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Local well-posedness for a novel nonlocal model for cell-cell
adhesion via receptor binding

Mabel Lizzy Rajendran* and Anna Zhigun**

Abstract

Local well-posedness is established for a highly nonlocal nonlinear diffusion-adhesion system for
bounded initial values with small support. Macroscopic systems of this kind were previously ob-
tained by the authors through upscaling in [32] and can account for the effect of microscopic receptor
binding dynamics in cell-cell adhesion. The system analysed here couples an integro-PDE featuring
degenerate diffusion of the porous media type and nonlocal adhesion with a novel nonlinear integral
equation. The approach is based on decoupling the system and using Banach’s fixed point theo-
rem to solve each of the two equations individually and subsequently the entire system. The main
challenge of the implementation lies in selecting a suitable framework. One of the key results is the
local well-posedness for the integral equation with a Radon measure as a parameter. The analysis of
this equation utilizes the Kantorovich-Rubinstein norm, marking the first application of this norm in
handling a nonlinear integral equation.
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1 Introduction
In this paper we study the coupling of the Cauchy problem for the integro-PDE
dvu =V - (2uVu — vx(u)(VH *u)) in (0,T] x RY,
u(0,+) = ug in RY,
with the integral equation

~ Gf(u—v)
v= Gt(u—v)+G v

u  in (0,T] x R,
where
(u,v) : [0,T] x RY = {(21,22) eR?: 0 < 20 < 21}

is a pair of unknowns, * denotes convolution in the spatial variable x € R?, d € N, T > 0, and

X € Cg([oa OO))’ X(O) =0,

G*(t,0.9) = #* (e~ D> (1,552 )

(1.3a)

(1.3b)
(1.3¢)

(1.3d)

(1.3¢)
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_ gt
o (s) i (1 d ) for d & [0, 1), 130
0 for d € [1, 0),
K* e C*([0,T] x RY; (0,0)), (1.3g)
at >0, bt > 2. (1.3h)

System (1.1)-(1.2) is a modification of a novel system that the authors recently derived using a multiscale
approach, see (4.35) in [32]. Equation (1.1a) models the evolution of density u = wu(¢,z), t being time
and x position in space, of a cell population dispersing through diffusion and nonlocal cell-cell adhesion.
Advection direction due to adhesion is given by the nonlocal term V H * u, often called "adhesion velocity’
[3]. The additional dependent variable v describes the amount of formed bonds and modulates ’adhesion
sensitivity’. More precisely,

v
= — 0,1
w ue[,]

is the average fraction of bounded receptors. Variables v and v are further connected through a nonlinear
nonlocal equation of a new type, (1.2) that describes the equilibration of the receptor binding dynamics.
We refer to [32] for further details regarding this effect and its modelling leading to (1.2).

Unlike the original model in [32], system (1.1)-(1.2) includes the porous media-type (PM) diffusion

A(u?) (1.4)
rather than the linear myopic diffusion
vVl (Du), D=D(x)eR¥> (1.5)

This modification is mainly motivated by the analytical challenges that are discussed in Section 2 below.
Still, from the modelling perspective, such a term is justifiable and, in fact, often arises in derivations
of models for cell motion due to a combination of short- and long-range interactions between population
members. For example, in [26] a nonlocal equation was derived that corresponds to (1.1a) for constant y
and w. Yet another distinction between (1.1a) and the original equation is that the adhesion sensitivity
coefficient x is no longer an arbitrary function of ¢t and z. Instead, it is assumed to be a function of w.
This choice enables the incorporation of the influence of local density on adhesion sensitivity.

Since 0 < v < u, it is convenient to work with the pair
(u,w) : [0,T] x R — [0,00) x [0,1]

rather than (u, v), thus keeping the codomains of the unknowns independent. Restated for these variables,
equations (1.1)-(1.2) take the form

o =V - (2uVu — wux (u)(VH *u)) in (0,T] x RY, (1.6a)
u(0,+) = ug in RY, (1.6b)
and
w = Y(u,w) in {u > 0}, (1.7)
where
V(u,w) := g7 (11 — wju) (1.8)

G+ (1 —w)u) + G~ (wu)”

We mostly deal with this reformulation of the original system. In this work we make the first step in
its study. Here we prove a local well-posedness result for the special case where u remains compactly
supported in a sufficiently small ball. In particular, the support diameter needs to be smaller than 1,
the radius of the sampling domain in the integral operators G*. The smallness of the support of the
cell density can be interpreted as an initial stage of population dispersal, e.g. when a small tumour just
starts invading the surrounding tissue.

The result is local in the following sense. The solution exists for finite times provided wg is close to
a po such that for some wq the pair (ug,wp) solves (1.7) and satisfies a non-degeneracy condition. It is
unique as long as it stays close to this pair.



The rest of the paper is organised as follows. In Section 2, we present the main challenges encountered
in the analysis of system (1.6)-(1.7) and explain how we handle them. After collecting some notation
and useful facts in Section 3, we fully set up our problem and state the main results in Section 4. The
analysis of the individual equations (1.7) and (1.6) is presented in Sections 5 and 7, respectively. In the
intermediate Section 6 we study an auxiliary parabolic PDE including PM diffusion and a fixed advection
direction. The results for this equation feed into the analysis in Section 7. The final Section § is devoted
to the proof of a well-posedness result for the whole system (1.6)-(1.7).

2 Analytical challenges of (1.6)-(1.7) and their handling

System (1.6)-(1.7) combines two equations of a very different nature. In this situation, a standard
approach, which we also adopt in this paper, is first to decouple the system and establish solvability of
the two equations separately, assuming that w and u are fixed in (1.6) and (1.7), respectively, and then
to obtain a joint solution by means of some fixed-point argument. The non-standard nonlinear integral
equation (1.7) puts multiple obstacles in the way.

(IE1) As with every new equation, it would be desirable to have some explicit solutions of (1.7) at
hand, at least for some simple time-independent u. Not only would it help to understand what to
expect from its solutions in general, but it could also allow to prove existence of other solutions
that are close to already known ones. This is even more important in the case of system (1.6)-
(1.7) where u solves an initial value problem, so that one needs a wy corresponding to a given
initial value wug, to start with. Yet already for constant functions u it is not evident how, if at
all, a matching w could be determined. If, however, we allow v and w to be singular measures,
accordingly reinterpreting the involved integral operators G* as integrals of kernels G against such
a measure u (see Subsection 5.1), then the equation can be resolved, e.g. in the special case of u a
point mass (see Example 5.12).

(IE2) Based on the observations made in the previous item, one is led to try to establish solvability of
(1.7) for such w that are close to a point mass but are functions rather than singular measures. This
would be desirable for its own sake but also because equation (1.6a) includes nonlinear functions of
u, hence does not allow for measure-valued solutions. As is well-known, singular measures cannot
be approximated by Lebesgue integrable functions if the distance between them is measured by
the metric induced by the variation norm, with which the whole space of signed Radon measures
is equipped. To circumvent this, weaker norms restricted to suitable subspaces are used instead.
A popular choice is the Kantorovich-Rubinstein (KR) norm [21] (see Subsection 3.2) that we also
utilise in this work. The KR metric generated by the KR norm is a special case of the Wasserstein
metric. This metric has proven to be a valuable tool for measuring distances between probability
measures in various contexts, including optimal transportation problems [2, 29], analysis of evolution
PDEs with a gradient flow structure [2], upscaling of mean field equations [14], and more recently in
statistical machine learning [24]. To the best of our knowledge, the KR metric has so far not been
used in analysis of nonlinear integral equations. As it turns out, it offers a convenient framework for
such equations as (1.7). In particular, balls in this metric centred at a point mass contain bounded
compactly supported functions of any shape (see Erample 8.8). This provides an ample source of
suitable initial values wug.

(IE3) The trade-off associated with using the KR norm in the context of the linear integral operators
such as G* is that it requires their kernels to be sufficiently smooth in order to be able to derive
the bounds we need. In the case of G~ we have to avoid integration in the neighbourhoods of
its singularities. For each x, the corresponding singularity set is a circle of radius 1 centred at x.
To maintain a positive distance from these sets, we restrict our study of (1.7) to measures u with
support diameter smaller than 1.

(IE4) The nonlinear operator Y on the right-hand side of (1.7) is of the form

a

VS ar

(2.1)
where the applications of the integral operators G* and G~ that are inserted into a and b, respec-
tively, are both zero at points that are a distance farther than 1 from the support of u. The function
on the right-hand side of (2.1) cannot be extended to (0,0) in a continuous fashion. Hence, the
denominator of ) is a potential source of singularities of this operator. Since we aim at solving



(IE5)

(1.7) for wu(t,-), t € [0,T] for some T > 0, we strengthen the condition from the previous item,
requiring the supports of all members of this family to be confined to a single ball of diameter less
than 1. Then, for each ¢, (1.7) only needs to be solved in this ball, and there ) has good properties
(see Subsection 5.2).

When solving an equation with a parameter, some version of the implicit mapping theorem is often
the method of choice. For instance, the Banach space adaptation, [31, Chapter 4, §4.7, Theorem
4.B], provides solvability in a small ball in the parameter space centred at a parameter value for
which the existence of a solution is known. Having chosen a setting for (1.7) based on the discussion
in (IE1)-(IE4), we cannot apply that theorem directly because the set of admissible parameters
does not contain a ball. Still, since it is convex, it is possible to construct a similar argument
and thereby derive some useful estimates that ensure a locally stable dependence of w upon u (see
Theorem 4.5 and its proof given in Subsection 5.3).

Having decided on a suitable framework for (1.7), we turn to (1.6).

(PDE1)

(PDE2)

As already mentioned in the Introduction, the original derivation in [32] yielded a diffusion-advection
equation with the linear myopic diffusion (1.5). The few available works on analysis of such equations
specifically focused on local taxis [10, 15, 30]. This type of advection occurs along the gradient of
an external stimulus and not as a result of nonlocal self-adhesion.

Assume that D is a smooth positive semi-definite matrix. If it is also uniformly positive definite, then
(1.5) does not pose considerable additional analytical difficulties compared to the basic constant
diffusion case covered in [16] for diffusion-adhesion models. However, a nondegenerate diffusion,
whether myopic or not, immediately destroys compactness of support, hence is unsuitable for the
present setting, see (IE/). To evade this unwanted effect, diffusion has to be degenerate. In
this work, we selected the PM diffusion (1.4). This choice is primarily motivated by the need to
guarantee that for small times the support of u is confined to a small ball, as advocated in (1E4).
At the same time, it allows us to benefit from a range of analytical tools already available for this
prototypical degenerate diffusion [28], which is much better understood than a myopic one.

On the whole, perhaps somewhat paradoxically, degeneracy enables the analysis of (1.6)-(1.7).

Analysis of equations that combine quasilinear degenerate diffusion such as (1.4) and nonlocal
advection with velocity

VH*u=V(H*u),
corresponding to

x =1,
w =1,

has attracted much attention. For smooth kernels H, well-posedness, which is what is relevant for
us here, initially in entropy and then also in weak senses was established in [7] and [4], respectively.
Subsequent works have primarily focused on kernels singular only at the origin where they tend
to infinity, see [8] and references therein. The situation is different for the self-adhesion kernel
(1.3b). Its gradient is bounded and supported in the unit ball centred at the origin, yet generally
has discontinuities in the centre and on the boundary of the ball. As a result, AH is, in most cases,
a singular Radon measure with singular parts supported on the ball’s boundary and, in dimension
one, also in the origin (see Lemma 7.1). Still, because this measure is finite, the standardly required
estimates in LP norms for its convolution with u can be obtained (see in the proof of Lemma 7.2).

Two recent studies [9, 13] incorporated a non-constant coefficient function x. In a one-dimensional
setting, weak solutions were obtained there as limits of first-order deterministic many-particle sys-
tems. In these works, x was assumed to be nonnegative and decreasing, as well as satisfy certain
other conditions. As to the kernel, it was not mandated to be compactly supported but allowed to
have a Lipschitz singularity solely at the origin [9].

Uunlike [9, 13], we impose (1.3a), thus ensuring that x is subordinate to the diffusion coefficient at
u = 0. This assumption is sufficient for uniqueness of weak solutions u to (1.6) for fixed w and
is convenient for several other steps in our analysis that includes well-posedness as well as other
properties such as support control and stable dependence on w (see Subsection 7.2).

We emphasise that our objective here is not to have the least restrictive assumptions on the parameters
in (1.6a). We have therefore chosen conditions that ensure solvability of the entire system (1.6)-(1.7),
while at the same time being reasonable from the modelling perspective.



3 Preliminaries

3.1 Miscellaneous notation

For convenience, in the few cases of a numerical fraction that has a finite numerator a and a potentially
zero denominator the interpretation is
a .
0= 00.
The spacial domains that we mostly consider are either the whole space R%, d € N, or the ball B, in
R? that is centred at the origin and has radius p > 0, its boundary being the sphere S,. More generally,
B,(x) stands for the p-ball centred at z. The (d—1)-dimensional unit ball centred at the origin is denoted
by B’li_l.
For T > 0, we define the time-space cylinder Er := (0,7) x R%.

Depending on the context, |- | can stand for: the absolute value of a number, the Euclidean norm of a
vector in R?, the d-dimensional Lebesgue measure of a subset in R?, and the total variation of a Radon
measure.

For any set A, we denote by 1,4 its characteristic function. Another standard function we use is

Sign(r) = { G foraze R*\{0}, ke {l,d).

0 forx=0,

For a real variable z, e.g. such as t or x;, we write 0, for the usual partial derivative with respect to
z. Further, V, V-, and A stand for the spatial gradient, divergence, and Laplace operators, respectively.

When referring to the Gateaux partial differentials in an infinite-dimensional setting, we always mean
the right-side Gateaux partial semi-differentials. For example, an operator [ = I(u, w) in a Banach space
possesses the Gateaux partial differential at (uo, wo) with respect to w in direction h if the following limit
exists:

o1
Owl (o, wo)h = Sl_l)%lJrg (110, wo + sh) — (10, wp)) -

The same notation is used for the Fréchet partial derivatives. Which of the two notations is used depends
on the context and is explicitly mentioned.

For the (continuous) dual of a normed space X we use the notation X*. Symbols — and LA represent
the weak and weak-* convergence, respectively. By < -,- > we denote the duality paring.

For X, Y, and Z normed spaces, we write L(X; Z) for the space of bounded linear maps from X into
Z and B(X x Y; Z) for the space of bounded bilinear maps from X x Y — Z.

