However, it does not
perform as well as models that simultaneously incorporate
multiple magnifications. Our benchmark datasets include
various magnification levels, highlighting the lack of
consistency in performance across different magnifications
for single models, except for the one integrating all four.
This integrated model’s capability to understand patterns
across multiple magnifications provides it with a significant
advantage, leading to superior results compared to models
trained and evaluated solely on a single magnification
level. These findings affirm that we can develop a
magnification-agnostic FM without the need for more
complex model architectures.

It is also worth noting that mixing patches at multiple
magnifications effectively increases the data size and its
diversity. The improvement of the model performance, as
a result, agrees with our general observations of improved
model performance with increasing the data size as discussed
in Section II-D.1.

D. The effect of training data size

In this experiment, we investigate how the performance of
the FM changes with scaling up the size of the training data
in two different ways: 1) increasing the number of training
WSIs and 2) increasing the number of patches sampled from
a fixed set of WSIs. Note that in these experiments, we only
worked with the TCGA FFPE slides (∼10k WSIs).

0k 100k 200k 300k 400k 500k
steps

78

81

84

87

90

Ac
cu

ra
cy

100%
30%
10%
1%

0k 100k 200k 300k 400k 500k
steps

78

81

84

87

90

Ac
cu

ra
cy inf

1M
100k
10k
1k

Fig. 2: Validation performance of ViT-S16 throughout the DINO
training for 100 epochs on the full TCGA dataset and its random
1%, 10%, 30%, and 100% subsets of WSIs (left) and for different
numbers of distinct training patches sampled at random coordinates
from random WSIs of 100% TCGA (right). ’inf’ represents the
training where all training patches are distinct and are sampled
from random coordinates. The performance is measured with linear
probing on the PCam/val downstream task.

1) The number of training WSIs: To evaluate how the
number of WSIs in the training dataset affects the final

performance of the FM, we trained the ViT-S16 model with
DINO on random subsets of TCGA of increasing size (1%,
10%, 30%, and 100% of WSIs randomly sampled from
TCGA). The training was done from scratch on a single GPU
for 100 epochs (5000 steps/batches per epoch, with a batch
size of 256 patches) and otherwise standard DINO training
parameters.

The improvement of the validation accuracy (on the
PCam/val downstream task) throughout the training is shown
in Fig. 2 (left), and the final test accuracy of the trained
FMs on the selected downstream tasks is shown in Table III.
The results show that training an FM on more data generally

TABLE III: The performance of the ViT-S16 model trained with
DINO for 100 epochs on 1%, 10%, 30%, and 100% subsets of
TCGA, as well as the performance of the model initialized with
random weights. The performance is measured as the balanced
accuracy of Linear probing on the downstream tasks.

Training set BACH CRC MHIST PCam TP53
no training 0.410 0.689 0.500 0.728 0.500
TCGA 1% 0.668 0.908 0.731 0.871 0.560
TCGA 10% 0.662 0.928 0.712 0.887 0.592
TCGA 30% 0.733 0.924 0.752 0.897 0.610
TCGA 100% 0.723 0.927 0.752 0.899 0.621

leads to its better performance. However, the gain diminishes
with more training data. Surprisingly, even with as few as
108 training WSIs (1% of TCGA), the trained FM provides
reasonably high accuracy on all downstream tasks, and the
model trained on the 30% subset is nearly indistinguishable
from the FM trained on the full TCGA on all downstream
tasks except TP53.

Unlike BACH, CRC, MHIST, and PCam, the TP53 task is
TCGA-based and contains WSIs from the same distribution
as those used when training the FM. Note that the DINO
SSL training does not see the TP53 labels; hence, this can
still be considered a performance on test. We also tested the
accuracy on a hold-out subset of TCGA that was not used by
DINO and obtained similar results and conclusions, which
we skip here for simplicity.

Based on these results, we believe that 1) FM benefits
from more unique samples primarily on in-distribution (ID)
data, as demonstrated by the improved performance on on
the TP53 task with more training slides; 2) It is necessary to
collect more diverse datasets (data from different hospitals,
more tissue types, more cancer types, etc.) for the FM to
generalize better on out-of-distribution (OOD) data.

2) The number of distinct patches: In this experiment, we
limit the number of distinct patches cropped from the WSIs
during training. More precisely, we execute the usual training
pipeline with Online Patching (see Section IV-B) and cache
the sampled patches on the local hard drive. After a certain
number of patches has been sampled, we randomly sample
all the next patches in training from those cached on the
local hard drive.

The validation performance (on PCam/val) throughout the
training is shown in Fig. 2 (right), and the final test accuracy
of the trained FMs on the selected downstream tasks is

TABLE IV: The performance of the ViT-S16 model trained with
DINO for 100 epochs on different numbers of distinct training
patches. The patches are cropped from random coordinates at
random WSIs of 100% TCGA. The first row corresponds to the
initial untrained model with random weights. The last row (’inf’
patches) represents the training where all training patches are
distinct and are sampled from random coordinates. The performance
is measured as balanced accuracy of Linear probing on the
downstream tasks.

patches BACH CRC MHIST PCam TP53
0 0.410 0.689 0.500 0.728 0.500
103 0.661 0.927 0.775 0.846 0.529
104 0.699 0.932 0.780 0.860 0.542
105 0.644 0.938 0.790 0.864 0.573
106 0.683 0.926 0.743 0.898 0.611
inf 0.723 0.927 0.752 0.899 0.621

shown in Table IV. The first row in Table IV corresponds
to the initial ViT-S16 model with random weights (before
training). The last row (’inf’ patches) represents the training
without restricting the number of distinct patches. Namely,
every training patch is sampled from a random WSI at its
random position without caching it on the local hard drive,
which results in approximately 100·5000·256 ≈ 108 distinct
training patches.

Similar to the previous experiment with training the model
on subsets of WSIs, we see that even training the model on as
few as 1,000 random patches (which is about one patch per
ten WSIs) already achieves a reasonable performance on the
OOD downstream tasks, and further increasing this number
does not lead to drastic improvements of the performance on
the OOD tasks. However, for the in-distribution (ID) TP53
task, the performance grows steadily with exponentially
increasing the number of training patches, which suggests
that training the FM on more distinct training patches
generally leads to better performance, especially on ID data.

The results of these two experiments provide strong
evidence that 1) FM training benefits from more unique
samples at both slide and patch level; 2) the performance of
the FM on OOD tasks can only be significantly improved by
substantially enriching and diversifying the training dataset.
Even such a seemingly diverse dataset as TCGA is quickly
exhausted in its capacity to facilitate the FM in its ability
to generalize on OOD data, highlighting the necessity to go
beyond TCGA.

III. CONCLUSION

In this work, we introduced our scalable pipeline for
training and evaluating FMs on large pathology imaging
data. Towards building a large-scale pathology model,
we developed an online patching technique designed to
eliminate the space overhead required to store the patches
generated offline. Through our experiments on TCGA, we
demonstrated that online patching does not compromise
model performance and may even offer an advantage by
providing more diverse data. Furthermore, this technique
enables efficient and flexible experimental setup, which could
lead to the discovery of novel strategies for training better

pathology FMs. These encouraging results allow us to easily
scale up our FM training to datasets orders of magnitude
larger than TCGA.