If X,)Y c Z, we set

|- Ixay o= max{]- x| - [v}-

Let k € Ny U {0} and E < RY for some N € N. As usual, C¥(E) (C(E) := C°(E)) is the notation
for the space of k times continuously differentiable real-valued functions in £. The subspaces of bounded
and compactly supported functions in this class are denoted by C¥(E) and C§(E), respectively. When
dealing with vector- or Banach-valued function, but, also, when we want to specify the codomain that is
a particular subset of R, we use, e.g. the notation C*(E; F) for a C*-mapping from E into F. For F a
Banach space, Cy, (E; F') denotes the space of weakly continuous maps between these sets.

We use standard Lebesgue spaces LP(2), Sobolev spaces W*P(Q) and H*(Q2) := W*2(Q) for various
p € [1,00] and s € Z, as well as Bochner spaces of functions taking values in such spaces. In particular,
we denote

LPY(Er) := LP(0,T; LYRY)),  LP(Er):= LPP(Er)  for p,qe [1,0].

We assume the reader to be familiar with the standard properties of the above mentioned functional
spaces. We also need to deal with subsets of the space of finite measures. The related notation and
required facts are provided in Subsection 3.2 below.

Throughout the paper, C;, T;, and p; are either positive constants or positive-valued mappings,
whereas U; and W; are sets or families of sets. In many instances we do not track the dependence of these
entities on some or all of parameters d, x, F, aT, b¥, KT, ug, as well as wg, an initial state of w. When
a change occurs, e.g. because we stop tracking certain dependences, a remark on notation is provided at
the beginning of the corresponding section/subsection.



3.2 Radon measures and the Kantorovich-Rubinstein norm

Let Q < R? be a bounded domain. We denote by M(Q) (M*(Q)) the space of finite signed (positive)
Radon measures in 2 and by || the total variation of u € M(Q). As is well-known, (M(),|-]) is a non-
separable Banach space. In particular, singular measures, such as point masses, cannot be obtained as
limits of Lebesgue integrable functions in this norm. This issue is relevant in our case, see the discussion
in Section 2(IE2). To counteract it, we also use the Kantorovich-Rubinstein (KR) norm associated with
the Euclidean metric on R?. Since § is compact, this norm is well-defined on the subspace

Mkr(Q) = {pe M(Q): p) =0}

By the KR duality theorem [21, Chapter VIII, §4.5, Theorem 1], this norm is given by

|1l M @) 7= SUP {frwdu(y) D e WhP(Q) and |Vl L) < 1} for all e Mgr(Q). (3.1)
)

It is strictly weaker than the total variation and satisfies

diam(Q) —
Ity < ) for all e Micr(@). (3:2)

This norm gives rise to the Wasserstein 1-distance on the set of probability measures [29] or, more
generally, on the set of positive measures that have the same total variation. Moreover, when restricted
to an arbitrary closed ball in the variational norm, the convergence with respect to the Wasserstein metric
is equivalent to the weak-# convergence [21, Chapter VIII, §4.6, Theorem 3|. As a result, this metric turns
such a ball into a metric space which is compact and, hence, separable. We refer, e.g. to [21, Chapter
VIII, §4] for further details.

For w :  — R Borel and bounded and p € M*(Q) we use the standard definition for their product:
wp(B) = J wdp for any Borel set B < Q.
B
It is well-known that wy € M(Q), and for any bounded Borel f :  — R it holds that

| dtwn) = | fwan
Q Q

The notation pL- A means the restriction of a measure p to a set A.

By £ and H?! we denote the d-dimensional Lebesgue and the (d — 1)-dimensional Hausdorff mea-
sures, respectively. We identify v and uL? for v e L'.

Unless stated otherwise, a.e. means ’almost everywhere’ with respect to the Lebesgue measure with
dimension that is standardly adopted for a set in question.

4 Problem setting and main results

We define solutions to individual equations (1.1), (1.2), (1.6), and (1.7) and the corresponding systems
as follows.

Definition 4.1 (Solutions to (1.1) and (1.6)). Let T > 0, (1.3a)—(1.3¢c), and
0 < wup e L°(RY) n LY(RY) (4.1)
be satisfied.
(1) We call a pair of functions (u,v) : [0,T] x RY — [0,0) x [0,0) a solution to (1.1) in [0,T] x RY if:
(i) we Cy ([0, T]); L(R?Y) A LY(R?)) n L*(0, T; L (R%));
(ii) u? e L2 (0,T; H'(RY));
(iii) dyue L2 (0,T; H-Y(RY)), du e L® (0, T; (W2» (Rd))’) for all pe [1,0];
(iv) ve L®(0,T; L*(R%));



(v) (u,v) satisfies (1.1) in a weak,
(O, ) = ff (Vu? —vx(u)(VH *u)) - Vo dz a.e. in (0,T) for all p € H'(R?),
Rd

and a very weak,

o0
u?Ap +vx(u)(VH *u) - Vodr ae. in (0,T) for all pe U W2P(R?),
d

p=1

(Oru, ) = J-

R
senses;
(vi) u(0,-) = ug in L*(R?) n LY(RY).

(2) We call a pair of functions (u,w) : [0,T] x R — [0,00) x [0,90) a solution to (1.6) in [0,T] x RY
if (u,wu) is a solution to (1.1) in [0,T] x R in the above sense.

Definition 4.2 (Time-independent solutions to (1.2) and (1.7)). Let assumptions (1.3e)—(1.3h) be sat-
isfied.

(1) We call a pair of measures (u,v) a solution to (1.2) if:

(i) pe M*(RT);
(i) G~y < oo;
(iii) v e M*(R?);
(iv) v < p in RY;
(v) (w,v) satisfies (1.2) in the following sense:
gr(p—v)
v =
G-+ GV

where 0/0 in the fraction is interpreted as 1;

poin MT(RY), (4.3)

(2) We call a pair of a measure and a function (pu,w) a solution to (1.7) if:
(i) w: R? — [0,1] is Borel;
(i) (w,wp) is a solution to (1.2) in the above sense.

Remark 4.3. (1) In consequence of Lemma 5.8 below, the fraction on the right-hand side of (4.3) is
well-defined and Borel. Therefore, Definition 4.2 makes sense.

(2) If (u, w) has the regularity required by Definition 4.2 and v = wy, then (4.3) is obviously equivalent
to

w = Y(p,w) u— a.e.
Thus, through (4.3) we have a rigorous interpretation of (1.7).

Definition 4.4 (Solutions to (1.1)-(1.2) and (1.6)-(1.7)). Let T > 0 and (1.3a)—(1.3¢c), (1.3e¢)—(1.3h), and

(4.1) be satisfied. We call a pair of functions (u,v) ((u,w)) a solution to system (1.1)-(1.2) ((1.6)-(1.7))
in [0,T] x R% if:

(1) (u,v) ((u,w)) solves (1.1) ((1.6)) in [0,T] x R? in the sense of Definition 4.1;
(2) for allt e [0,T], (u(t,-),v(t,-)) ((u(t,-),w(t,-))) solves (1.1) ((1.6)) in the sense of Definition 4.2.

The main results of this paper are the following Theorems on local well-posedness of equation (1.7)
and system (1.6)-(1.7).

Theorem 4.5 (Local well-posedness of (1.7)). Let
1
pE (0, 5)

po € (MT(B,)\{0}, (4.42)

and (po, wo) satisfy



wo € WH(B,; (0, 1)), (4.4b)
wo = Y(po, wo) in B, (4.4c)
X = id — 04 (1o, wo) is invertible in L(W'*(B,)), (4.4d)

where the partial derivative 0, is taken in the Fréchet sense. Define sets
Uy i={ue M*() ul = ol and |~ pol iy < € 1 (4.50)
Wi ;={w e WY (B [0,1]): w — wollwroe(s,) < 02}. (4.5b)

Then, there exist constants Cq,Ca,C3 > 0 that depend only on the parameters from (1.3e)—(1.3h) as well
as

lwol, py |Vwollpe(s,), minwy, maxwo, |X
B, B,

oo,y

such that for all € Uy there exists a unique w € Wy for which

w=Ypw) inB, (4.6)
and the solution map

Wi : Uy — Wi n C%(B,; (0,1)), [ w, (4.7)
1s well-defined and Lipschitz continuous in the following sense:

IW1(p1) = Wilp2)lwres,) < Csllia — p2l e @y Jor all pa, pz € Un. (4.8)

Remark 4.6. The Fréchet partial differentiability of ) with respect to w in the case of a spatial domain
being a ball of radius smaller then 1/2 is established in Lemma 5.10.

Remark 4.7. By Lemma 5.8, every solution to (4.6) satisfies w € C2(B,; (0,1)). Hence, the requirement
we Wi nC?(B,;(0,1)) in (4.7) only restricts the distance to wp.

The proof of Theorem 4.5 is given in Subsection 5.3.

Theorem 4.8 (Local well-posedness of (1.6)-(1.7)). Let d € N, (1.3a)~(1.3¢c) and (1.3e)~(1.3h) hold, and
be given: numbers m, mq, p > 0 such that

p<1rnin{1 d+?2 }, (4.9)

2’ mHX/HLOO((O,oo))HFHLOO(O,I)

and a pair (po,wo) that satisfies assumption (4.4) of Theorem 4.5 and

ko] = m.

Define

Us :={0 <wupe LP(RY) :  supp(ug) B,

b
ol oo (ray < Mo,
b

HUOHLl(Rd =m
)

01}.

Then, there exists a number Ty that depends only on the parameters from (1.3) as well as

N~

lwo = ol pmy (B <

m, Mo, p, ||[Vwolre(s,), minwy, maxw, HX* (4.10)

1
5 o PUSERE

such that for any ug € Uy there exists a pair of functions (u,w) that solves (1.6)-(1.7) in [0,T1] x R¢ in
the sense of Definition 4.4 and satisfies

supp(u(t,-)) < B, for all t € [0,T1], (4.11a)

Hu — u0|‘c([O,T1],MKR(Fp)) < Cl, (411b)



and

w(t,) € C*(B,; (0,1)) for all t € [0,T1], (4.12a)
we C([0,T1]; WH*(R?)), (4.12b)
H’LU - wOHC([O,Tl];Wl’OO(BP)) < (. (4.12C)

In the above, constants Cy and Cs are from Theorem 4.5.
The solution is locally unique in the following sense: if for some T € (0,T1] another solution (U, D)
in [0,T] x R satisfies

@ € C([0,T]; WHP(RY)), (4.13a)

H’L/l} — w0\|c([07T];W1,oo(Bp)) < Oy, (413b)
then for all t € [0,T] 4t holds that

u(t, ) = u(t,-) a.e. in RY,

w(t,) =w(t,-) in B,,.

Finally, a Lipschitz property holds: for every ug, g € Us the corresponding solutions (u,w) and (4, W)
in [0,T1] x RY satisfy

max [u =g,y + [w = @ oo mypwi(s,)) < Calluo = ol iy
(By) (10,7 ;W (B,)) (

, 414
[0.7] ) (4.14)

L
4

where constant Cy only depends on parameters from (1.3) and (4.10).

This Theorem is proved in Section 8.
Solutions to (1.2) and (1.1)-(1.2) can be recovered from the corresponding solutions to (1.7) and
(1.6)-(1.7), respectively. Moreover, there are no other solutions, as the next two theorems imply.

Theorem 4.9 (Time-independent solutions to (1.2) vs. (1.7)). If (u,v) is a time-independent solution
to (1.2), then (,u, g—:) is a time-independent solution to (1.7).

Theorem 4.10 (Solutions to (1.1)-(1.2) vs. (1.6)-(1.7)). If (u,v) is a solution to (1.1)-(1.2) in [0, T] xR,
then (u,w) is a solution to (1.6)-(1.7) for some w that for all t € [0,T] satisfies

w(t,-) is Borel,

w(t,) = %(t,-) a.e. in {u>0}.

These Theorems are proved in Subsection 5.3 and Section 8, respectively.

5 Well-posedness of (1.7) for fixed u(=: u)

The main goal of this Section is to prove Theorem 4.5, a result on local well-posedness of equation (4.6)
for given p from a suitable subset of a space of measures and sufficiently close to some pg for which a
solution is assumed to exist. Throughout the Section we assume (1.3d)—(1.3h) to hold and also that all
involved functions/measures are time-independent. To highlight the fact that the first argument of ) can
be a measure, we denote it by u rather than wu.

We begin by properly defining operator Y and studying its properties, first in general domains in
Subsection 5.1 and then in a small ball in Subsection 5.2. Some of the presented results are not needed
in Subsection 5.3, where we prove Theorem 4.5. Still, they provide useful insights into the nature of this
new operator.

5.1 Operator )Y

Throughout this Subsection we assume

Q c R% a domain.



Here we study operator ) from (1.8) for measures in Q as its first argument. We start with operators
GE. Set

GEu(z) = ﬁGi(w,y) du(y),

whenever the integral exists, and

Ma(Q) == {pe M(@Q): G |u| <o in O}, (5.1a)
MES) == Ma(Q) n MT(Q). (5.1b)
Our first Lemma ensures that set Mg (Q) and operators G applied to its elements are well-defined.
Lemma 5.1. (1) Let pe M*(Q). Then GEp: Q — [0,00] are well-defined Borel functions.
(2) Ma(Q) and ME(Q) are well-defined linear subspace and conver subset, respectively, of M(S).
(3) Let pe Mg(Q). Then Gt :Q — [0,0) are well-defined Borel functions.
Proof. Being superpositions of continuous functions and the characteristic function of an interval,
G*:QxQ—[0,0)
are Borel. By Fubini’s theorem,
G* 1 T — [0, 0]

are well-defined Borel functions for every u e M(Q).
Further, due to continuity of Kt and ¢* and compactness of the support of the latter, G*(x,-) is
bounded for all z € . Hence, it is integrable against every p e M(Q).
The above observations combined readily imply that (1) and (3) hold and sets (5.1) are well-defined.
Finally, it is obvious that M¢(Q) is a linear subspace of M(Q) and MS(Q) is its convex subset. [

Next, we define operator ) for measures. Let

Y :[0,00) x [0,00) = [0,1], ¥(a,b) := { s for (a,0) # (0,0),

1 for (a,b) = (0,0). (5:2)

The following Lemma can be easily verified by induction.