Our experiments on TCGA suggest the following. First,
fine-tuning an FM pre-trained on ImageNet on pathology
data is more efficient than training a pathology FM from
scratch. The initial knowledge contained in the pre-trained
FM appears to be relevant for the pathology FM. Second,
pathology FMs trained on data of mixed magnifications show
a better performance than FMs trained on data of a single
magnification. This was, to some extent, anticipated but
not fully verified. This also suggests that, more generally,
an FM trained on data of mixed distributions (e.g., data
of different magnification or data with different staining),
could perform as well as an FM trained on individual
distributions separately and provides evidence that an FM
could truly be foundational and work well on data from
multiple distributions.

We observed clear benefits in scaling up the data size
in training ViT-S16. However, only limited benefits were
observed when the model size was scaled up. We hypothesize
that TCGA in its whole is still not large enough. For example,
it was shown in DINOv2 [25, Fig. 4] that the benefits of
scaling up the model are more prominent on the larger dataset
LVD-142M than the smaller ImageNet-22K dataset.

Similarly, we only observed limited benefits of using
DINOv2 compared to DINO on TCGA (Appendix B). This
could be because TCGA is too small to benefit from using the
more advanced DINOv2 algorithm or that the downstream
tasks we use to evaluate the FMs are not challenging enough
to reveal the difference. We leave the analysis for data sizes
beyond the TCGA scale for future work.

Through these extensive experiments and analysis, we
recognize the importance of a reliable and fair evaluation. We
introduced an unsupervised metric off-diagonal correlation
that does not require labels on the downstream data and could
provide complementary information about the models in
addition to the supervised metrics. Finally, we presented our
evaluation framework eva to ensure a consistent evaluation
protocol when comparing different FMs. It is our hope and
expectation that other practitioners in the field of medical
machine learning and computational pathology contribute
new clinically relevant downstream tasks to eva and adopt it
for evaluating their own pathology FMs to ensure the results
are comparable across different studies.

We are still at the very beginning of developing a truly
foundational pathology FM. It will be worth revisiting the
analysis in this work when we scale up the model and data
sizes.

IV. METHODS

A. Data

In our experiments, we used collections of WSIs from
diverse human tissues across various medical conditions.
We describe these datasets below and summarize them in
Table V. For the exact partitioning of the datasets into the

TABLE V: Summary of benchmark datasets used for linear probing evaluation of FMs. (*) For the TP53 task, we randomly sampled
102,400 patches from TCGA and assigned the respective TP53 labels derived from their originating WSIs.

Dataset # patches Patch size Magnification (mpp) Task Tissue type
BACH 400 1536×2048 20× (0.42 µm/px) Cls (4 classes) Breast
CRC 107,180 224×224 20× (0.50 µm/px) Cls (9 classes) Colorectal
MHIST 3,152 224×224 5× (2.00 µm/px) Cls (2 classes) Colorectal Polyp
PCam 327,680 96×96 10× (0.97 µm/px) Cls (2 classes) Breast lymph node
TP53 102,400* 224×224 20× (0.50 µm/px) Cls (2 classes) All TCGA tissues

training, test, and, where applicable, validation subsets, refer
to Supplementary Data V.

TCGA This dataset contains approximately 29k
hematoxylin and eosin (H&E) stained tissue slides from
32 cancer types at different microscopic magnifications,
collected at different hospitals for The Cancer Genome
Atlas (TCGA) project [28] by the TCGA Research Network:
https://www.cancer.gov/tcga. TCGA has been
widely used for training foundation models on pathology
images [27, 29, 30]. Following these efforts, we used this
dataset to train our foundation models.

TCGA TP53 From TCGA metadata, we constructed a
downstream task for predicting TP53 status from WSIs
in TCGA. To this end, we assess TP53 to be aberrated
when it either harbors a mutation or when both copies are
deleted. Following [35], we consider all mutations that are
either labeled as moderate (e.g., non-synonymous missense)
or high (e.g., nonsense, frameshift) without filtering on
variant allele frequency (VAF). The rationale for including
non-synonymous missense mutations is that these mutations
nearly always showed a high VAF, suggesting positive
selection pressure and, hence, functional impact [35]. The
rationale for not filtering on VAF (for the remaining
mutations, labeled as high impact) is that for nearly all
cases where only one allele is mutated, a second mutation
could be determined, suggesting the other allele has also
been disabled [35]. Following this approach, we identified
roughly 6k tumors with functional TP53 and roughly 3.5k
tumors with non-functional TP53 in TCGA. We have made
these data available for download (see V).

The TP53 status is a patient-level signal; however, in this
work, we treat it as a patch-level signal. That is, the task is
to predict TP53 status from a patch of a WSI instead of the
whole slide. This introduces label noise, as the WSI-level
signal will most likely not be detectable from every patch
within the WSI. Also, there could be heterogeneity in the
expression of the involved genes. Nonetheless, we find that
this task can be used to compare between FMs and could be
a valid metric. We leave the construction of the slide-level
metric for future work.

For evaluation, we randomly sample 102,400 patches from
all the TCGA diagnostic slides with equal probability for
each slide to be sampled, and we report linear probing
balanced accuracy on 5-fold cross-validation of patient-based
splits of the patches.

BACH This dataset contains 400 images originally
generated for the Grand Challenge on BreAst Cancer

Histology images challenge [36]. Each image is of size
1536×2048 pixels, at a scale of 0.42 µm/pixel, and belongs
to one of four classes: 1) normal, 2) benign, 3) in situ
carcinoma, and 4) invasive carcinoma, with each of the
four classes having exactly 100 images assigned to it.
We downloaded all images with their corresponding
metadata from https://iciar2018-challenge.
grand-challenge.org and used this metadata to split
the entire dataset into a training and a test part, such that
different images from the same patient never appear in both
training and test parts but only in one of them. As a result,
the test set contains 132 images, with 23, 48, 30, and 31
images from each of the four classes, respectively, which is
roughly one-third of the entire dataset. Note that this differs
from the existing literature, where typically a random split
is performed without grouping the patches by patient, e.g.,
in [29]. For the exact composition of the training and test
sets, refer to Supplementary Data V.

CRC The CRC dataset [37] comprises 100,000 training
and 7,180 test images (224×224 pixels) at 20× magnification,
sourced from H&E stained WSIs representing human
colorectal cancer and normal tissue. The training set is
derived from 86 WSIs, while the test set is sourced from 25
WSIs. These WSIs are obtained from the NCT Tissue Bank
and the University Medical Center Mannheim. The objective
is to classify nine tissue classes: adipose tissue, background,
debris, lymphocytes, mucus, smooth muscle, normal colon
mucosa, cancer-associated stroma, and CRC epithelium. All
images undergo color normalization using the Macenko
method (NCT-CRC-HE-100K). We do not make any use of
the unnormalized (NCT-CRC-HE100K-NONORM) variants.

PatchCamelyon (PCam) This dataset consists of 327,680
patches of 96×96 pixels at a FoV of 0.97 µm/px [38].
These patches are cropped from WSIs of breast lymph node
sections and are marked with binary labels indicating the
presence of metastatic tissue in the image.

MHIST The MHIST dataset [39] consists of 3,152
H& E-stained FFPE fixed-size images (224×224 pixels) of
colorectal polyps, where each image is assigned to one of two
classes: 1) Hyperplastic Polyp (HP) or 2) Sessile Serrated
Adenoma (SSA).

CoNSeP The Colorectal Nuclear Segmentation and
Phenotypes (CoNSeP) dataset [40] consists of 41 H&E
1000×1000 pixel images, and it is split into 27 and 14
images for training and test sets. The data comes from
the University Hospitals Coventry and Warwickshire, UK.
The annotation contains segmentation masks of each nucleus

https://www.cancer.gov/tcga
https://iciar2018-challenge.grand-challenge.org
https://iciar2018-challenge.grand-challenge.org

Fig. 3: Quantitative results for the semantic segmentation task.
Left: the patch. Center: the semantic segmentation labels. Right:
the predictions with our ViT-B8 model.

along with the grouped classes as described in [40]: 1)
other, 2) inflammatory, 3) healthy & dysplastic/malignant
epithelial, 4) spindle-shaped. To evaluate FMs, we used the
CoNSeP dataset as a semantic segmentation task, where each
pixel is assigned to one of the five categories: the four
cell-type categories and background. We report the DICE
score without background.

B. Online high-throughput loading of patches from WSIs

Self-supervised pre-training on WSIs is, as of date, usually
not performed at the slide level due to the gigapixel-level size
of the WSIs, which exceeds the GPU memory of standard
modern hardware. Although sophisticated techniques such as
activation checkpointing could be used [41, 42], they usually
have a significant performance impact for large models.
Therefore, state-of-the-art pathology FMs are currently
trained at the patch level, where smaller patches must be
extracted. Typically, patches are extracted and stored offline
before training to enable the efficient loading of patches
during training; see e.g. [32]. In addition to the significant
space overhead required to store the pre-processed image
patches, this limits the flexibility in the choice of patch
size and the magnification level, as any change in these
parameters requires another preparation of the patches.

To allow for more flexibility, we developed Online
Patching, a library that enables high-throughput extraction
and loading of patches from WSIs during training. The
library allows extracting from any WSI patches at completely
arbitrary coordinates and at arbitrary magnification levels.
This allows training models on virtually all the patches
contained in the WSIs without having to store the patches
on disk.

To sample only foreground patches, a U-Net-based
foreground segmentation model is used to compute the
foreground masks of the WSIs at a lower resolution, usually
at thumbnail scale. From this mask, a polygon is computed
that can be efficiently stored in memory. During training,
a slide is first sampled from all available slides, where
different slide-level sampling strategies could be specified
(e.g., uniform random sampling or prior-based sampling).
From the sampled slide, patch coordinates are randomly
sampled with a minimum area overlap of a candidate patch
with the polygon. The patch is then extracted from the image
level closest to the target magnification level and resized
to the target patch size. This method of patch selection
increases the diversity of the patches used in training and

allows training on more patches than what would be possible
with a fixed set of patches. At inference time, patches with
sufficiently many foreground pixels can be generated by
iterating a grid of a specified size.

The online patching library utilizes a virtual in-memory
filesystem to make the whole of TCGA accessible as a
single Zarr data source [43]. The virtual filesystem allows
the original SVS files to be accessible as if they were stored
in the Zarr data format, requiring only minimal extraction
of the tile byte ranges before running online patching. The
library provides optimized functionality for the asynchronous
loading of tiles from network or blob storage. Related
open-source initiatives are being developed to use Zarr as
a unified format for biomedical images [44, 45].

We are aware of other possible solutions where patch
extraction is performed on intermediate servers, providing
an API to abstract away that complexity. An example of
that approach is the WSI DICOMWeb python library from
Google [46], which provides a way to extract patches from
images stored in the Google DICOM store. The downside
of solutions that rely on intermediate servers performing
the patch extraction is that it increases the complexity of
the infrastructure required (for larger datasets, the patch
extraction servers would need to scale up accordingly). Our
online patching library, on the other hand, works with WSIs
directly and in a cloud-agnostic way.

C. Pretraining setup

We adhere to the suggested training methodology for
natural images as outlined in DINO [24] and DINOv2 [25]
with slight adjustments: (i) model initialization is performed
using ImageNet SSL weights, (ii) the learning rate is reduced
by a factor of 10, (iii) random sampling of 256×256
patches is carried out with a minimum of 40% foreground
presence, (iv) training encompasses multiple magnification
levels, specifically 5×, 10×, 20×, and 40×, and (v) image
normalization is conducted using a non-informative mean
and standard deviation of 0.5 to scale values within the [-1,
1] range.

In all our experiments, we adopt the ImageNet Epoch
concept [47] and define one epoch as 1,280,000 patches.

The pre-training occurred in two phases: In the first phase,
we trained exclusively on FFPE slides for 100 ImageNet
epochs. In the second phase, we extended the training
by another 100 epochs, incorporating the FF slides while
reducing the peak learning rate by half compared to the initial
stage.

The ViT-B8 was trained on 8 H100 GPUs with a batch
size of 32 per GPU. The DINOv2 ViT-L14 was trained on
16 H100 GPUs with batch size per GPU 32, and all other
our models from Table I were trained on 4 H100 GPUs and
batch size per GPU 256 for ViT-S16, 64 for ViT-S8 and 128
for ViT-B16.

D. Evaluation setup

To evaluate different training strategies, we apply the
trained FMs on a selection of downstream tasks using

public datasets to generate embeddings given input images.
The performance of the FMs is evaluated with two groups
of metrics: 1) metrics that evaluate the quality of the
representations directly without labels; 2) metrics measuring
the performance of the representations on the downstream
prediction tasks with a lightweight head network, where
labels are necessary.

1) Unsupervised metrics: To evaluate FMs without the
need for labeled data, we use RankMe [48] as one of
the metrics in this study. RankMe estimates the rank of
embeddings of test data, and it has been shown to correlate
well with downstream performance.

In addition, we introduce another simple unsupervised
criterion to evaluate the quality of the representations
directly: off-diagonal correlation (ODCorr), which simply
measures the average correlation coefficient between the
embeddings of different samples in the evaluation dataset,
i.e., the off-diagonal elements of a correlation matrix.
This metric is motivated by the observation that when
the embeddings of different samples are different enough
and, thus, not correlated, the samples can be distinguished
from each other based on their embedding vectors. This is
necessary for learning downstream tasks.

ODCorr is calculated based on the 2D matrix of
embedding dimensions and samples, and it takes the square
root of the mean square of the correlations between
embedding vectors of pairs of samples. In related earlier
work, the correlations over this 2D matrix are computed
in the orthogonal direction, i.e., the correlations between
sample-value vectors of pairs of embedding dimensions are
considered. [49] showed that the amount of correlation
in hidden activations corresponds with the amount of
overfitting, and [50] visualized the Pearson correlation
coefficient of [CLS] embeddings such that highly correlated
dimensions are located near each other in blocks.

The off-diagonal correlation metric ranges between 0 and
1, with 0 indicating no correlations between samples and
1 indicating all samples are correlated with each other.
Since this metric simply measures the correlations between
different samples, it can be used to compare models of
different dimensions. Denoting the embedding matrix of an
evaluation dataset as Z of shape N × K, the off-diagonal
correlation is formally defined as:

ODCorr(Z) =

√∑
i ̸=j ρ(Zi, Zj)2

N(N − 1)
, (1)

where ρ(Zi, Zj) is the Pearson correlation coefficient for the
embeddings of samples i and j.

In Appendix, Section C, we show that ODCorr highly
correlates with the downstream performance and can be
compared between models of different sizes.

2) Evaluation framework: eva: To evaluate foundation
models on out-of-distribution (OOD) downstream tasks, we
use our open-source evaluation framework eva, which has
been designed to provide an explainable, fair, and easily
reproducible FM-evaluation standard across backbone sizes
and architectures.

eva aims to support a large selection of public datasets
and tasks. In the first release, PCam [38], BACH [36] for
breast cancer classification and colorectal (CRC) cancer
classification [37] are included. To evaluate an FM on a
downstream task, eva prepares a task dataset, performs
inference to compute the embeddings, trains a head model
for that task, and evaluates the performance.