Lemma 5.2. Let ) be as defined in (5.2). Then ¢ € C*(([0,0) % [0,0))\{(0,0)}), and for all0 < k1 < k
it holds that

Cry k10 + Cry 1,20
(a + D)L

Oa i1 (@, b) = for all (a,b) € ([0,90) x [0,20))\{(0,0)}

and
|6§k1bk,k1w(a, b)| < Cila+ b)_k for all (a,b) € ([0,00) x [0,00))\{(0,0)} (5.3)
for some constants Ci, k.1, Ck, k2 € R and C > 0.

For yi e ME(2) and a Borel function w : Q@ — [0, 1], we set
V(p,w) = (G (1 = w)p), G~ (wp)).
The subsequent Lemma infers that ) is well-defined and measurable.
Lemma 5.3. Let e ME(Q), ve M*(Q), and v < p. Then
(G (n—v),G7v): Q—[0,1]
is a well-defined Borel function.

Proof. Due to the assumptions on p and v, we have u — v, v € Mg(ﬁ), so Lemma 5.1 applies and yields
that Gt (u — v),G"v : Q — [0,0) are well-defined Borel functions. Further, ¢ is continuous at every
point of its domain of definition apart from (0,0). Hence it is Borel.

Altogether, we have (G (u — v),G7v) : Q@ — [0,1] is well-defined and, as a composition of Borel

functions, it is also Borel. O
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To study directional derivatives of ), we introduce sets of ’admissible’ directions

Hy o= {h, € Mgr(Q): w+ sohy, € MT(Q)  for some s > 0} for pe M*(Q),
Hyi={h:Q—[-1,1] Borel: 0<w+soh<1inQ for some so > 0} for w :  — [0, 1] Borel.

Our next Lemma establishes Gateaux differentiability at a spatial point z.

Lemma 5.4. Assume pio € ME(Q), wo : © — [0,1] Borel, and x € RY, such that
po(2 A By(x)) > 0. (5.4)
Then,

G (L —wo)po)(x) + G~ (wopo) (x) > 0, (5.5)

and functional
(ks w) = Y(p, w)(x)

possesses Gateauz partial differentials of any order with respect to p and w at (0, wo) along the directions
from Huy 0 Ma(Q) and Ha,, respectively. In particular, we have the following formulas:

(OwY (o, wo) (@) =DY(G T ((1 — wo)ho), G~ (wopo)) - (=G (hapto), G (h1po))(2), (5.6a)
(0uY (o, wo) () e =DY(GT (1 — wo)po), G~ (wopo)) - (GF((1 = wo)hy,), G (wohy,)) (),  (5.6b)

and

(0w (0w (10, wo) () )1 Yha =D*Y(G* (1 — wo)pt0), G~ (wopo)) (=G (hapa0), G~ (hapo))”

(=G (hapo), G~ (hapo))" (), (5.6¢)
(0u (0w (10, wo) ()1 )hyuy =D*P(G* (1 — wo)pr0), G~ (wopo)) (=G (hapao), G~ (hapo))”

(G (1 = wo)hyy ), G (wohyy )" (@)

+ DY(GF((1 = wo)po), G~ (wopo)) - (=G (hihyg), G~ (hahy,))(x) (5.6d)

for all hyy € Hyuy 0 Ma(Q) and hy, by € Hay, -

Proof. Let hy, € Huy 0 M(Q2) and let sg > 0 be a number such that uo + sohy, € ME(Q). Since
0 € H,, and ME(Q) is convex, we have po + shy,, € ME(Q) for all s € [0, s0]. Similarly, for h € Ha,
we obtain 0 < wg + sh < 1 for all s € [0, so]. Therefore, taking the limits necessary to compute partial
directional derivatives along such directions is possible.

Next, we observe that (5.4) implies (5.5). This is because, firstly, ¥ and K+ are strictly positive in
Bi(z) (compare (1.3f) and (1.3g)), so that the kernels G*(z, ) are strictly positive there, and secondly,
1 —wo,wp = 0, and (1 —wp)po + wopo = po. Consequently, Gt ((1 —wo)uo)(x) = 0 and G~ (wopo)(z) =0
cannot be zero at the same time.

Thus, 1 is infinitely many times differentiable at (G ((1 — wo)po), G~ (wopo))(z). This, the fact that
(p, w) — GE(wp) is bilinear, and the chain rule together imply the infinite directional differentiability of
(u, w) — YV(p, w)(x) at (uo,wp) and formulas (5.6).

O

5.2 Properties of Y for (2 a small ball

In this Subsection we assume

1
Q=2B, for some p € (0, 5) . (5.7)
Notation 5.5. To simplify the notation, we do not explicitly mention the dependence on p for constants,
mappings, and sets that we introduce in this and subsequent Subsections.

The properties of operator ) that we derive below for this special case allow to establish local existence
of (4.6) in the subsequent Subsection 5.3.

As previously observed in Section 2(IE3), the smallness of the diameter of domain Q allows to avoid
singularities in G~, as well as zeros in the denominator of ), ensuring, as we see below in Lemma 5.7
that property (1.3e) holds in the whole of Q. We formulate a Lemma that addresses the properties of
G7 in this case.
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Lemma 5.6. Let p € (0,1/2) hold. Then,

G* € C*(B, x B,), (5.8a)
1G* |5y < O (5.8b)
Cs :=min {G*(z,y) : (z,y) € B, x B,} > 0. (5.8¢)
Proof. Since p € (0,1/2), we have with (1.3e), (1.3f), and (1.3h) that
lt —yl<1  forall (x,y) € B, x B,,. (5.9)
Combined with assumptions 0 < K% € C? and 0 < ¢* € C?[0,1), (5.9) yields properties (5.8).
O
Our next Lemma collects several consequences of (5.7) for operators G* and ).
Lemma 5.7. Let p e (0,1/2). Then:
(1) M(B,) = Mc(B,):
(2) if pe M*(B,), then
B, Bi() =lul i, (5.10)
and for all w : B, — [0,1] Borel
GH(1— wy) + G~ (uwp) >Crlul i By, (5.11)
(3) G* € L(M(B,); C*(B,)) and
|\gi|\L(M(E);CZ(E)) < Cs; (5.12)
(4) G(()()) € BWY*(B,) x Mkr(B,); C*(B,)) and
TR (10| A ——T (513

(5) ¥+ (M (B0} x {w : B, — [0,1] Borel) — C(By: [0, 1]).
Proof. Thanks to (5.8a), function G~ (z,-) is continuous on B,. Hence, G~ |u| < oo for any u e M(B,),

so (1) holds. If ;€ M™T(B,), then assumption p € (0,1/2) implies that
(1) I o) ption p € (0, p
B, < Bi(x) for all z € B,

yielding (5.10). As to (5.11), it obviously follows with (1.3d), (5.10), and (5.8¢).

Next, we observe each u € M(B_p) produces functions GTp that inherit the smoothness that G*
has and that differentiation of Gy is interchangeable with integration in the definitions of G*. This
is a direct consequence of [23, Chapter 6, Theorems 6.27-6.28] applied to each coordinate z;, separately.
In particular, (5.8a) implies that G*u € C2?(B,). Further, since hy € M(B,) for h € Wh*(B,) and
p € M(B,), we have that G*(hu) € C%(B,). Also, since G* is linear, G¥((-)(:)) is bilinear. Hence
the linear and bilinear operators in (3) and (4) are well-defined between the required spaces. Checking
(5.12) and thus boundedness of G+ is straightforward, given that integration and differentiation can be
interchanged. Combining (3.1) and (5.8b) with the product rule, we can estimate as follows:

max |GF (hy) (z)] <max [V, (GF (2, )0) | (oo (8,07 11 a5
r€B, zeB

P
<IGH | or @iy Il w3, 16l pmpen (3
<Cs|hfwre ) 1l pp ()

and

mal|vzgi (h,u)(:r) Smax "Vy(sz+(:C, ')h)“(Lx(Bp))n HMHMKR(E)

reB, reB,

<IGH c2 @3 Il wre (5, 1wty B
<Cs|hlw.=(s,) H/’[/HMKR(E)

for all h e WL*(B,) and p € Mgr(B,), yielding (5.13).

By (3), GT (1 —w)p), G~ (wu) € C*(B,) for up€ M*(B,) and w : B, — [0,1] Borel. Thanks to (5.11)
the sum of these functions is bounded below by a positive number if p # 0. Together with the chain rule
and the smoothness of ¥ away from (0, 0), this implies (5) and completes the proof. O
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Our next Lemma shows that under the assumption p € (0,1/2) any solution to (4.6) cannot attain
values 0 and 1 anywhere in B,.

Lemma 5.8. Let p € (0,1/2). Let a pair of € (M*(B,))\{0} and a Borel w: B, — [0,1] be a solution
to (4.6) at every point x € B,. Then,

2B

we C*(B,),

0 < min < maxw < 1.
B, B,

Proof. By Lemma 5.7(5), w = Y(u, w) € 02( ). In particular, w is continuous, so the required inequal-
ities are satisfied provided w € (0, 1) in B,. Since

{» =0} = {(a,b) € [0,00) x [0,00) : a =0},

we have

{w =0} ={Y(p, w) = 0}
={G7((1 —w)p) = 0}. (5.14)

Since (1 — w)u € M*(B,) and kernel G is strictly positive in B, x B, (see Lemma 5.6), (5.14) yields
that either {w = 0} is empty or w = 0 in B, and (1 —w)u = 0. The latter combination is impossible
since p # 0, so w is nowhere zero. In the very same way one verifies that w is nowhere equal one.

O

Next, we combine Lemmas 5.4 and 5.7 in order to obtain the following result on Gateaux differentia-
bility at every spatial point z.

Lemma 5.9. Let p € (0,1/2). Let g € (M*(B,))\{0} and wy € WL (B,;(0,1)). Then, functional
(u,w) — Y(u,w)(x) possesses Gateaux partial differentials of any order with respect to p and w at
(10, wo) along the directions from H,, and WH*(B,), respectively, for every x € B_p. As functions of x,
these Gateaux differentials belong to C?(B,) and formulas (5.6) are satisfied together with inequalities

(@I (10, wo) () Pallwre(5,) <Colhi|r=(s,); (5.15a)

1(0uY (105 w0) (D) Pyso w2 8,y <Colpol ™ (1 + IVwoll oo (,)) [Fpuo I Mocr(By)» (5.15b)
(0w (I (05 o) (1)) 1) halwre(m,) <Colhi|L=(s,)Ih2lLe(B,); (5.15¢)
[0 (0w (10, w0) (-))ha ) hyuo e (,) <Colpol ™ (1 + [Vawo e (s,)) 1B lwroe (8,) 1o | at e (55 -

(5.15d)
Proof. Since wg € WH*(B,; (0,1)) = C(B,;(0,1)), we have

0 < minwy < maxwy < 1,
B, B,

hence Hy,, = WH*(B,). Further, Lemma 5.7(1) and (2) yield that yo € ME(B,), (5.10) holds, and
Hyuy N Mg(B_p) = H,,.- These observations allow us to apply Lemma 5.4, yielding existence of the
Gateaux partial differentials of any order for functional (u, w) — Y(u, w)(x) and bounds (5.6) along the
directions from H,,, x W1 (B,) for all x € B,. Furthermore, the resulting differentials are two times
continuously differentiable functions of x due to the chain rule, the smoothness of ¢ away from (0,0),
and the regularity provided by Lemma 5.7(3).

It remains to establish estimates (5.15). First, using (5.12) and (5.13) and the assumptions on wy, 1o,

and h;, we find that

IG* (1 = wo) o) lwr.=(s,) <Cs|1 — wol Lo, |10l

<Cs]pol, (5.16a)
IG™ (wopo) lwr.=(B,)y <CsllwollL(s,)lHol

<Cs]pol, (5.16b)
1G* (hipo) e s,y <Cs il =(s,) 1ol i€ {l,2}, (5.16¢)

1G7((1 = wo) o) lwre(8,) <Csl1 = wollwo(8,) 1o | a5
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<Cs (1 + [Vwol ze(s,)) 140 | pye (55 (5.16d)
167 (wohuo)llwre=(B,) <Csllwollwre(s,) || pmy (7 (5.16e)

1G* (hahyo ) lwre(s,) <Cs|halwres,) 1A, | Mucr(B,): (5.16f)

Combining (5.3), (5.11), and (5.16) and using the product and chain rules where necessary, we can
estimate the directional derivatives from (5.6) in B, as follows:

(0w (1o, wo) (+)) hu |

<|DY(GT((1 = wo) o), G~ (wopo ) ||(=G " (R1p0), G~ (ha o))
gCQHhIHLOO(BP); (5.17&)

[V ((0wd (k0, wo) () )|
<ID*Y(GF (1 = wo)po), G~ (wopo))|(IV2G* (1 — wo)po)| + VG~ (wopo) N (=G (h1po), G (hapo))|
+ |DY(GT((1 — wo) o), G~ (woro))||(=VeGT (h1po), VoG~ (h1po))
<Cy|h1|r=(s,), (5.17b)

10, (110, w0) (+)) e |
<[DY(GT((1 = wo) o), G~ (wopo )G ((1 = wo) Py ), G~ (wohy,))|
<Cyluol ™ (L + [VwolL=(8,)) Mol sy (5 (5.17c¢)

[V (0uY ko, wo)(+)) Py )|
<[D*P(GH((1 = wo)po), G~ (worto)) | (IV2GH (1 = wo)po)| + (V2 G (wopo)])
G (X = wo) o), G (wohyo))|
+ [DY(GT (1 = wo)po), G~ (wopo))|[(VaG ™ (1 — wo)hyg), VaG™ (wohy,))]
<Cylpo| ™ (1 + [Vwol L= (5,)) Iho | My (B (5.17d)

|(aw(awy(MOa wo)('))hl)h2|
<ID*Y(GF (1 = wo)po), G~ (wopo))| (=G (hapwo), G~ (hapo))|[(=G* (hapo), G~ (hapo))|
<Colhi| =B, lhellLe(B,) (5.17¢)

|V (0w (0w Y (10, wo ) () )1 ) )|
<[DPP(GH (1 = wo)po), G (wopo))|(IV2G T (1 — wo)po)| + VG~ (wopo) )(=G* (h1o), G~ (hapo))|
(=G* (hapo), G (hapo))| + [D*(GT (1 — wo)po), G~ (wopo))]
~([(=G* (h1po), G~ (hapo)I[(= VG (hapo), V2 G~ (hapo))]
+[(=V2GF (hipo), VaG™ (hipo))|[(=G7 (hapto), G~ (Rapo))])
<Gyl hi] L=, lhelL=(B,) (5.17f)

(04 (0w (o, wo) ()1 ) hys, |
<ID* (G (1 —wo)po), G (wopo)) (=G (h1p10), G~ (h1po)I[(GH (1 = wo)hyy), G (whyy )|
+ [DY(GT((1 — wo)po), G~ (woro))||(=G T (hihy, ), G (hihy,))]
<Colpol™" (1 + IVwoll e m,)) 1hallwr (5, [so | atye n(E)- (5.17g)

and

|V (0 (Quwd (1105 w0 ) (-)) 21 ) sy
<[D*Y(GT((1 = wo)po), G~ (worto)) (VG (1 = wo)po)| + [VaG ™ (wopo))|(=G T (h1p10), G~ (hapo))|
G (1 = wo)Ppy), G (whyy)| + [D*Y(G (1 = wo) o), G~ (wopo)))|
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~([(=G"(h1p0), G~ (hapo )| (VaG ™ (1 = wo)hyuy ), VoG (whyy))|
+|(=VG " (hi0), VoG~ (hapuo))|[(GT (1 = wo) o ), G~ (wh ))|)
+ [ DY(GT((1 —wo)po), G~ (woro))|I(=VaG™ (hihyy), VoG (hihy,))]
+ |D2 (GF((1 = wo)po), G~ (wopo))|(IV2G ™ (1 — wo)po)| + |Vzg (wopo)])
(=G (hihyg), G (hihy,))|
<Colpo| ™" (1 + | Vwol Lo (s,)) [hallwre i,) 1o | a5 (5.17h)

g~
g~

Combining (5.17), we arrive at (5.15).
O

The next Lemma deals with the Fréchet partial derivative of ) with respect to w. In particular, we
establish an estimate (see (5.19) below) that we use in Subsection 5.3 in order to prove our local existence
result, Theorem 4.5.