If a dataset has a designated validation or test split, we
use it for evaluation and report results accordingly. However,
if such splits are not available, we create a stratified split to
ensure proper separation of slides or patients, thus preventing
any potential data leakage.

eva prioritizes meaningful evaluation of the FMs over
maximum individual downstream performance. Therefore,
the head architecture is deliberately chosen to be lightweight,
robust in downstream performance, and with minimal bias
toward any particular FM architecture.

To achieve this, eva follows a standard protocol introduced
in [33] that trains a single-layer MLP with a fixed number
of training steps and hyperparameters. For small datasets, we
reduced the batch size and linearly scaled down the learning
rate. To prevent overfitting, eva applies early stopping after
5% of the maximum number of epochs. For a detailed
configuration, see Appendix, Table VI. We found that with
this setup, we achieve stable results across multiple runs for
each of the evaluated tasks and FMs.

For the semantic segmentation evaluation on the CoNSeP
dataset, we trained on randomly cropped patches of size
224 from the training set and evaluated on grid patches
of the same size with stride 194 on the test set. We used
Mask2Former [51] as a decoder on top of the FMs. We
kept the FM frozen and the decoder light. We deliberately
reduced the capacity of the decoder (number of queries: 32,
number of encoder layers and attention heads: 4, feature size
and hidden dimension: 32). In the same spirit of keeping
a lightweight decoder, we did not use ViT-Adapter [52],
which is sometimes used when evaluating FMs, e.g., in [31].
We observed some instabilities in training the segmentation
decoder. Not all training runs converged in the maximal
number of epochs. Thus, for each FM, the results are
averaged over three runs that did converge.

V. SUPPLEMENTARY DATA

The model checkpoints, and the information for
reproducing the evaluation results presented in this work
are available for download from https://github.com/
kaiko-ai/towards_large_pathology_fms.

VI. ACKNOWLEDGMENTS

The authors thank Jonas Teuwen, Eric Marcus and
the AI for Oncology group at the Netherlands Cancer
Institute (NKI) for the fruitful discussions and collaborations.
They have also kindly provided a segmentation annotation
dataset, which was used to train the foreground/background
segmentation model that identifies the foreground regions
used by the Online Patching method described in this article.

https://github.com/kaiko-ai/towards_large_pathology_fms
https://github.com/kaiko-ai/towards_large_pathology_fms

REFERENCES

[1] G. Campanella, M. G. Hanna, L. Geneslaw, A. Miraflor, V. Werneck
Krauss Silva, K. J. Busam, E. Brogi, V. E. Reuter, D. S. Klimstra, and
T. J. Fuchs, “Clinical-grade computational pathology using weakly
supervised deep learning on whole slide images,” Nature medicine,
vol. 25, no. 8, pp. 1301–1309, 2019.

[2] M. Y. Lu, D. F. Williamson, T. Y. Chen, R. J. Chen, M. Barbieri, and
F. Mahmood, “Data-efficient and weakly supervised computational
pathology on whole-slide images,” Nature biomedical engineering,
vol. 5, no. 6, pp. 555–570, 2021.

[3] A. Echle, N. T. Rindtorff, T. J. Brinker, T. Luedde, A. T. Pearson, and
J. N. Kather, “Deep learning in cancer pathology: a new generation
of clinical biomarkers,” British journal of cancer, vol. 124, no. 4,
pp. 686–696, 2021.

[4] D. Tellez, M. Balkenhol, I. Otte-Höller, R. van de Loo, R. Vogels,
P. Bult, C. Wauters, W. Vreuls, S. Mol, N. Karssemeijer, et al.,
“Whole-slide mitosis detection in h&e breast histology using phh3 as
a reference to train distilled stain-invariant convolutional networks,”
IEEE transactions on medical imaging, vol. 37, no. 9, pp. 2126–2136,
2018.

[5] W. Bulten, H. Pinckaers, H. van Boven, R. Vink, T. de Bel, B. van
Ginneken, J. van der Laak, C. Hulsbergen-van de Kaa, and G. Litjens,
“Automated deep-learning system for gleason grading of prostate
cancer using biopsies: a diagnostic study,” The Lancet Oncology,
vol. 21, no. 2, pp. 233–241, 2020.

[6] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I.
Sánchez, “A survey on deep learning in medical image analysis,”
Medical image analysis, vol. 42, pp. 60–88, 2017.

[7] J. Van der Laak, G. Litjens, and F. Ciompi, “Deep learning in
histopathology: the path to the clinic,” Nature medicine, vol. 27, no. 5,
pp. 775–784, 2021.

[8] N. Dimitriou, O. Arandjelović, and P. D. Caie, “Deep learning for
whole slide image analysis: an overview,” Frontiers in medicine, vol. 6,
p. 264, 2019.

[9] L. A. Hildebrand, C. J. Pierce, M. Dennis, M. Paracha, and A. Maoz,
“Artificial intelligence for histology-based detection of microsatellite
instability and prediction of response to immunotherapy in colorectal
cancer,” Cancers, vol. 13, no. 3, p. 391, 2021.

[10] J. Zhu, W. Wu, Y. Zhang, S. Lin, Y. Jiang, R. Liu, H. Zhang, and
X. Wang, “Computational analysis of pathological image enables
interpretable prediction for microsatellite instability,” Frontiers in
Oncology, vol. 12, p. 825353, 2022.

[11] C. Saillard, O. Dehaene, T. Marchand, O. Moindrot, A. Kamoun,
B. Schmauch, and S. Jegou, “Self supervised learning improves
dmmr/msi detection from histology slides across multiple cancers,”
arXiv preprint arXiv:2109.05819, 2021.

[12] Z. R. McCaw, A. Shcherbina, Y. Shah, D. Huang, S. Elliott, P. M.
Szabo, B. Dulken, S. Holland, P. Tagari, D. Light, et al., “Machine
learning enabled prediction of digital biomarkers from whole slide
histopathology images,” medRxiv, pp. 2024–01, 2024.

[13] O. S. El Nahhas, C. M. Loeffler, Z. I. Carrero, M. van
Treeck, F. R. Kolbinger, K. J. Hewitt, H. S. Muti, M. Graziani,
Q. Zeng, J. Calderaro, et al., “Regression-based deep-learning
predicts molecular biomarkers from pathology slides,” Nature
Communications, vol. 15, no. 1, p. 1253, 2024.

[14] B. Schmauch, A. Romagnoni, E. Pronier, C. Saillard, P. Maillé,
J. Calderaro, A. Kamoun, M. Sefta, S. Toldo, M. Zaslavskiy, et al.,
“A deep learning model to predict rna-seq expression of tumours from
whole slide images,” Nature communications, vol. 11, no. 1, p. 3877,
2020.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778, 2016.

[18] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[19] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[20] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” CoRR,
vol. abs/2002.05709, 2020.

[21] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and
I. Sutskever, “Learning transferable visual models from natural
language supervision,” CoRR, vol. abs/2103.00020, 2021.

[22] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow
twins: Self-supervised learning via redundancy reduction,” CoRR,
vol. abs/2103.03230, 2021.

[23] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster
assignments,” CoRR, vol. abs/2006.09882, 2020.

[24] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski,
and A. Joulin, “Emerging properties in self-supervised vision
transformers,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9650–9660, 2021.