Lemma 5.10. Let p € (0,1/2). Then, opemtor Y is continuously partially Fréchet differentiable with

respect to w at each (pg,wo) € (MT(B,))\{0}) x WH*(B,;(0,1)). The Fréchet partial derivative is a
compact operator given by

Ow (o, wo)h =(Cw (1o, wo)(+))h in B, for he W-*(B,) (5.18)
and satisfies the following estimate: for all
wi, wy € WH(Bp; (0,1)),

paspz € (M (B)\{0}  such that |p| = [p2| = |ol,
he Wh(By)

it holds that

H(@wy(,ul, wl) - 8wy(u2, w2))hHW1,OO(Bp)
<Cyluol™ (1 + [Vwr|=(s,)) [hlwre s, I = b2l ji iz + Colbllie s, lwr — walwiwes,). (5.19)
Proof.

Step 1. Let h e WH*(B,) be such that |h],»(p,) < min{minwy, 1 — maxwo}. Thanks to Lemma 5.9,
function s — Y(po, wo + sh)(x) is two times continuously differentiable on [0,1]. By Taylor’s theorem
for real functions, we then have

Yo, wo + h)(x) = V(o wo)(x) — (Qwd (1o, wo)(x))h
=Y jt0,100 + h)(@) = Vjio, o)) — SV pt0, 100 + 5h)()]g

f (1- s)ddQJi(uo,wo + sh)(z) ds

0

=J (1 = 8) (0w (0 Y (po, wo + sh)(x))h)h ds. (5.20)

0

Using (5.6¢), we compute the integrand on the right-hand side of (5.20):

(1 = $)(0w(Puw (1o, wo + sh)(x))h)h
=(1 = s)D*Y(G" (1 — (wo + sh))p0), G~ ((wo + sh)p0)) (=G " (hpuo), G (hpo))™
(=G (o), G~ (hio))” (). (5.21)
Exploiting the regularity of ¢ and the linearity and regularity of G¥, we conclude that the right-hand
side of (5.21) and its spatial gradient are continuous functions of z and s. Consequently, the spatial

gradient of the right-hand side of (5.20) is the integral of the gradient of the integrand. Together with
(5.20) and (5.15¢) this implies

[V (10, wo + h) = Y(po, wo) = (OuwI (0, wo) (DAl (,)

||| (1= 5)Ou(@uV a0, wa + sy s

0

Wl’w(Bp)
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<f0 (1 = 8) [(0w (0w (1o, wo + sh) ()Ml 5,y ds

1
< | a=sCulble s, ds

1
<500 17705,
=o (|hllwr=(s,)) - (5.22)

From (5.6a) it is clear that h — (0, Y (t0, wo)(+))h is a linear operator. It is also continuous by (5.15a).
By (5.22), this operator is then the Fréchet derivative of (1o, wo) with respect to w in Wh®(B,).

Furthermore, formula (5.6a) shows that 0, ) (po,wo) is a superposition of multiplication by a smooth
function and an integral operator with a smooth kernel. As in several instances above, this is due to
smoothness of Gt and ¢ by Lemmas 5.2 and 5.6, respectively. Therefore, it is a superposition of bounded
and compact operators, and as such, it is compact.

Step 2. Finally, we derive estimate (5.19). Using smoothness in the Gateaux sense at every point x € E
as provided by Lemma 5.9 and once again Taylor’s theorem for real functions, we compute for every
x € B, that

(I (p1,w1)(x) — 0w (p2, w2)(z))h
=(wd(p1,w1)(x) = Owd (p2, w1)())h + (0w (2, w1)(x) — O (pi2, w2)(x))h

- | @ueud ) ) ) + | (@@ () @) s (5.23)

0

where

hw:wlf’w?v h,u:ﬂlfﬂ%

w(s) = (1 — s)wy + swa, w(s) = (1 —s)u1 + spo.
Combining (5.23) with (5.15¢) and (5.15d), we can estimate as follows:

[0 (p1; w1) () = Qwd (2, w2) ()P0 (5,

| @ueuyuts) e mim s

0

< +

W (B,)

f (0w (0w (2, w(5))(-)) )y ds

0

W.*(B,)
1

<L Colu(s)|H (1 + [ Vwi| Lo (,)) 1Blwroe ) 1l e w5y 45 + Collhll oo 8, 1w L0,

=Cyluol™ (1 + [Vwr|=(s,)) [hlwre ) [hul s iy + Colblne s, 1hwl=(s,),

0 (5.19) holds. Tt remains to observe that this estimate directly implies continuity of the Fréchet deriva-
tive 0y, ).

O
We conclude this Subsection with a result for the case of a spatial domain extension.
Lemma 5.11. Let 0 < po < p < 1/2. Let (po,wo) be such that
1o € (M (Bp,))\{0},
Wo € WLOO(BPU; (07 1))5
(10, wo) satisfies (4.6) pointwise in B, . (5.24)
Define extensions
po =0 in B,\B,,, (5.25a)
Wy =4 0 e (5.25b)
0 in B,\B,,,
wo :=Yp (10, @Wo)  in B\Bp, (5.25¢)
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and operators
X, i=id — Oy (10, wo) in WH*(B,) forr e {p,po},

where Y, denotes the realisation of Y corresponding to the spatial domain B,. Then, wy € CQ(B_,)) and
equation (4.6) is satisfied pointwise in B,. Furthermore, X, is invertible if and only if X,, is invertible.

Proof. Since p < 1/2, Y(p0,Wo) € C*(B,) by Lemma 5.7(5). With (5.24), (5.25b), and (5.25¢) we deduce

that (4.6) is satisfied in B,,.
It remains to verify the equivalence of invertibility in W*(B,) and W»*(B,,). By Lemma 5.10,
X,, and &, are Fredholm. Hence, it suffices to check

Kerwl,oo(Bp)(Xp) #* {0} =3 Kerwl,x(BpU)(Xpo) # {0} (5.26)
Combining (5.18), (5.6a), and (5.25a), we obtain for all h, hy, ho € WL (B,) with hy = hy in B,, that

awyp(,U/OawO)h zawypo (,U/OawO)h in B—poa (5273)
3wyp(ﬂo, wop)hy =0wp (o, wo)ha in B_p. (5.27b)

With (5.27a) it follows directly that if h € Kery1.<(p,)(&)), then h € Kery.0(p, ) (Xp,) as well. Con-
versely, let

ho € Ketyio (s, ) (Xp, ). (5.28)
Choose hg € Wh*(B,) such that it coincides with hg on B, and set
ho =0V, (110, wo)hy  in B,. (5.29)
Together, (5.28), (5.29), and (5.27a) imply

ho =0 (10, wo)ho
:awypo (MOv wO)hO

T in B,,. (5.30)

meaning that hg € Kery1.(p,)(AX,). Thus, we have proved that (5.26) holds. O

5.3 Local well-posedness of (4.6) for 2 a small ball (proof of Theorem 4.5)

In this Subsection we use the findings in Subsections 5.1 and 5.2 to prove Theorem 4.5 on local well-
posedness of (4.6). Our proof is based on an argument similar to the one used in the proof of the implicit
mapping theorem, see the discussion in Section 2(1E5).

Proof of Theorem 4.5. Define constants

1

Cho :=—min{minw0,1maxwo}, (5.31a)
2 B, B,

Cll = HX71HL(W1,OO(BP)) CQa (531b)

Gy i=min{(1+201) 7", Cro }, (5.31c)
1 . —1

Cr =501 Calpo| (1 + [ Vol L(s,)) (5.31d)
1 _

Cs :=5011|M0| ! (1 + HVwOHLOC(BP) + CQ) . (5-316)

17



Consider operator
Wa(p,w) i=w = X~ (w = Y(u, w)).
Obviously, solutions of (4.6) are exactly the solutions of
w = Wa(u, w). (5.32)

In order to solve (5.32), we prove that W, is a contraction in its second variable and subsequently use
Banach’s fixed point theorem.

Step 1. To begin with, we establish the following estimates for all u, 1, e € Uy and w, wy,wy € Wi:

1
Wk, w2) = Wa(p, wi)lwie(s,) <5 lws = w2lwies,), (5.33a)
1
Wa(p1, w) — Wa(pz, w)|w.e(s,) <503HM1 = 12l My (B (5.33b)
HWQ(,U, w) — woﬂwl,x(Bp) <Cj. (5.33C)

Using the generalised Taylor’s theorem [31, Chapter 4, §4.6, Theorem 4.A] and chain rule [31, Chapter
4, §4.3, Proposition 4.10], Lemma 5.10, and the definition of Wh, we compute

1
Wa (1, w2) — Wa(p, wr) =f OwWa(p, w(s1))h1 dsy
0
1
— [ A eV w1) ~ 0o o dsy i WIRB,), (5.340)
0

1
Wa (i1, w) — Wa(p2, w) =J OuWa(p(s1), w)hy dsy
0

1
=J X710, YV(u(s1),w)h,ds;  in WHP(B,), (5.34b)
0
where
h1 = Wy — Wy, hﬂ = U — M2, (535&)
w(sy) := (1 — s1)wy + syws, w(s1) == (1 —s1)p1 + po. (5.35b)

Combining (4.5), (5.19), (5.31), and (5.35), we can estimate the right-hand side of (5.34a) using, in
particular, convexity of W; and U;, and obtain

IWa(p, wa) — Wa(p, wr) [wie s,
1
-1
<L [ s oo 3,y 1w (s w(s1)) = 00V (10, wo))ha w25, dsa
<Culpol ™ (14 [Vwo|z=(5,)) w1 = walwroe s, I = t0l pae 3,
1
+ Oy |wy — 7~U2HL°O(BP)J lw(s1) — wowr.»(B,) ds1
0
<Ci1 (Jpol™ (1 + [ VwolL=(s,)) C1 + Ca) wr — wallwr(s,)

1
<5 lwr = walwr=(z,),

so (5.33a) holds. In a similar fashion, this time relying on (5.18) and (5.15a) rather than (5.19), we
estimate the right-hand side of (5.34b), concluding that

IWa (1, w) — Wa(pz, w)|wr.=(B,)

1
S HXAHL(WLOO(BP)) L 10,V (1(s1), w)hplw.e (s, ds

1
<Cny f ()™ dsy (1 + 190l 0 (5,)) gy

=Culpo| ™t (1 + [Vwlpoe(s,)) l11 = 12l vty (50 (5.36)
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<Cuilpol™" (1 + |[Vwollz=(s,) + C2) |1 — 12 i (B
1
=§CSH,U1 - N2HMKR(B_,J)a

so (5.33b) holds too. Finally, we obtain (5.33c) using (5.36), (5.31d), and (5.33a) and the assumption
that (po,wo) solves (4.6):

[Wa (11, w) — wollw.(B,)
=[Wa(, w) = Wa(po, wo) [wr.=(5,)
<IWa(p, w) — Wa(p, wo) [wie(s,) + [Walp, wo) — Wa (o, wo)|wiee(s,)

1 _
<§Hw —wolwi(s,) + Culuo| ™ (1 + | Vol Le(s,)) 11— toll jye 3

1 _
<§Cz + Cialpo ™' (1 + HVWOHDC(BP)) C1
=Cs.

Step 2. Let u € Uy. By Lemma 5.7(5), Y and, hence, Wa(u, -), are well-defined in W;. Furthermore, due
to (5.31a), (5.31c), and (5.33c), Wa(u,-) is a self-map and, due to (5.33a), a contraction in this closed
ball of W®(B,). Applying Banach’s fixed point theorem, we infer the existence of a unique fixed point
w. As mentioned at the beginning of the proof, (y, w) is then a solution to (4.6). Invoking Lemma 5.8,
we find that w e C?(B,; (0,1)). Altogether, we conclude that the solution map

Wi Uy — Wi 0 C*(B,;(0,1)),  Wi(p):i=w

is well-defined.
It remains to verify (4.8). Consider puq,us € Uy and wy; = Wi(u1) and we = Wi (u2). Combining
(5.33a) and (5.33b), we obtain

HWl(,ul) - Wl(,u2)HW1,OO(BP)
=[Wa(pr, w1) — Walp, w2) lwre(5,)

<[Wa(pr, wi) = Wa(pn, w2)|wie s,y + [Wa(pr, w2) — Wa(pz, wa)|wi.»(s,)
1
5Cs I = b2l pye (55

1
<§Hw1 — ’UJQle,x(Bp) +
This gives
Wi (k1) = Wi(p2) [wr=(s,) <Csllpa = pizl v, (5,

so estimate (4.8) holds.

We conclude this Subsection with a proof of Theorem 4.9.

Proof of Theorem 4.9. Since v < pu, the Radon-Nikodym theorem provides the existence of a Radon-

Nykodym derivative Z—Z, whereas the Lebesgue differentiation theorem implies that w takes values in

[0,1], p-a.e. Since (u,v) solves (1.2), (u, g—:) then solves (1.7) by definition.
(|

5.4 Solvability of (4.6) for p, a point mass

Let us consider a special case when p is a point mass. As seen below, in this situation, equation (4.6)
is explicitly solvable and, moreover, the solution pair (o, wo) satisfies (4.4).

Example 5.12 (1o point mass). Let p € (0,1), m > 0,
Ho = m507
and wy : R — [0, 1] be Borel. Using

supp(uo) = {0}
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and the linearity of G, we compute

(1 — wo(0))G*do o
1 —w(0))G*do + wo(0)G~do in B, (5.37)

Y(po, wo) T
where
GEop = G*(-,0) > 0.
due to assumptions (1.3e)—(1.3h) and p < 1. In particular,

(1 = wo(0))y*
(1 —wo(0))y* + wo(0)y~’

V1o, wo)(0) =

where
7F :=G*(0,0) > 0.
Thus, wp is a solution to (1.7) if and only if

_ (1 —wp(0))y*
00 = o0 + wol0)r (5:38)

Since 0 < wp(0) < 1, the only solution that (5.38) has is

wo(0) = % € (0,1). (5.39)

Combining (5.37) and (5.39), we obtain the unique solution to (4.6) in the form

_ VGt =
G TG .0 B,

Let z € B,. Using formula (5.6a), we compute

Wo

0w (Y (o, wo)(x)) ha =%«£(m)h1(0), (5.40)
where

&€ :=Dy((1 — wo(0)G* (-,0), wo(0)G~ (-, 0)) - (=G*(-,0),G~(-,0))
eW'*(B,).

In particular,

£(0) =Dy ((1 = wo(0)y ™, wo(0)y™) - (=T, 7~

~—

-1 (5.41)
Combining (5.18), (5.40), and (5.41), we conclude that operator
Xh1 =h1 — 0wV (0, wo)h1
1
=h1 — —&hi (0)

is invertible in W' (B,), its inverse being

1
- 1«59(0)-

xVg =g+
m

Thus, (po,wo) satisfies all conditions in (4.4).
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6 Well-posedness of a PDE with PM diffusion and fixed advec-
tion direction

In this Section we consider the Cauchy problem for a PDE with the PM diffusion (1.4) and a fixed
advection direction V:

dru = Au® — V- (Vux(u)) in (0,T] x R?, (6.1a)
u(0,-) = g in R%, (6.1b)
Later in Section 7 we take
V=w(VH*u),

which turns (6.1a) into (1.6a).

For V =0, (6.1a) is a special case of the standard porous media equation that was covered in depth
in [28]. Many works also addressed (6.1a) for either constant V or x = 1, see e.g. references in the
survey [20]. More recent studies have concentrated on the case y = 1 and V that belongs to a possibly
anisotropic LP-?-space. We refer the interested reader to the detailed explorations in [18, 19] as well as
references therein.

In our setting, both x and V are non-constant. Since we were unable to locate the necessary facts
specifically for this particular scenario and moreover, need to account for dependencies on the parameters
in the estimates for its solutions for the purpose of our analysis in Sections 7and 8, we provide all required
results. For the reader’s convenience, we include proofs in most cases even though they follow standard
patterns.

The rest of the Section is decomposed into two parts. We start with developing well-posedness in
Subsection 6.1. In Subsection 6.2, we deal with the situation when the initial value ug is compactly
supported. We verify that the support of the corresponding solution cannot explode for small times.

6.1 Well-posedness of (6.1)

In this Subsection we aim at establishing well-posedness of (6.1). For V' and ug we consider the following
set of assumptions: for some T > 0

Ve (L®(Er))?, (6.2a)
Ve L*Y(Er), (6.2b)
V.-VelL*Er), (6.2c)
V-VeL®YEr); (6.2d)
and
0 <ug € L*(R?Y) n L*(R?), (6.3a)
ug € L*(RY). (6.3b)

Not all of them are required for each result.
We introduce the following notion of (sub/super-) solution to (6.1).

Definition 6.1 ((Sub/super-)solutions to (6.1)). Let T > 0 and (6.2a), (1.3a), and (6.3a) be satisfied.
We call a function u : [0,T] x R — [0,00) a solution to (6.1) in [0,T] x R if:

(1) ue L (0, T; L*(RY) ~ L2(RY));
(2) u? e L?(0,T; H'(R?));
(3) due L2 (0,T; H-H(RY), due L® (o,T; (W27P(Rd))/) for all pe [1,0];

(4) u satisfies (6.1a) in a weak,

(Oru, p) = — J]Rd (Vu* = Vux(u)) - Voda a.e. in (0,T) for all p € H'(R?), (6.4a)
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and a very weak,
0
(Cru, o) = J- w?Ap + Vux(u) - Voda a.e. in (0,T) for all p € U W2P(RY), (6.4b)
R4 p=1
senses;
(5) u(0,-) = ug in H-H(R?).

We call u a subsolution (supersolution) to (6.1) in [0,T] x R? if = is replaced by < (=) in (6.4a)
and (6.4b).

Our first Lemma deals with uniqueness of solutions to (6.1).
Lemma 6.2. Under the assumptions of Definition 6.1 solutions to (6.1) are unique.

Proof. We use a version of the duality argument that is standard when dealing with weak solutions of an
equation with PM diffusion. The nonlinearity in the advection term is handled similar to [12, Section 2],
[L1, Chapter 9, Section 2].

Let v and @ be two solutions corresponding to ug and V. Subtracting the very weak formulations
(6.4Db) for these solutions, we obtain for their difference

@ u-1).) = |

(u® —0%) Apdx + J V (ux(u) —ux (@) - Vo dx (6.5)
Rd

Rd
for p € H?(R?) a.e. in (0,7T). Consider the equation
—Ap+p=u-—u. (6.6)

As is well-known, —A +id : HF+?2 (Rd) — H* (Rd) is an isometric isomorphism for all £ € Z. Since
u, i€ L*?(Er) and dyu, 0,4 € L? (0,T; H ' (R?)), we have

e L” ((0,7); H*(RY) n C ([0, T]; H'(RY)), owp e L? (0,75 HY(RY)),
H‘PHHl(Rd) = Ju— aHH%(]REI) in [0, T7].

Plugging ¢ into (6.5) and integrating over (0,t¢) for ¢t € (0,7), we obtain using standard calculus of
functions with values in a Hilbert space

1 2 2 2
2UW|W| ro dx] fmf Vol + ¢ da ds

f<@(Aw+w>@ds
J- fRd (u—1) deds + fRd (u* — %) pdxds

+ L JRd V (ux(u) —ux (@) - Vedzds in [0,T]. (6.7)

Due to the assumptions on y, we have

|21X (21) — 22X (22) | =

J P () + x (5) ds

21
22

J sds
z1

=[xl L (0,000 |25 — 23] - (6.8)

<2|Ix| £ ((0,0))

Combining (6.7) and (6.8) with the basic algebraic inequalities

é2
2
)

(zf - z%) (21 — 22) = C1a z

)

3

1 3 3
b3 2 _ .2
R T3

|z1 —22| Cy3 (max{z1, z2})
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and using Holder’s and Young’s inequalities, we estimate as follows:

1 t
5 ||, 7ok < eas|

3 ~3 3 ~3
Clgf JRd u? — 02 d:cds + O3] (u, @) HLT(O Ty(L (R))?) J JRd u2 uz‘ lp| dx ds
Nt 3 _at
# CuallVil e 00 gy [ [ [uF 0] Wl aods
t
<015J J IVol|® + |p|*deds  in [0,T7, (6.9)
0 JR?

where C5 depends on norms of u,u, x, and V. Applying Gronwall’s inequality to (6.9) yields

I (8) 11 may <€ (071 ey in [0,T]. (6.10)

Combining (6.6) and (6.10) and using (0, ) = ug — up = 0 yields uniqueness.

As is customary in such cases, we seek to obtain solutions to (6.1) as limits of solutions (em),
€(0,1) and m e N,

to initial-boundary value problems (IBVPs) in balls for non-degenerate diffusion-advection equations with
regular coefficients,

atUmn = EAUsm + Augm -V (VsuszE (usm))

Uemn = 0 in

n (0,7] X By, (6.11a)
0,7] X Sy, (6.11b)
Uerm (0, ) = uco in By, (6.11c)

o~ o~

extending them to the whole space by
Uen =0 in [0,7] x (RA\B,,).

We make the following assumptions on the coefficient functions x. and V. and the initial data u.q:

xe € Cf ([0,0)), x(0) = 0, (6.12a)
V. e Cp? ([0,T] x R, RY), (6.12b)
0 < us € Cj (RY). (6.12c)

The main purpose of the subsequent Lemmas is to collect useful estimates for solutions to (6.11). Most
of them continue to hold for solutions to (6.1) and are used in the proofs in Sections 7 and 8.

Lemma 6.3. Let (6.12) be satisfied and let m > diam (supp (ue)). Then, the IBVP (6.11) possesses a
unique classical solution e, € C*2 ([0, T] x ) The solution satisfies the following set of estimates:

0 < tem < Crg (T Xe, Ve, teo) in [0,T] x B, (6.13a)
2

< Ci7 (T, xe, Ve o), (6.13b
L2(0,T:L2(Bn)) 17 (T xes Ver o) 5 ( )

HUEWH%OO(O,T;LZ(B,R)) + 5H|VUEW|H%2(O,T;L2(B

Hatu&‘mH%Z T:-H-1(B < 018 (Ta Xes ‘/Ea UEO) ’ (613C)
(0,T;H=*(Bm))
where
Ci6 (T, Xes Ve te0) i= [[tco|| oo (maye T Xl 0oon IV Vellioo gy (6.14a)
Cr7 (T, Xe, Ve, ueo) HU’EOHLZ(R )eTCwHX/EHiOO((U‘I”HlvglHZLOO(ET)Cm(T’XE’VE’UEO), (6.14b)

C18 (T, Xe, Ve, ueo) = Cr7 (T, Xe, Ve, uen) C20 max {1, Ci6 (T, Xe, Ver uz0) , TlIxl7 0 (0,000 |V€|H2L°C(ET)} :
(6.14c)

23



Proof. Since (6.11a) is a non-degenerate quasilinear parabolic PDE, standard theory (see, e.g. [25,
Chapter V, §6, Theorem 6.1]) implies that the IBVP (6.11) possesses a unique classical solution ey,
provided it is a priori bounded. That is the case if (6.13a) holds. Thus, to complete the proof of the
Lemma it remains to prove that estimates (6.13) are a priori valid.
Estimates (6.13a) are a direct application of the maximal principle for non-degenerate parabolic PDEs.
Further, multiplying equation (6.11a) by ¢ € Hg (B,,) and integrating by parts using (6.11b), we
obtain the following weak reformulation:

(Opthem, @) = —J- eVerm - Voo + (Vul,, — VetemXe (Uem)) - Vo da in (0,7) for o € H} (By,) -
BWL
(6.15)

Taking ¢ = ey, in (6.15) and using assumptions on x., the chain rule, and Ho6lder’s and Young’s
inequalities, we deduce

1d

5 gt 25, + el Vueml[225,,)
8 3 )2 2 1 5
T 9 H‘Vugm L2(B,,) + g J ‘/eusszE (Usm) . Vugm dx
m B,

1 3 ()2
<=5 |[ved|
2 L2(By)

Applying Grénwall’s inequality to (6.16) yields

+ Col XEl 7 (0,000 I1Ve oo (. [tem| o 0,152 (B, ) [em 725,y (6:16)

2

2 2 5
e (13, + 261 Vom0 + ([ V58 1,

2 t2C 712 V.|| Uem || o0 .o
<HU50HL2(Rd)€ ISHXEHLJZ((U,OO))H‘ E‘HLQC(ET)H emlz (0,T;L (Bm)), for t e [O,T] (617)

Together, (6.17) and (6.13a) yield (6.13b).
Next, we estimate the right-hand side of (6.15) in H=1 (B,):

|Ottuem || -1 (B, <el|Vuem||r2(B,.)

+ g“umeLOO(O,T;LI(Bm)) H’Vusm L2(B)

+ Ixell o= 0,00 Vel o2 () [Uem | L2,y i (0,T). (6.18)
Taking the L2(0,7") norm on both sides of (6.18), we deduce

|Ostiem | L2 0,751 (B)) <ENVUem||r2(0,7;02(Bm))

+ §Hu5mHLI(O,T;L°O(Bm)) ‘HVUEm‘ L2(0,T;L2(Bpn))

+ T2 |Xe | o (0,000 Ve o () [ em | 2 (0 712 (8,0 - (6.19)
Combining (6.19) with (6.13a) and (6.13b) yields (6.13c). O
Our next Lemma deals with stability in L?.
Lemma 6.4. Let x. satisfy (6.12a), V., V. satisfy (6.12b), and uco, Ueo satisfy (6.12¢), as well as
m > max{diam (supp (uo)) , diam (supp (4-0))}.
Then, the corresponding pair of classical solutions uep, and Uepm, to the IBVP (6.11) satisfies for t € [0,T]
(tem = tem) (&, ) 15,

< Jueo — anHLl(Rd)

~

~ 1
+ Cor (T, xe, Ve, o) (]umv (ve-7) + |uzn [V - 7 ) . (6.20)
LY((0,T);L*(Bm)) L2(0,T;L%(Bm))
where
4 ) _
Co1 (T, Xe, Ve, o) 1= 3 HXchg([o,oo)) max {1, Cir (T, Xey Ve, er)} (6.21)

and Ci7(...) is as defined in (6.14).
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Proof. The proof follows a standard scheme and relies on a version of Kato’s inequality. Let u.m, and
Uem be two classical solutions to the IBVP (6.11) for given V. and V., respectively. Their difference

Uern := Uem — Uem
satisfies

A~

0l =B (a0Uen) =V + (VeUen ) = bo (1) V- (Ve = V2 ) = (Vo = V2) b (tem) Vil i (0,7) X B,

(6.22)
where
ag =€ + Uemn + Uem > 0, (6.23a)
bo(z) :=2zx<(2), (6.23b)
2
by (2) :=§z7%b'0 (2)
2 1 !
=37 (st (z) + J- X= (s2) ds) : (6.23c)
0
V :=Vz (bo (fem) = bo(uem)
1
=ng by (5Tiem + (1 — ) o) ds. (6.23q)
0

Multiplying (6.22) by sign (U..,), integrating over B,,, by parts where necessary, and using (6.23), the
chain rule, and Kato’s and Hélder’s inequalities, we can estimate as follows in [0, T']:

d
_ m d
dt Bm|U€ |z
=J sign (aoUem) A (aoUsem) dx—f v (‘7|U€m|) dz (6.24)
Bm B,

~ ~ 3
- J sign (Uepm) bo (tiem) V - (VE - v) da — J sign (Uemm) (VE - v) by () Vil d,
B

Bm

< JBm ‘bO (Usm) V- (‘75 - Vs) dx + JBm ‘(‘75 - Vg) by (ugm) Vu?m‘ dx
1
Um

V.- V.