[25] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby,
R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li, W. Galuba,
M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou,
J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski, “Dinov2: Learning
robust visual features without supervision,” 2023.

[26] O. Dehaene, A. Camara, O. Moindrot, A. de Lavergne, and P. Courtiol,
“Self-supervision closes the gap between weak and strong supervision
in histology,” arXiv preprint arXiv:2012.03583, 2020.

[27] R. J. Chen, C. Chen, Y. Li, T. Y. Chen, A. D. Trister, R. G.
Krishnan, and F. Mahmood, “Scaling vision transformers to gigapixel
images via hierarchical self-supervised learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16144–16155, 2022.

[28] K. Chang, C. J. Creighton, C. Davis, L. Donehower, J. Drummond,
D. Wheeler, A. Ally, M. Balasundaram, I. Birol, Y. S. N. Butterfield,
A. Chu, E. Chuah, H.-J. E. Chun, N. Dhalla, R. Guin, M. Hirst,
C. Hirst, R. A. Holt, S. J. M. Jones, D. Lee, H. I. Li, M. A.
Marra, M. Mayo, R. A. Moore, A. J. Mungall, A. G. Robertson,
J. E. Schein, P. Sipahimalani, A. Tam, N. Thiessen, R. J. Varhol,
R. Beroukhim, A. S. Bhatt, A. N. Brooks, A. D. Cherniack, S. S.
Freeman, S. B. Gabriel, E. Helman, J. Jung, M. Meyerson, A. I.
Ojesina, C. S. Pedamallu, G. Saksena, S. E. Schumacher, B. Tabak,
T. Zack, E. S. Lander, C. A. Bristow, A. Hadjipanayis, P. Haseley,
R. Kucherlapati, S. Lee, E. Lee, L. J. Luquette, H. S. Mahadeshwar,
A. Pantazi, M. Parfenov, P. J. Park, A. Protopopov, X. Ren, N. Santoso,
J. Seidman, S. Seth, X. Song, J. Tang, R. Xi, A. W. Xu, L. Yang,
D. Zeng, J. T. Auman, S. Balu, E. Buda, C. Fan, K. A. Hoadley,
C. D. Jones, S. Meng, P. A. Mieczkowski, J. S. Parker, C. M. Perou,
J. Roach, Y. Shi, G. O. Silva, D. Tan, U. Veluvolu, S. Waring, M. D.
Wilkerson, J. Wu, W. Zhao, T. Bodenheimer, D. N. Hayes, A. P.
Hoyle, S. R. Jeffreys, L. E. Mose, J. V. Simons, M. G. Soloway,
S. B. Baylin, B. P. Berman, M. S. Bootwalla, L. Danilova, J. G.
Herman, T. Hinoue, P. W. Laird, S. K. Rhie, H. Shen, T. Triche,
D. J. Weisenberger, S. L. Carter, K. Cibulskis, L. Chin, J. Zhang,
G. Getz, C. Sougnez, M. Wang, H. Dinh, H. V. Doddapaneni, R. Gibbs,
P. Gunaratne, Y. Han, D. Kalra, C. Kovar, L. Lewis, M. Morgan,
D. Morton, D. Muzny, J. Reid, L. Xi, J. Cho, D. DiCara, S. Frazer,
N. Gehlenborg, D. I. Heiman, J. Kim, M. S. Lawrence, P. Lin, Y. Liu,
M. S. Noble, P. Stojanov, D. Voet, H. Zhang, L. Zou, C. Stewart,
B. Bernard, R. Bressler, A. Eakin, L. Iype, T. Knijnenburg, R. Kramer,
R. Kreisberg, K. Leinonen, J. Lin, Y. Liu, M. Miller, S. M. Reynolds,
H. Rovira, I. Shmulevich, V. Thorsson, D. Yang, W. Zhang, S. Amin,
C.-J. Wu, C.-C. Wu, R. Akbani, K. Aldape, K. A. Baggerly, B. Broom,
T. D. Casasent, J. Cleland, C. Creighton, D. Dodda, M. Edgerton,
L. Han, S. M. Herbrich, Z. Ju, H. Kim, S. Lerner, J. Li, H. Liang,
W. Liu, P. L. Lorenzi, Y. Lu, J. Melott, G. B. Mills, L. Nguyen,
X. Su, R. Verhaak, W. Wang, J. N. Weinstein, A. Wong, Y. Yang,
J. Yao, R. Yao, K. Yoshihara, Y. Yuan, A. K. Yung, N. Zhang,
S. Zheng, M. Ryan, D. W. Kane, B. A. Aksoy, G. Ciriello, G. Dresdner,
J. Gao, B. Gross, A. Jacobsen, A. Kahles, M. Ladanyi, W. Lee, K.-V.
Lehmann, M. L. Miller, R. Ramirez, G. Rätsch, B. Reva, C. Sander,
N. Schultz, Y. Senbabaoglu, R. Shen, R. Sinha, S. O. Sumer, Y. Sun,
B. S. Taylor, N. Weinhold, S. Fei, P. Spellman, C. Benz, D. Carlin,
M. Cline, B. Craft, K. Ellrott, M. Goldman, D. Haussler, S. Ma,

S. Ng, E. Paull, A. Radenbaugh, S. Salama, A. Sokolov, J. M. Stuart,
T. Swatloski, V. Uzunangelov, P. Waltman, C. Yau, J. Zhu, S. R.
Hamilton, S. Abbott, R. Abbott, N. D. Dees, K. Delehaunty, L. Ding,
D. J. Dooling, J. M. Eldred, C. C. Fronick, R. Fulton, L. L. Fulton,
J. Kalicki-Veizer, K.-L. Kanchi, C. Kandoth, D. C. Koboldt, D. E.
Larson, T. J. Ley, L. Lin, C. Lu, V. J. Magrini, E. R. Mardis, M. D.
McLellan, J. F. McMichael, C. A. Miller, M. O’Laughlin, C. Pohl,
H. Schmidt, S. M. Smith, J. Walker, J. W. Wallis, M. C. Wendl, R. K.
Wilson, T. Wylie, Q. Zhang, R. Burton, M. A. Jensen, A. Kahn, T. Pihl,
D. Pot, Y. Wan, D. A. Levine, A. D. Black, J. Bowen, T. C. G. A. R.
Network, G. C. Center, G. D. A. Center, S. Center, D. C. Center,
T. S. Site, and B. C. R. Center, “The cancer genome atlas pan-cancer
analysis project,” Nature Genetics, vol. 45, no. 10, pp. 1113–1120,
2013.

[29] M. Kang, H. Song, S. Park, D. Yoo, and S. Pereira, “Benchmarking
self-supervised learning on diverse pathology datasets,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3344–3354, June 2023.

[30] A. Filiot, R. Ghermi, A. Olivier, P. Jacob, L. Fidon, A. M. Kain,
C. Saillard, and J.-B. Schiratti, “Scaling self-supervised learning for
histopathology with masked image modeling,” medRxiv, 2023.

[31] R. J. Chen, T. Ding, M. Y. Lu, D. F. K. Williamson, G. Jaume,
A. H. Song, B. Chen, A. Zhang, D. Shao, M. Shaban, M. Williams,
L. Oldenburg, L. L. Weishaupt, J. J. Wang, A. Vaidya, L. P. Le,
G. Gerber, S. Sahai, W. Williams, and F. Mahmood, “Towards
a general-purpose foundation model for computational pathology,”
Nature Medicine, 2024.