+ 21K vul
3 XellL*((0,00)) Uem

wemV - (Vo = V2)

L2(By)
(6.25)

< 0
IXellze((0,00) HLZ(Bm)

LY(Bm)

Here we have used a version of Kato’s inequality [22] provided by a combination of [6, Theorems 1.2-1.3]:
for all f € Wy "' (B,,) such that Au e L'(B,,) we have 0, f € L'(Sm(0)) and

| sennagas< | josian
B,

m

<0 (6.26)

where 0, f denotes the outer normal derivative of f in the trace sense. It is inequality (6.26) that allows
to estimate the first term on the right-hand side of (6.24) from above by zero.
Integrating (6.25) over [0, 7] and using Holder’s inequality yields

”Usm(tv ')HLI(Bm) - HUsm(Ov .)HLI(Bm)
Uem V - (‘78 - Vs)

<[xell = ((0,00) L1((0,T):L1 (Byn))

4 -, 3 1 ~
Il Vul, |V - V)
* SHXEHL ((0:20)) ‘H e L2(0,T;L2(Bm)) tem |te “lz20,1m:L2(B0))
4 3
<§|X€|C’}([O’°o))max{1’ Vi LZ(o,T;L2(Bm>>}
~ 1 ~
: mV - (Ve — Vi 20 Ve — V. in [0,7]. 6.27
( Ue v ( ¢ 8) LY((0,T);L*(Bm)) e € ¢ L2(0,T;L2(Bm))) m [ ] ( )
Finally, combining (6.27) with (6.13b), we arrive at (6.20). O
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A comparison property in L' holds as well.

Lemma 6.5. Let x. satisfy (6.12a), V. satisfy (6.12b), and u.o, Ueo satisfy (6.12¢) as well as
m > max{diam (supp (uo)) , diam (supp (4-0))}.

Then, any corresponding pair of classical subsolution ue,, and supersolution ey, to the IBVP (6.11)
satisfies

H (Uem — Uem), (t, ')HLl(Rd) < H (Uem — em) . (0, ')HLl(Rd) forte[0,T].

We omit the proof of Lemma 6.5 since it can be carried out very similar to that of Lemma 6.9.

With the results from Lemmas 6.3 and 6.4 at hand, we can now establish existence and estimates for
(6.1).

Lemma 6.6. Let (6.2a), (6.2¢), (1.3a), and (6.3a) be satisfied. Then, the Cauchy problem (6.1) possesses
a unique solution u in terms of Definition 6.1. The solution satisfies the following set of estimates:

|[ull Lo (Ery < Cr6 (T, X, Vo), (6.28a)
2 1112
[l ey + [[Tud]] < Crr @ Viwo), (6.28)
L2(Er)
10eu] L2 (0,711 (mey) < Cis (T, X, V,u0), (6.28¢)

where C;s are as in (6.14).

Sketch of the proof. Lemma 6.2 provides uniqueness, so we only need to prove existence. Since the
arguments are standard, we omit most details. To begin with, we choose families of regularised coefficient
functions x. and V; and initial data ..o for

g€ (0,1) and m > 2

as follows:
Ve = Capre * V, V:=0in (—o0,0) x R%, (6.29)
Xe = CLE * ((1 — 771,28))()7 X ‘= 0 in (700‘, 0), (630)
Uemo = Ca,e * (Na,mug) , (6.31)
where

L |
Coe(@) = ¢ (M al) mRF,  Gu(s) =g OO forlsl<d C:=f e T ds,  (6.32)
0 for |s| = 1, —1

e, r(x) :==m (R71|:L'|) in R*, m € CF([0,1);[0,1]), m =11in [0, %] . (6.33)

This choice and standard properties of convolution ensure that (6.12) is satisfied and for every € € (0, 1)
and m > 2 it holds that

V. 50 1% in (L*(Er))*, (6.34a)
Ve =V in (LP(Er))?, pe[1,0), (6.34b)
V-V io V-V in L®(Er), (6.34c)
V-Ve > V-V in LY(Er), (6.34d)
Vel (Bry <NVIlze(Er), (6.35a)

IV - Velpoery IV - Ve (g, (6.35b)
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Xe = X in C} (RY), (6.36)

Supp(uamO) (= Bma (6378,)
[uemol Lo (ray < ol Lo (ma), (6.37D)
Uemo = = U in L?(R%). (6.37c)

Since all estimates from Lemma 6.3 hold for any € € (0,1) and 2 < m € N, a standard argument based on
compactness and a limit procedure yields the existence of a solution u (defined in terms of Definition 6.1)
for the Cauchy problem (6.1) such that

Uepm, — — U a.e. in Ep (6.38)
k—o0l—00

for some sequences (gx) and (m;). The solution satisfies estimates (6.28), which can be obtained by taking
the limit inferior on both sides of each estimate in (6.13) and using the weak-* continuity of norms, as
well as (6.35)—(6.37). O

Out next two Lemmas contain some results on continuity with respect to time.

Lemma 6.7. Let the assumptions of Lemma 6.6 be satisfied. Assume additionally that ug € L'(R?).
Then, the solution u to the Cauchy problem (6.1) satisfies

ue Cy ([0,T]; L*(RY) A LY(RY))
and
|ul1ray = [luol prray — n [0,T7]. (6.39)

Proof. Consider 145, n € N, as defined by (6.33). Then,

Min — 1 inRY (6.40a)
n—o0

Nim — 1 in W»P(R). (6.40b)
n—o0

Using dyu € L™ (0, T, (WQ’OO(Rd)),), (6.4b) for o =1, (6.40b), and integrability of ug, we deduce that

lim u(t, )na, de = (u(t,-), 1)

n—0o0 Rd

ZHUOHLl(Rd) forte [O, T] (641)

With (6.40a) and (6.41) and Fatou’s lemma it follows that

f u(t, ) dx < lim w(t, )na,n dx (6.42a)
Rd n—0 Jrd
= f ug dx for t € [0,T], (6.42b)
R4

so that u € L®Y(Er). Since 14, € [0, 1], we conclude with (6.42) that

Ju(t, Mz ray = luolpirsy  for t € [0, 7.

Finally, we confirm weak continuity. Since

uwe C([0,T]; HY(RY) n L* (0, T; L”(R?) n L}(RY)) ,
L*RY) n LY(RY) < L2(RY) « H71(RY),
[27, Chapter 3, §1, Lemma 1.4] applies and yields
ue Cy, ([0,T]; L*(RY) n LY(RY)),

as required. O
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The next Lemma provides an estimate for the solution change over time.

Lemma 6.8. Let the assumptions of Lemma 6.6 be satisfied. Then, the solution u to the Cauchy problem
(6.1) satisfies for all0 <7 <t<T, R>0, and

¢ Lipschitz, (0) =0, [Ve|pome <1 (6.43)

the estimate

fRd(U(t, ) — u(r,))na.rpdr| < (t—7)3 R CoaChs (T, x, Vi uo) (6.44)

where ng g s the cut-off function from (6.33) and Cis(...) is as defined in (6.14).
Proof. With (6.33) and (6.43), the chain rule, and Hélder’s inequality we have

HV (nd,Rw)HLZ(]Rd) = HUd,RVQO + @Vnd,RHL%Rd)

d
<R%V2 74,1 HH1(Rd)
—=R? Cy. (6.45)
Combining (6.45) and (6.28c) and Holder’s inequality, we obtain

t
f (Oru,na,rp) ds

1
<(t—7)2 |V (nq, Rsﬁ)”Lz(Rd Hatu‘|L2(0,T;H*1(]R'i))
ﬁ( ) R C92C18 (T X V, UO)

S

| ) = atr s moda] <

as required. [l
Next, we establish L' stability for (6.1).

Lemma 6.9. Let x satisfy (1.3a), V.,V satisfy (6.2), and ug,Ug satisfy (6.3). Then, the corresponding
solutions u and u to the Cauchy problem (6.1) satisfy

max Ju— a1 ga

<luo — UOHLl(Rd)

+ Ca3 (T, x, V, ug) (T Hl{u>0}'v ’ (V a ‘7) HLO@J(ET)

> , (6.46)

L*(Er)nL*:1(ET)
where

023 (T, X5 V, UO) 021 max {016; C } (T X5 V UO) (647)

and Cig and Ca1 are as defined in (6.14a) and (6.21), respectively.

Proof. Since solutions to (6.1) are unique, they can be obtained as limits of approximations such as
introduced in (6.29)—(6.33) in the proof of Lemma 6.6. In particular,

luo — aOHLl(]Rd) = nill)noogg% |temo — asmOHLl(]Rcl) : (6.48)

The corresponding solution families (uem) and (Uep,) satisfy estimates (6.13) from Lemma 6.53. There-
fore, a standard application of the Lions-Aubin lemma, a diagonal argument, and the above mentioned
uniqueness of the limit solutions together imply that

b = ey =00 = 53
=sup lim hm |tem = Uem 11 (mp)

R>(QM—%0¢

<11T£n_)1£10fhr€n1nf |tem — aemHLl(Bm) a.e. in (0,7).
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Further, since assumptions of Lemma 6./ are satisfied, (uep,) and (e, ) satisfy estimate (6.20). Passing
to the limit inferior on both sides of (6.20) and using (6.36), (6.38), (6.48), (6.49), (6.13a), (6.34b), (6.34d),
and (6.37b) and the dominated convergence theorem, we arrive at the inequality

uz2

V-V

A~ ‘

a.e.
L2(ET)>
(6.49)

Hu — aHLl(Rd) < HUO - aOHLl(Rd) + 021 (T7 X V, UO) <’UV . (V B ‘7)

|

LY(Er)

Using Holder’s inequality and interpolation inequalities in L? spaces on the right-hand side of (6.49) and
the fact that u, 4 € Cy, ([0, T]; L*(RY)) finally yields (6.46). O

A comparison property in L' also holds.

Lemma 6.10. Let x satisfy (1.3a), V satisfy (6.2), and wo, 0o satisfy (6.3). Then, any corresponding
pair of subsolution u and supersolution U to the Cauchy problem (6.1) satisfies

H(“ =), (t, ')HLl(Rd) < H (u—1), (0, ')HLl(Rd) forte[0,T].

We omit the proof of Lemma 6.10 since it can be carried out very similar to that of Lemma 6.9.

6.2 Non-explosion of support for small times

In this Subsection we show that the support of a solution to (6.1) that has a sufficiently small support
at the initial time cannot explode on a short time interval. More precisely, our result is as follows.

Lemma 6.11. Let x satisfy (1.3a), V satisfy (6.2), and ug satisfy (6.3). Define

1
Cou(T',x, V) = m”(v V) lze ) X Lo (0,00)) (6.50a)
d+2
pl(TaXaV) = ) (650b)
IV I 2oz () IX | £ (0,00
Cos(T,x,V
P2 (Ta e ‘/7 (I) = <1 - %) pl(Ta X V)? (650C)
1 1 .
(T, x,V,p,a,b) := %8 In (3 min {p, p2 (T, x, V, a)}) , (6.50d)
Pap(t) := bett® (6.50¢)
where constants a, b, §, and p are such that
§€(0,1), (6.50g)
be (dp,p), (6.50h)
Cos(T, x,V
a> 24(7{) (6.501)
1 B p1(T,X,V)
HUOHLOO(W) .

Then,
supp(ug) < B—(;p

implies for any corresponding supersolution u : [0,T] x Q — [0,00) (in terms of Definition 6.1) to (6.1)
that

supp(u(t,-)) = By, ,(ty»  Pap(t) € (0,p)
for all t € [0, min {T, T>(T, x,V, p,a,b)}).
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Proof. Following a common approach for equations with PM diffusion (see, e.g. [28, Chapter 14]), we
construct a supersolution to (6.1a) that is supported in B, and is no smaller than u for ¢ € [0, T5].
Direct computation shows that

Uap(t,z) :=a (b*e'®* — |:L'|2)+ for (t,z) e R x R? (6.51)

is a strong and, hence, a weak and very weak solution to

U = AU? + 4(d + 2)aU in R x R? (6.52)
and has the following properties:
supp(Uap(t,°)) = By, 4 (1) Pap(t) := bet*® for t € R, (6.53)
and
Uap(t,-) € WH*(RY), IVUab(t, )| oo (ray = 2abe™**  for t € R. (6.54)
Due to (6.53) we have
Pab(t) <p for t e [O,min {T, i In (/—;) }) , (6.55)

whereas (6.51), (6.50h), and (6.50j) imply

g}sta,b(O, ) =a (b* = (6p)*) = |uo| o (ra)- (6.56)
P

We are going to show that U, is a supersolution to (6.1a) in [0, T3] x R if T3 € (0,77 is sufficiently
small. Since U, ; satisfies equation (6.52), being a supersolution to (6.1a) is equivalent to

4(d+2)aUup + V- (VUapx (Uap)) =0 ae. in (0,T3] x RY.
Using (6.54), (6.50a), and (6.50b) and the assumptions on V' and y, we can estimate as follows:

4(d + 2)aUa,b +V. (VUa,bX (Ua,b))
=4(d + Q)GUa,b + (V . V)Ua,bX (Ua,b) +V (Uaybxl (Ua,b) + X (Ua,b)) VUaﬁb
>4(d + 2)aUap — [(V - V)| Lo () X[ o2 ((0,00)) Uap

= 2[IVllze 21X | 22 ((0,000) [ VUa b ow (et Uap

1
24(d + 2)@Ua,b (1 - m“(v ) V)—HLOO(ET)HXHLOO((o,oo))

1 a
IV o Y Loyt

 Cu(T X, V) b et4a>
a P1 (Ta X V)
>0  aee. in (0, min{T,T3(x, V,a,b)}] x RY,

>4(d + 2)aU,, <1

where

1 T,x, V.
T3(x.V,a,b) =2 1In (W) >0

due to (6.50c) and (6.50i). Consequently, U, is indeed a supersolution to (6.1) on [0, 75(...)] x R%.
Altogether, we have shown that U, : [0, min {T,T5(...)}] x R? — [0,0) is a weak supersolution
to (6.1a), Uy 5(0,-) = ug holds a.e. due to (6.56), and U, p(-) is supported in B, () due to (6.55).
Now we can apply Lemma 6.10 and conclude that u < U, a.e. in [0, min {7, T5(...)}] x R% Hence,
supp(u(t,-)) © B, () for all t € [0, min {T',T5(...)}], as required.
(|
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7 Well-posedness of (1.6) for fixed w

In this Section we study the Cauchy problem (1.6) for a fixed w. We refer to Section 2(PDE1) and (PDE2)
for the discussion of this equation. Our proofs here rely on the results collected for the Cauchy problem
(6.1) in Section 6. In order to produce a fixed advection direction as in (6.1a), we take

Vi=V(w,u) = w(VH x u). (7.1)
In Subsection 7.1 we establish some useful properties of such V needed in order to analyse (1.6) in
Subsection 7.2.