[32] G. Campanella, C. Vanderbilt, and T. Fuchs, “Computational
pathology at health system scale – self-supervised foundation models
from billions of images,” in AAAI 2024 Spring Symposium on
Clinical Foundation Models, 2024.

[33] E. Vorontsov, A. Bozkurt, A. Casson, G. Shaikovski, M. Zelechowski,
S. Liu, K. Severson, E. Zimmermann, J. Hall, N. Tenenholtz, N. Fusi,
P. Mathieu, A. van Eck, D. Lee, J. Viret, E. Robert, Y. K. Wang,
J. D. Kunz, M. C. H. Lee, J. Bernhard, R. A. Godrich, G. Oakley,
E. Millar, M. Hanna, J. Retamero, W. A. Moye, R. Yousfi, C. Kanan,
D. Klimstra, B. Rothrock, and T. J. Fuchs, “Virchow: A million-slide
digital pathology foundation model,” arXiv:2309.07778v5, 2024.

[34] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Large scale learning of general visual representations for
transfer,” CoRR, vol. abs/1912.11370, 2019.

[35] L. A. Donehower, T. Soussi, A. Korkut, Y. Liu, A. Schultz,
M. Cardenas, X. Li, O. Babur, T.-K. Hsu, O. Lichtarge, J. N. Weinstein,
R. Akbani, and D. A. Wheeler, “Integrated analysis of tp53 gene and
pathway alterations in the cancer genome atlas.,” Cell Rep, vol. 28,
pp. 1370–1384, Jul 2019.

[36] G. Aresta, T. Araújo, S. Kwok, S. S. Chennamsetty, M. Safwan,
V. Alex, B. Marami, M. Prastawa, M. Chan, M. Donovan,
G. Fernandez, J. Zeineh, M. Kohl, C. Walz, F. Ludwig, S. Braunewell,
M. Baust, Q. D. Vu, M. N. N. To, E. Kim, J. T. Kwak, S. Galal,
V. Sanchez-Freire, N. Brancati, M. Frucci, D. Riccio, Y. Wang, L. Sun,
K. Ma, J. Fang, I. Kone, L. Boulmane, A. Campilho, C. Eloy,
A. Polónia, and P. Aguiar, “Bach: Grand challenge on breast cancer
histology images.,” Med Image Anal, vol. 56, pp. 122–139, Aug 2019.

[37] J. N. Kather, N. Halama, and A. Marx, “100,000 histological images
of human colorectal cancer and healthy tissue,” May 2018.

[38] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling,
“Rotation equivariant CNNs for digital pathology,” June 2018.

[39] J. Wei, A. Suriawinata, B. Ren, X. Liu, M. Lisovsky, L. Vaickus,
C. Brown, M. Baker, N. Tomita, L. Torresani, J. Wei, and
S. Hassanpour, “A petri dish for histopathology image analysis,”
International Conference on Artificial Intelligence in Medicine
(AIME), vol. 12721, pp. 11–24, 2021.

[40] S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y. W. Tsang, J. T.
Kwak, and N. Rajpoot, “Hover-net: Simultaneous segmentation and
classification of nuclei in multi-tissue histology images,” Medical
image analysis, vol. 58, p. 101563, 2019.

[41] H. Pinckaers, B. Van Ginneken, and G. Litjens, “Streaming
convolutional neural networks for end-to-end learning with
multi-megapixel images,” IEEE transactions on pattern analysis
and machine intelligence, vol. 44, no. 3, pp. 1581–1590, 2020.

[42] S. Dooper, H. Pinckaers, W. Aswolinskiy, K. Hebeda, S. Jarkman,
J. van der Laak, G. Litjens, B. Consortium, et al., “Gigapixel
end-to-end training using streaming and attention,” Medical Image
Analysis, vol. 88, p. 102881, 2023.

[43] A. Miles, jakirkham, M. Bussonnier, J. Moore, D. P. Orfanos,
J. Bourbeau, A. Fulton, D. Bennett, G. Lee, S. Verma, Z. Patel,
R. Abernathey, D. Stansby, M. R. B. Kristensen, M. Rocklin, A. B.
AWA, J. Hamman, S. Chopra, E. S. de Andrade, M. Durant, V. Schut,
raphael dussin, J. Nunez-Iglesias, C. Barnes, S. Chaudhary, shikharsg,
hailiangzhang, and W. Gikunda, “zarr-developers/zarr-python:
v2.17.1,” Mar. 2024.

[44] J. Moore, C. Allan, S. Besson, J.-M. Burel, E. Diel, D. Gault,
K. Kozlowski, D. Lindner, M. Linkert, T. Manz, et al., “Ome-ngff:
a next-generation file format for expanding bioimaging data-access
strategies,” Nature methods, vol. 18, no. 12, pp. 1496–1498, 2021.

[45] J. Moore, D. Basurto-Lozada, S. Besson, J. Bogovic, J. Bragantini,
E. M. Brown, J.-M. Burel, X. Casas Moreno, G. de Medeiros, E. E.
Diel, et al., “Ome-zarr: a cloud-optimized bioimaging file format with
international community support,” Histochemistry and Cell Biology,
vol. 160, no. 3, pp. 223–251, 2023.

[46] G. HealthAI and G. C. H. teams, “Accelerate ai development for digital
pathology using ez wsi dicomweb python library.”

[47] M. Kang, H. Song, S. Park, D. Yoo, and S. Pereira, “Benchmarking
self-supervised learning on diverse pathology datasets,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3344–3354, 2023.

[48] Q. Garrido, R. Balestriero, L. Najman, and Y. Lecun, “RankMe:
Assessing the downstream performance of pretrained self-supervised
representations by their rank,” in Proceedings of the 40th International
Conference on Machine Learning, vol. 202 of Proceedings of Machine
Learning Research, pp. 10929–10974, PMLR, 23–29 Jul 2023.

[49] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick, and
D. Batra, “Reducing overfitting in deep networks by decorrelating
representations,” in 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[50] W. Zhou, B. Y. Lin, and X. Ren, “Isobn: Fine-tuning bert with isotropic
batch normalization,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, pp. 14621–14629, 2021.

[51] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image
segmentation,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1280–1289, 2022.

[52] Z. Chen, Y. Duan, W. Wang, J. He, T. Lu, J. Dai, and Y. Qiao, “Vision
transformer adapter for dense predictions,” 2022.

[53] X. Chen, H. Fan, R. B. Girshick, and K. He, “Improved baselines with
momentum contrastive learning,” CoRR, vol. abs/2003.04297, 2020.

[54] J. Zhou, C. Wei, H. Wang, W. Shen, C. Xie, A. Yuille, and T. Kong,
“ibot: Image bert pre-training with online tokenizer,” International
Conference on Learning Representations (ICLR), 2022.

[55] A. Ghosh, A. K. Mondal, K. K. Agrawal, and B. Richards,
“Investigating power laws in deep representation learning,” 2022.

[56] R. Wightman, “Pytorch image models.” https://github.com/
rwightman/pytorch-image-models, 2019.

[57] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” tech. rep., University of Toronto, 2009.

[58] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 –
mining discriminative components with random forests,” in European
Conference on Computer Vision, 2014.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

APPENDIX

A. Evaluation setup

For every experiment conducted, we adhered to the setup
described in the evaluation of Virchow [33]. Specifically,
we employed a linear projection classifier with a batch size
of 4,096, utilizing the stochastic gradient descent (SGD)
optimizer with a cosine learning rate schedule ranging from
0.01 to 0 over 12,500 iterations. This was done on top of the
embeddings produced by the frozen encoder. Moreover, we
implemented early stopping, halting training after 5% of the
total training epochs. For further details, refer to Table VI.