7.1 Properties of H and V

In this Subsection we establish some properties of kernel H from (1.3b) and the bilinear operator V from
(7.1).

Lemma 7.1 (Properties of H). Let F € C'([0,0)), and H as defined in (1.3b). Then,
(1) H e WH(RY), VH is supported in By,

VH = —11911F (] - |) sign in B1\{0}, (7.2)
and
IVH| (Lo ®aya = max |F, (7.3a)
1
IVH| (1 gayya =2d|B;H|f |F(s)]s? 1 ds; (7.3b)
0

(2) for d =2, it holds that VVT H € (M(R%))?x4,

VVTH =— (F/(| -|) sign sign” —l—% (Ia — signsignT)> L3 (B1\{0})

+ (F(1) signsign™) H4 1L Sy, (7.4)
o2 02 H gy <HETH(S) (L ('F/(S” " @) s F(l)) S
and
AH =— (F’(| )+ (d— 1)F|(|. '| |)> LYL(B1\{0}) + F(L)H*" L Sy, (7.6)
|AH | pyggay <H'(S1) <L (|F’(s)| +(d-1) |F£S)I> sl ds + F(1)> ; (7.7)

for d =1, it holds that
H" = —F'(]-NL'L(=1,1) — F(0)d + F(1)(61 + 0_1)

and

1
IH" | pray =2J. |F'(s)|ds + F(0) + 2F(1).
0
Proof. (1) Consider
G(r) := —J 110,11F (s) ds for 7 = 0.

0

Since 1jo,11F € L¥((0,0)) n C((0,0)\{1}), we have G € W"*(R) and

G = 71[0_’1]F in (0,00)\{1}
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Being a superposition of two W1 functions, G and | - |, H is then also a W function. Using
the chain rule and the fact that

V|z| = sign(z) for x # 0,

we obtain (7.2). Equality (7.3a) is an evident consequence of (7.2). As to (7.3b), it follows from
(7.2) by direct computation and the fact that

J- ||y d =2dJ- 21 dx
St Stn{z1>0}

=2d|B{7Y|.

We only consider the case d > 2. Similar arguments work for d = 1. Calculations are, in fact,
simpler in that case.

Observe that VH is a product of three functions which are locally of bounded variation (BV).
Indeed, since 1[0,1](| ) =15 —, l.e. is the characteristic function of a set with a smooth boundary
of a finite perimeter, 1o 17(] - | is of BV. Hence, its distributional gradient is a finite measure. The
gradient consists only of the jump part:

Vip(|-[) = —sign H“ LS. (7.8)

This can be obtained, e.g. by using the divergence theorem:

<V1[0,1](| : |),90> =—| V-pdr

B

=7J - xdHi! for ¢ e (CH(R?)).
S1
Astoz — ﬁ, this function has a locally integrable derivative given by
T . 1 . .7
V* sign(x) = 2l (14 — signsign’) (z) for z # 0. (7.9)

Hence, it is also locally of BV. Finally, this is also true for —F(|-|) as it is a composition of C'* and
W% functions and as such is locally W,

Further, since supp(VH) < By, VVTH is also supported in B;. Having checked that VH is a
product of functions of BV locally, we can apply the product rule for BV functions (a consequence
of the chain rule for a smooth outer function, see, e.g. [l, Chapter 3, §3.10, Theorem 3.96])
in a bounded open ball which contains B;. Combined with (7.8) and (7.9), this theorem yields
VH € (BV(R))? and formula (7.4). Formula (7.6) for the divergence of H follows by computing
the trace of the density matrices on the right-hand side of (7.4).

Finally, (7.5) and (7.7) are easily obtained by direct calculation from (7.4) and (7.6), respectively,
using standard properties of finite measures. We omit further details.
O

Lemma 7.2. Let assumptions of Lemma 7.1 be satisfied. Let V be as defined in (7.1) and O < R? be a
domain. Then,

and

VeB(L“’( ) x L'(RY); (L'(0))%)
B(L*(0) x L (Rd) (L*(0)%

V-(V(-,) eB(W“O(O) x LY(RY); L1 (0))
B(W"*(0) x L*(R?); L*(0)),

IV(w, u)|[(z10y)e <Cos|w|re(o)|ulL®ay, (7.10a)
IV(w,w)| (L= 0y <C2|w||Le0)lul L@, (7.10b)
IV - (V(w, u)| 11 (0) <Cor|w|wre0)l|ull 11 may, (7.10c)
IV - (V(w, u))] 120y <Cas|w|wr.e(oyllull Lo (wa, (7.10d)

32



where

Cos :=|VH] (1 ra))e,

Cog 1=V H (1o ), (7.11)
Cor :=||VH| (1 rayye + [AH | pray,

Cos :=||VH| (0 mays + |AH | pg(ray-

Proof. Bilinearity is obvious, so we only verify that V and V - (V(-,-)) are well-defined continuous maps
and satisfy the required estimates.

We first study the term VH *u and its divergence for u € Li (R?) using the properties of the
derivatives of H that we established in Lemma 7.1. We may assume that u is Borel. Indeed, otherwise
we can redefine it on a set of Lebesgue measure zero to obtain a Borel representative. This would not
change the values of VH % u. Since VH € L®(R?) and is compactly supported, VH * u is well-defined.
Further, since AH € M(R?) and is compactly supported, formula (4.2.5) from [17, Chapter 4] can be
applied, yielding

V- (VH xu)=AH *u (7.12)

in the distributional sense.
In view of VH € LY(R%) n L*(R%), Young’s inequality for convolutions implies that VH % u €
LY(RY) A LP(R?) for v e LY (R?) or u e L¥(R?), and

IVH x ul| (p1rayye <[VH||(z1rayyeulprga), (7.13a)
IVH * uf(poemayye <|VH|(pomaya|ul L1, (7.13b)
HVH * UH(LOO(]Rd))d §|‘VHH(L1(R<1))(LHUHLoc(Rd). (7.13C)

Next, since u is Borel and AH is a finite vector measure, [5, Proposition 3.9.9] applies and yields AH xu €
LY(RY) for u e LY(RY) and AH *u e L®(R?) for u e L®(RY), and
|AH * ul| g1 (ray <[AH | paqray ] Lrre), (7.14a)
HAH * ’LLHLoc(]Rd) gHAHHM(Rd) HUHLoc(Rd). (714b)
Now we return to the original bilinear maps. First, assume w € L*(0). Then, the product w(VHx*u) is
a well-defined function. Combining (7.13a) and (7.13b) with Holder’s inequality, directly yields estimates
(7.10a) and (7.10b), respectively.

Let w € WH*(0). Due to the chain rule and (7.12), the divergence of VH  u is well-defined and
satisfies

V- (w(VH *xu)) =w(AH xu) + Vw - (VH * u) a.e. in O. (7.15)

Estimating the right-hand side of (7.15) using Hoélder’s inequality and (7.13a) and (7.14a) ((7.13c)
and (7.14b)), we finally arrive at (7.10c) ((7.10d)).
O

Lemma 7.3. Let assumptions of Lemma 7.1 be satisfied. Let V be as defined in (7.1), O < R? be a
domain, and T > 0. Then,
VeB(L*((0,T) x O) x L (Er); (L™ ((0,T) x 0))%)
N B(LZ((0,T) x O) x L™ (Er); (L*((0,T) x 0))%)
V- (V(-,) €B(L*(0,T; WH(0)) x L= (Er); (L*(0,T; L1(0)))?)
N B(L*(0, T; WH*(0)) x L*(Br); (L*(0,T5 L*(0)))?),

and
IV(w, )l (po0,0yx0))¢ <C2s]wlLe(0,1)x0) [ L1 (Er)> (7.16a)
IV (w, w) (Lo (0,0yx0))¢ <C26]wlLe(0,1)x0) Ul L21(E7) (7.16b)
IV - (V(w,w))| (0,751 (0)) <Cor|w] Lo, 0,wr. 0y |ul Lo £y (7.16¢)
IV - (V(w,u)) | Lo 0,150 (0)) <C2slwllpeo, w10 || (mr), (7.16d)

where C;s are as in Lemma 7.2.
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Proof. By Lemma 7.2,V is a bounded bilinear map between the corresponding time-independent spaces.
Hence it is well-defined, bilinear, and bounded as a mapping between the considered time-dependent
spaces and preserves strong measurability. Estimates (7.16) are a direct consequence of the corresponding
bounds (7.10). O

For later use, we define

029 = maX{C’27, ng}. (717)

7.2 Well-posedness of (1.6) and non-explosion of support

In this Subsection, we establish several results for the Cauchy problem (1.6) for a fixed w. They include
local well-posedness as well as non-explosion of support. Although Theorem 4.8 requires compactly
supported ug, here we allow for more general initial data.

Notation 7.4. To simplify notation, unlike in Section 6, we explicitly mention only the parameters T
and S for the constants/mappings C; and sets U; and W; introduced in this Subsection.

Theorem 7.5 (Local well-posedness of (1.6)). Let (1.3a)—(1.3c) be satisfied and m,my > 0 be some
numbers. For T € (0,1] and S > 0 define

C30(S) :=2C2] x| £ ((0,00)) M0 S, (7.18a)
8 1 1o )2 2 mZmooeTc‘ (S)
Cgl(S) :§CQQHXHCI}([O,OO)) max {1, m;mozoezTcwHX HLOO((U,I))C%, 30 }
smax {mooeTCSU(S)a mwe%TCSU(S)} ) (7.18b)
1
Cs2(T,5) i=—— 7.18¢
2(T5) 1 - T35C5(5) (7.18)
T2C3 (S
Cs3(T, S) = 3 (S)m (7.18d)

1—-T35C5(S)
T4(S) :=min { In2 ! } (7.18¢)

L C30(8)" (SC51(9))?

and
Us =0 < up e L2RY) n LARD :  Juolpaguny < m. Juolgequn < mac),
Us(T) :={0 <ue L (Br) n L*(Er) : |ulpige <m, |ulpore) <2me  ae in (0,7)},
(7.19)
Wa(T, S) :=={0 < we LP(0, T; WH?(RY)) : |w] Lo 0,7;w 100 ey < S},
where Cag is from (7.17) and Chg is as in (6.14b). Then, if
ug € Us
and
w € Wa(T, S) (7.20a)
for some
S >0, (7.20b)
0<T <Ty(S), (7.20¢)

then there exists a unique u such that (u,w) is a solution in [0, T] xR% to (1.6) (in terms of Definition 4.1).
The solution map

Uy : Us x Wa(T, S) — Uy(T), (g, w) — u,
is well-defined and Lipschitz continuous in the following sense:
[th (uo, w) — Un (o, @) | o1 (p7) <C32(T,S) [uo — o 11 (gay + Css(T, S) [w — @l ¢ o, 7, w100y (7-21)
for any open O < R?* such that
{U (ug,w) >0} = [0,T] x O. (7.22)
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Proof. Let T, S, and w satisfy (7.20), ug € Us, and @ € Uy(T'). Then, (6.2) holds for
V= V(u,w),

as demonstrated in Lemma 7.3. Let u be the corresponding solution to (6.1) (in terms of Definition 6.1).
Its existence and uniqueness is established in Lemma 6.6. Further, since ug € L'(R?) is assumed,
Lemma 6.8 implies that u has the regularity as required in Definition 4.1. Set

Uz (g, w, 1) 1= u.

We prove that Us(ug,w,-) is a self map and a contraction in Uy. To start, we verify that Us(ug,w, )
maps into a bounded subset of L*(R%). From estimates (6.28a) and (7.16d) we obtain
|ull Lo g7y <C16(T, X, V(w, @), uo)
<o T 20,0 IV V(@@ 2 (5
gmooeT029HXHLOO((O,oo))HwHLI,OC(U,T;WI,OO(Rd))HﬁHLOO(ET)
gmweQTCZQHXHLw((o,x))mocs
=mel C30(S), (7.23)

with C5 as defined in (7.18a). Next, we establish a stability property for Us. For wug, iy € Us, w, W €
Wa(T, S), and u, u € Uy(T) we have the following estimate due to (6.39), (6.46), and (7.16) and bilinearity
of V:

o (o, w, u) — U (i, W, @) | poor () — [0 — Toll 1 (ga)

gCQB(Tv)(aV(wﬂu)vuO)
' (T [1{us0y V- (V(w,u) = V@, D) s 5, + T Lm0y V(w,u) = V(
<T2Cos(...)

: (Hv : (V(’LU, u = a))HLI’l(ET) + H]'{u>0}v : (V(’LU - @’a)Hval(ET)

D e 1y )

V0,0 = D)ozt 2o + Lm0y V@ = B D) gy e )
<2T'% CogChs(...)
: (HwHlew(O,T;lew(Rd))Hu — =gy +mfw - 73Hc([O,T];vvw(O)))
<2T3 CagCas (... )S|u — Al pot gy + 277 CagCas (... )m [w — B o 13w (0)) » (7.24)
where O c R? is any open set such that
{u>0}c(0,T) x O.