B. No significant benefits of DINOv2 over DINO on TCGA

Kang et al [29] have concluded that ”there is no clear
winner” in different SSL methods they have examined,
including MoCo v2 [53], SwAV [23], Barlow Twins [22] and
DINO [24]. However, the ViT models trained with DINO did
seem to be superior in label efficiency (in [29, Table 6]).

Filiot et al [30] have compared iBOT [54] with MoCo
v2 [53] and shown better performance with iBOT. But the
comparison with DINO was not conclusive as the DINO
model was only trained on one specific cohort instead of
on the whole pan-cancer dataset.

DINOv2 [25] has been introduced to incorporate the best
of DINO and iBOT algorithms. In Table 1 of the DINOv2
paper [25] the benefits of different components in the
DINOv2 algorithm in comparison to the iBOT algorithm [54]
were shown. However, no such comparison has been made
between DINO and DINOv2. In comparison to DINO [24],
DINOv2 introduced the following three main components
among other improvements:

• Patch-level objective, and untied head weights between
image- and patch-level objectives

• Sinkhorn-Knopp centering
• KoLeo regularizer
The patch-level objective, in particular, increases the

complexity of loss computation and requirements on GPU
memory by the number of patches per image. It is not clear
a priori whether this increased complexity is justified by,
e.g., greater data efficiency or other benefits, especially on
smaller data and model sizes.

TABLE VI: Hyperparameters for the head used in downstream
evaluation in eva.

Backbone frozen
Hidden layers None
Dropout 0.0
Activation function None
Number of steps 12,500
Base batch size 4,096
Batch size dataset specific
Base learning rate 0.01
Learning rate dataset specific
Early stopping [Max epochs] / 20
Optimizer SGD
Momentum 0.9
Weight Decay 0.0
Nesterov momentum True
LR Schedule Cosine without warmup

TABLE VII: Summary of hyperparameters for training in the
experiment comparing DINO and DINOv2 (Section B).

DINO DINOv2
Batch size 256 256
Learning rate 0.0005 0.0005, 0.001, 0.002
Steps per epoch 5,000 5,000
Max epochs 100 100
iBOT separate head n/a False
Layer wise decay n/a 0.9, 1

In our experiments, we did not observe significant benefits
of models trained by DINOv2 over DINO on TCGA.
As shown in Table I, a larger model (ViT-L14) trained
with DINOv2 only achieved comparable performance in
downstream tasks as the smaller ViT-S16 model trained with
DINO.

Furthermore, we also examined the individual learning
curves with the two algorithms to check whether one learns
faster than the other (detailed setup in Section V). Fig. 4
shows the learning curves of training a ViT-S16 model using
DINOv2 and DINO algorithms on a single A100-80GB
machine, as measured by the linear probing performance on
OOD datasets: BACH and PCam, as well as the off-diagonal
correlation on in-distribution TCGA data. We have observed
that DINOv2 tends to take more time for one training
step than DINO. However, we do not compare by walltime
directly here as this could be affected by many other factors,
such as latency in connecting to cloud storage, amount of
validation during training, etc. The number of training steps,
on the other hand, is comparable, as we use the same batch
size of 256 across different experiments.

No significant difference can be observed in the BACH and
PCam learning curves between the two learning algorithms.
The models trained with DINOv2 reached comparable
performance in comparable number of training steps as the
models trained with DINOv1.

However, we do observe better off-diagonal correlation
with DINOv2 trained models. We hypothesize that the
DINOv2 trained models do tend to generate more
distinguishable embeddings, as demonstrated by the left
panel in Fig. 4 and in Table I and its extended version
Table VIII. The downstream prediction task may however not
necessarily need this level of distinction between samples,
thus the benefits do not necessarily show up in downstream
tasks.

In summary we believe that DINOv2 may be superior
to DINOv1 at the expense of slightly more compute
and resource requirements. The benefits, however, may
not directly translate into downstream task performance,
especially if the tasks are relatively simple.

1) Pretraining setup in comparing DINO vs DINOv2: To
compare DINO with DINOv2 algorithm, a ViT-S16 model
was trained with both training algorithm on one A100-80GB
machine with the following hyperparameters in Table VII:

Note that this is not the same setting as we used for
training the models in Table I, as here in order to evaluate
the effect of DINOv2 we have kept everything else the same

0 50000 100000 150000 200000
steps

0.2

0.4

0.6

0.8

1.0
OD

Co
rr

TCGA

0 50000 100000 150000 200000
steps

40

60

Ac
cu

ra
cy

BACH

0 50000 100000 150000 200000
steps

50

60

70

80

90

Ac
cu

ra
cy

PatchCamelyon

dinov1
dinov2

Fig. 4: Validation performance over the course of training a ViT-S16 model using DINOv2 (orange) and DINO (blue). Left: Off-diagonal
correlation on randomly selected TCGA patches. Center: Linear probing performance on test split of BACH dataset. Right: Linear probing
performance on validation split of PCam dataset. The orange curves for DINOv2 show a range from 4 different runs with different learning
rates, while the blue curves show one single run with DINO using the standard setting, details can be found in Section A.

except for the loss definition and the data transformation.

C. ODCorr correlates with downstream performance

Losses in various SSL algorithms are usually not very
informative, and, in particular, they are usually not indicative
of the performance of the FMs on the downstream tasks.
One way to evaluate the quality of the FMs is to apply it on
some labeled datasets and evaluate the performance on the
downstream tasks. However, the evaluation is constrained,
and/or biased by the labels available. A few metrics have
been proposed to address this, such as RankMe [48] which
estimates the embeddings’ rank or α-ReQ [55] which
estimates the eigenspectrum decay of the representations.

In [48] it is claimed that RankMe can consistently predict
downstream performance for linear and non-linear probing,
however, as RankMe depends on the dimension of the
representations, it is not comparable between models of
different embedding dimensions and should ”only be used
to compare different runs of a given method”. In this study
we use RankMe as one of the metrics to evaluate the different
training strategies.

1) On natural images: To evaluate the effectiveness of
the ODCorr metric in general, we evaluate public available
trained models from timm [56] on a few public datasets
(CIFAR10 and CIFAR100 [57] and Food101 [58]. In
particular we have chosen all pre-trained vit-small models
that are available in the timm library which are 17 pre-trained
models using a wide range of algorithms from supervised
to self-supervised pre-training. Together with the 3 public
datasets on natural images, they provide a diverse testing
ground to evaluate quality of the ODCorr metric.

Following the same protocol as in [48] we train a linear
head on the frozen backbone on the train split of the dataset
and compute the top-1 accuracy and the ODCorr on the test
split.

As can be seen in Fig. 5 for a given dataset, a lower
ODCorr usually corresponds to a higher top-1 accuracy.

2) On whole slide images: We also evaluate the ODCorr
metric on different pathology FMs collected from all the
above experiments (e.g., for data sizes, for initialization
strategies) regardless of how the FM was trained. In
particular, we evaluate the relation between linear probing
performance and ODCorr, between linear probing and

RankMe, as well between ODCorr and RankMe. The linear
probe was trained on the respective train split and the results
reported on the test split. The ODCorr and RankMe was
calculated on the test split only.

In Fig. 6, we first observe in the bottom panel that there
is an inverse relation between RankMe and ODCorr where
lower ODCorr correlates with higher RankMe, as expected.
In addition we also observe that there could be different
relations between different model sizes as RankMe depends
on the model sizes.

Secondly we observe in the top panel also an inverse
relation between the linear probing performance and ODCorr
across datasets, where lower ODCorr correlates with higher
linear probing performance. Interestingly the linear probing
performance plateaus when the ODCorr goes below certain
value, e.g., for CRC the linear probing performance does
not improve anymore once the ODCorr drops below 0.5,
similarly for MHIST although the threshold is higher at
around 0.8. For BACH and TP53 the trend is not stopped
in all our experiments. For PCam there seems to be a peak
at ODCorr at 0.5, and the performance drops with further
decreasing ODCorr. However, this could be due to that the
fact that the ODCorr is calculated on the test split only,
and the linear probing performance is also influenced by the
quality of the embeddings of the train split. The existence
of the plateau highlights a situation where the ODCorr can
provide complementary information to the linear probing
situation: for the points on the plateaued part of the curves,
the linear probing is no longer able to differentiate between
the models as they all show similar performance, in the mean
time the ODCorr can still be used to identify better models

In the middle panel we observe the same plateau
with linear probing vs. RankMe, i.e., after the RankMe
reaches certain number, the linear probing performance stops
growing further, in agreement with what we observe with
ODCorr. On the other hand, as the RankMe is usually higher
with higher embedding dimension, we almost always observe
the ViT-L14 models on the right end of the curve, suggesting
that they are superior. But this is not necessarily the case,
as shown in the upper panel, the ViT-L14 models are not
always the best at distinguishing samples as demonstrated
by the sometimes higher ODCorr values.

In summary, we believe that ODCorr could be a

0.2 0.3 0.4 0.5
ODCorr

60

70

80

Ac
cu

ra
cy

CIFAR-10

0.2 0.3 0.4 0.5
ODCorr

CIFAR-100

0.2 0.3 0.4 0.5
ODCorr

Food101

Fig. 5: Correlation between ODCorr and top-1 accuracy of the representation on CIFAR-10 (left), CIFAR-100 (center) and Food101
(right). An inverse correlation between the ODCorr and top-1 accuracy can be observed.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
ODCorr

0.4

0.6

0.8

Ba
la

nc
ed

 A
cc

ur
ac

y

BACH

0.3 0.4 0.5 0.6 0.7
ODCorr

0.800

0.825

0.850

0.875

0.900

PCam

0.3 0.4 0.5 0.6 0.7 0.8
ODCorr

0.70
0.75
0.80
0.85
0.90
0.95

CRC

0.6 0.7 0.8 0.9
ODCorr

0.5

0.6

0.7

0.8

MHIST

0.2 0.4 0.6 0.8
ODCorr

0.50

0.55

0.60

0.65
TP53

20 40 60 80
RankMe

0.4

0.6

0.8

Ba
la

nc
ed

 A
cc

ur
ac

y

0 100 200 300 400 500
RankMe

0.800

0.825

0.850

0.875

0.900

0 100 200 300 400
RankMe

0.70
0.75
0.80
0.85
0.90
0.95

50 100 150 200 250
RankMe

0.5

0.6

0.7

0.8

0 200 400 600 800
RankMe

0.50

0.55

0.60

0.65

0.4 0.5 0.6 0.7 0.8 0.9 1.0
ODCorr

20

40

60

80

Ra
nk

M
e

vits16
vitl14
vitb16
vits8
vitb8

0.3 0.4 0.5 0.6 0.7
ODCorr

0

100

200

300

400

500

0.3 0.4 0.5 0.6 0.7 0.8
ODCorr

0

100

200

300

400

0.6 0.7 0.8 0.9
ODCorr

50
100
150
200
250

0.2 0.4 0.6 0.8
ODCorr

0

200

400

600

800

Fig. 6: Relation between linear probing performance, ODCorr and RankMe of the representations on pathology datasets: (upper) Balanced
Accuracy vs. ODCorr, (middle) Balanced Accuracy vs. RankMe, (bottom) RankMe vs. ODCorr. Models of different sizes are colored
differently

useful unsupervised metric to provide additional information
about the FMs, especially when the supervised metrics of
downstream tasks do not differ that much anymore. In
addition, it could also be useful in comparing models of
different sizes.

TABLE VIII: Linear probing evaluation of FMs on patch-level downstream datasets. We report averaged balanced accuracy over 5 linear
probing runs and the DICE score on the foreground pixels for the CoNSeP task. Values from Virchow are taken from [33]. All other
results were generated using eva (except CoNSeP that will be soon supported). We compare the performance from a randomly initialized
ViT-S16 model (first line), the generic FMs pre-trained on ImageNet (above the dashed line), and the pathology specific FMs (below the
dashed line)

Model BACH CRC MHIST PCam/val PCam/test CoNSeP
ViT-S16 (rand. weights) 0.410 (±0.009) 0.617 (±0.008) 0.501 (±0.004) 0.753 (±0.002) 0.728 (±0.003) 0.583 (±0.012)
DINO ViT-S16 [24] 0.695 (±0.004) 0.935 (±0.003) 0.831 (±0.002) 0.864 (±0.007) 0.849 (±0.007) 0.611 (±0.018)
DINO ViT-B8 [24] 0.710 (±0.007) 0.939 (±0.001) 0.814 (±0.003) 0.870 (±0.003) 0.856 (±0.004) 0.710 (±0.005)

Lunit [29] 0.801 (±0.005) 0.934 (±0.001) 0.768 (±0.004) 0.889 (±0.002) 0.895 (±0.006) 0.654 (±0.003)
Phikon [30] 0.725 (±0.004) 0.935 (±0.001) 0.777 (±0.005) 0.912 (±0.002) 0.915 (±0.003) 0.666 (±0.004)
DINO ViT-S16 (ours) 0.797 (±0.003) 0.943 (±0.001) 0.828 (±0.003) 0.903 (±0.001) 0.893 (±0.005) 0.649 (±0.013)
DINO ViT-S8 (ours) 0.834 (±0.012) 0.946 (±0.002) 0.832 (±0.006) 0.897 (±0.001) 0.887 (±0.002) 0.724 (±0.007)
DINO ViT-B16 (ours) 0.810 (±0.008) 0.960 (±0.001) 0.826 (±0.003) 0.900 (±0.002) 0.898 (±0.003) 0.658 (±0.011)
DINO ViT-B8 (ours) 0.865 (±0.019) 0.956 (±0.001) 0.809 (±0.021) 0.913 (±0.001) 0.921 (±0.002) 0.741 (±0.002)
DINOv2 ViT-L14 (ours) 0.870 (±0.005) 0.930 (±0.001) 0.809 (±0.001) 0.908 (±0.001) 0.898 (±0.002) 0.679 (±0.007)

Virchow [33] - 0.962 0.830 - 0.933

	INTRODUCTION
	Results and discussion
	Training state-of-the-art FMs with online patching
	Starting from FMs pre-trained on ImageNet yields faster convergence
	Training FMs at multiple magnifications improves robustness
	The effect of training data size
	The number of training WSIs
	The number of distinct patches

	Conclusion
	Methods
	Data
	Online high-throughput loading of patches from WSIs
	Pretraining setup
	Evaluation setup
	Unsupervised metrics
	Evaluation framework: eva

	Supplementary Data
	Acknowledgments
	References
	Appendix
	Evaluation setup
	No significant benefits of DINOv2 over DINO on TCGA
	Pretraining setup in comparing DINO vs DINOv2

	ODCorr correlates with downstream performance
	On natural images
	On whole slide images