We can further estimate 2C29Ca3(. .. ) using (6.47), (7.23), and (7.16b) and the interpolation inequality
for LP spaces:

2C99C23(T, x, V(w, u), ug) =2C29Ca1 max {016, 01%6} (T, x, V(w,u),uo)
<C31(95), (7.25)
with C5q as defined in (7.18b). Combining (7.24) and (7.25), we obtain
|t (w0, w, w) — Us(To, W, U)|| o1 ()
<T%SCM(S)HU — Ul gy + TéCBl(S)m Jw — @HC([O,T];WLW(O)) + fuo — aOHLl(Rd) : (7.26)

Altogether, we see from (6.39), (7.19), (7.23), and (7.26) that Usa(ug,w, ) is a self-map and a contrac-
tion in Uy(T) for any ug € Us and

0 <T < Tu(S),

with T} as defined in (7.18e). Equipped with the metric generated by the ||- || =.1(g,y, Us(T') is a complete
metric space. Hence, we can apply Banach’s fixed point theorem, which produces the unique solution to
(1.6) in E7 (in the sense of Definition 4.1). We define

Uy : Uz x Wo(T, S) — Us(T), Uy (ug, w) = u,
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where v is the first component of the solution corresponding to ug and w.

It remains to verify (7.21). Plugging u = U; (ug, w) and u = U; (ty, W), into (7.26), we obtain

[t (w0, w) = Us (flg, ®) | o1 5y <TZSCis1 ()L (w0, w) — Us (T, B) | 0.1 (1)

+ T2 Cs1(S)m |w — @ oo 7w 0y) + [0 = ol 1 (ray 5

for O as in (7.22). Since T SC5(S) < 1, (7.27) yields

T%Cg,l (S)m
1—T25C5 (S
1
+ —
1-— T55031(S)

|th (w0, w) — U (uo, D) Lo (Br) <

so (7.21) holds.

) lw — @HC([O,T];WLOO(O))

luo — aOHLI(Rd) )

(7.27)

Our next result ensures that the support of a solution to (1.6) does not explode over small times.

Theorem 7.6 (Support control for (1.6)). Let the assumptions of Theorem 7.5 be satisfied. Define

1
C34(8) :=8———=-Cas| X[ ((0,00))M05

S TA(d+2)
Cs5(t, 5) :=et4 max{,,z:"gﬁ,ucl%_i)}
and
' d+2
P N T @ ooy IF T (0.1
and let
ug € Us,

supp(ug) € B for some p € (0, ps].

i

Then, there exists a function

Ts : (0,00) - (05T4(S)]a
with the following property: if

we Wa(T,S) and 0<w<1in[0,T]xR?

for some

S >0,
0<T <T5(9),

(7.28a)
(7.28b)

(7.29a)

(7.29b)
(7.29¢)

then the u-component of the corresponding unique solution to (1.6) in [0, T] x R satisfies for allt € [0,T)]:

supp(u(t, ")) < Beoyst,9)s
0< Cgs(t, S) < 035(T, S) < 2.

Here Cag is from Lemma 7.2 and Wo and Ty are from Theorem 7.5.

(7.30a)
(7.30D)

Proof. Let T, S, and w satisfy (7.29) and (7.20c). Then, Theorem 7.5 provides a unique solution with

the first component u € Uy(T') corresponding to such ug and w. Set

V= V(u,w).

Combining (7.3a), (6.39), (7.11), (7.16b), and (7.16d), we obtain for the functions defined in Lemma 6.11:

024(T; X V) <6‘434(‘51)5
P1 (Ta X V) >p3;
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pQ(Xv‘/va’) = (1

=:p4(S, a).

),

a

This leads to the following sufficient conditions on a, b, §, and p:

0 < p < ps, (7.31a)
5e(0,1), (7.31D)
be (p,p), (7.31c)
a> 034(‘2), (7.31d)
1- b
P3
Moo
> . 31
@z 077 (7.31e)

By assumption (7.28b) we have (7.31a) satisfied. Take

My 034(5)
= 1
a max{bQ((Sp)Q’ +1_p% )

so that all conditions (7.31) are met. Finally, set

1 1
T5(S) :=min {T4(S), %2 In (5 min {p, p4 (S, a)}) } .
a
Now Lemma 6.11 applies and yields (7.30).
O
The next Theorem provides a bound that controls the solution change in KR norm over small times.

Theorem 7.7 (Local stability in Mg for (1.6)). Let the assumptions of Theorem 7.6 be satisfied. Then,
there exists a function
Cv36 : (0,00) - (05 OC)

with the following property: if T,S, and w satisfy (7.29), then the u-component of the corresponding
unique solution to (1.6) in [0,T] x R? satisfies

Jut, ) = ol a5y <2 Ca6(S)  for ali t e [0,T]. (7.32)

Proof. Let T, S, and w satisfy (7.29) and (7.20c). We apply estimate (6.44) from Lemma 6.8 taking

V= V(u,w),
T7:=0,
R :=2p.

By (6.33) we have 142, =1 in B,. Combining this observation with (3.1) and (6.44), we conclude that
1 d
u(t,-) = w0l pye () <2 (20)2 Cs7Chs (T, x, V(u, w), uo) for all t € (0,T]. (7.33)
Estimating in the same fashion as, e.g. in the proof of Theorem 7.5, one readily finds that

(2/))%037018 (T, x, V(u,w), up) < Cs6(S) (7.34)

for a suitable function C36. Combining (7.33) and (7.34), we arrive at (7.32). O
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8 Local well-posedness of (1.6)-(1.7) and (1.1)-(1.2) (proofs of
Theorems 4.8 and 4.10)

Notation 8.1. To simplify the notation, we do not explicitly mention the dependence on the parameters
listed in Theorem 4.8 for constants, mappings, and sets the we introduce in the proof below.

Notation 8.2. We assume that any operator P acting on a space V' of time-independent functions
extends to time-dependent functions v : [0,T] — V, T > 0 in the natural way, i.e.

Finally we are ready to prove Theorem 4.8 on local well-posedness of system (1.6)-(1.7). The proof
is based on decoupling the two equations, solving them separately by means of the tools established in
Sections 5 and 7, and then applying Banach’s fixed point theorem.

Proof of Theorem 4.8.

Step 1. To begin with, we extend the result of Theorem 4.5 in order to solve (1.7) in the time-dependent
setting. For T > 0 we define

Us(T) :={u e Uy(T): supp(u(t,”)) < B, for all £ € [0, T,
u— po € C([0,T]; Mk r(B))),
|u(t,-) — MO‘|MKR(E) <C for all t € [0, T]},

and
Wg(T) Z={’LU c C([O,T], WLOO(BP; [0, 1])) : Hw(t, ) — wOHWI’OO(BP) < CQ forallte [O,T]},
where Cy and Cy are from Theorem 4.5 and Uy(T) is from Theorem 7.5. Then,

ue Us(T) = u(t,-) e Uy for all t € [0,T7], (8.1)
w € W3(T) = w(t, ) e W1 for all ¢t € [0, T7.

We are given a pair (1o, wp) that meets the conditions of Theorem 4.5. With (8.1) and Theorem 4.5 it
follows that

uwe Us(T) = Wi (u(t,-)) € Wh for all t € [0, 7]
and
IWiu(ty, ) = Walultz, )lwr=s,) < Cslulty, ) —ults,)|Lrs,)  forall t1,ts € [0,T],
yielding
Wi Us(T) — W5(T). (8.2)

Step 2. We turn to equation (1.6) that we want to solve for ug € Uy and w € W3(T') and ensure that the
u-component of the solution belongs to Us(T). In order to use the theory prepared in Subsection 7.2 for
this equation, we first extend w from B, to the whole of R?. For this purpose, we introduce an extension
operator £ such that

£ & LW (B,): W (BY)),

Ew=w in E,

EWH(B;[0,1]) « WH(R% [0,1]),

HEHL(WI’OO(BP);WI,I(]Rd)) < 2.
Consequently,

€ € L(C([0, T]; WH(B,)): C([0, T]; WH(RY))), (8.3a)

Ew=w in [0,T] x B,, (8.3b)
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E(C([0,T]; WH*(B,;[0,1]))) = C([0, T]; W™ (R [0, 1])), (8.3¢)

€N Lcqo,m:w = (B,));c(fo,rw o ®e))) = [ElLwroe (B, )W @ayy < 2. (8.3d)
Define
Css :=2(Hw0HW1,oo(BP) + CQ), (84&)
Ch 2
Te :=mi Ts(C _— 8.4b

where T5 and Csg originate from Theorems 7.6 and 7.7, respectively. Due to (4.9), each ug € Uy < Us,
where Us is as defined in Theorem 7.5, satisfies (7.28). Hence, Theorems 7.5-7.7 apply and together with
(8.4) yield

Uy (U x Wa(T, Csg)) cUs(T)  for T e (0, Tp), (8.5)

where Uy and Wy are as defined in Theorem 7.5. Furthermore, due to (8.3a) and (8.4a),
E(W3(T)) = Wa(T, Csg) for T > 0. (8.6)

From (8.5) and (8.6) we deduce

U (Us x EW3(T))) < Us(T) for T € (0,Tg). (8.7)
Step 3. In view of (8.2) and (8.7), for any T € (0,Ts) the map

S1: Uz x Us(T) — Us(T), Si(ug,w) = U (ug, EW1 (u))

is well-defined. Let uq, Ug € Uz, and u,u € Us(T'). Using (3.2), (4.8), and (7.21), we estimate

|81 (w0, w) = 81 (to, W) oo (5, — Cs2(T, Css) o — ol L1 may
<Cs3(T, Css) [Wr(u) = Wi(W) | oo, rp:wr ,))
<C3Cs3(T, Css) |u — tl o0, 73 Mm 1 (By))
<pC3Cs33(T, Css) [u — Ul o1 (g5, -

Recalling (7.18d), we see that
pC3C33(T, Csg) o 0.
Consequently, there exists some
T1 € (0, Tﬁ),

such that for any T € (0, T1], uo, Go € Us, and u, @ € Us(T') it holds that

~ ~ 1 ~ 1 .
[S1(u0, w) = Si(bo, @) L1 (pry < 5 0 = Wl g0 (1) + 5039 [0 — ol 1 (gay - (8.8)

Due to (8.8), S1(ug,-) is a self-map and contraction in this space for any ug € Us. Equipped with the
metric generated by the L*!(Er)-norm, Us(T) is clearly a complete metric space. Hence, Banach’s fixed
point provides the existence of a unique fixed point

ue Us(T).
Define the solution map
Sy : Uy — Us(T), Sz (up) := u.
Plugging u := S2(ug) and 1 := Sa(up) into (8.8), we arrive at
|82 (o) = S2(o)ll o1 () < C9 [0 — Toll 1 gy - (8.9)
Together with (3.2) and (4.8), estimate (8.9) leads to

182 (uo) = S2(@o)| Loe 1 (1) + IW1(S2(u0)) = WilS2 (o))l o, 77:w1.0 (5, )) < Ca o — ol 1 gay - (8-10)

39



Define
83 : U2 — U5(T) X S(Wg(T)), 83(U0) = (82(U0),5W1(82(U0)))

Combining our findings so far with Theorems 4.5 and 7.6, we conclude that for any T € (0,71] the
constructed map Sz is well-defined and produces solutions for (1.6)-(1.7) in [0,7] x R? in terms of
Definition 4.4 that satisfy conditions (4.11) and (4.12). Furthermore, by (8.10) these solutions also
satisfy (4.14).

Step 4. It remains to verify local uniqueness. For some ug € Uy and T € (0,T1] let (&, @) be a solution
to (1.6)-(1.7) in [0,T] x R that satisfies (4.13) but is unequal to (u,w) := S3(up) at some t € (0,T). Set

Tre=inf{te[0,7]: (uuw)(t,)# @a)(t) inL'RY) x L' (R}

The uniqueness part of Theorem 4.5 ensures that 77 > 0. By continuity the two solutions therefore
coincide at t = T, so

(u,w)(Ty,-) = (@, ®)(Ty,-)  in LY(RY) x LY(RY). (8.11)
Since T < Ty, w e W3(T), and & satisfies (8.3d), we have
w e Wu(T, S) for some S € (0, Css). (8.12)
Exploiting continuity of @ in the W1 (R%)-norm, we conclude with (8.11) and (8.12) that
W € Wa(Tg, Css) for some Ty € (T7,T].
Then, due to (8.5), we have
u e Us(Ts),
so that, in particular,
supp(ii(t,-)) = B, for all t € [0, Tg]. (8.13)
Now consider
= € (01,05, -
In view of (8.13),
wa(t,-) = oa(t,-)  in LY(RY) for all t € [0, Tx],
so that
(4, w) € Us(Ts) x E(W5(T5))

is a solution to (1.6)-(1.7) in [0, Ts] x RY. Moreover, we can make use of the uniqueness parts of Theo-
rems 4.5 and 7.5 and conclude that @ is a fixed point of Si(ug,-) in Us(Ts), hence must coincide with w.
Finally, yet another application of the uniqueness part of Theorem 4.5 yields that w = @ in [0, 73] x B,,
as required.

O
The proof of Theorem 4.10 is straight-forward.

Proof of Theorem 4.10. This is a direct consequence of Theorem 4.9 and the fact that every Lebesgue-
measurable function a.e. coincides with a Borel one. |

Finally, let us consider an application of Theorem 4.8.
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Example 8.3 (Existence for p a point mass). For the pair (ug, wo) from Ezample 5.12 we already know
that it satisfies (4.4) for any m > 0 and p € (0,1). Choose some pg > 0 and let

ugp € L*(R?), luoll L1 (ray = m, supp(uo) = By, -
Set
uox () := ANug(Az) for z € R4, A > 0.
Then, for A > 0 it holds that
uox € L'(R?), luoalLr®ay =m,  supp(uoxn) € Bx-1,, (8.14a)

and

|| wnsode = o.0) = | ule)eO ) - p(0)) da
R4 R4
<mA~'py  for all p € WHP(R?) such that |V e re) < 1. (8.14b)

Now assume that m and p satisfy (4.9). In consequence of (8.14), ugx € Us for me = A%|ug| o0 ga)
provided that

A {4 Qm}
> pomaxi{ —, — .
Po 0 O

Thus, by Theorem 4.8 any essentially bounded compactly supported and suitably rescaled function can
serve as an initial value giving rise to a locally unique solution to system (1.6)-(1.7).

The choice of ug close to ug = mdy has practical relevance. It can, for instance, describe an initial
invasion stage of a tumour.
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