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PHLP: Sole Persistent Homology for Link
Prediction - Interpretable Feature Extraction

Junwon You, Eunwoo Heo, Jae-Hun Jung

Abstract— Link prediction (LP), inferring the connectivity
between nodes, is a significant research area in graph data,
where a link represents essential information on relationships
between nodes. Although graph neural network (GNN)-based
models have achieved high performance in LP, understanding
why they perform well is challenging because most comprise
complex neural networks. We employ persistent homology (PH),
a topological data analysis method that helps analyze the topo-
logical information of graphs, to explain the reasons for the high
performance. We propose a novel method that employs PH for
LP (PHLP) focusing on how the presence or absence of target
links influences the overall topology. The PHLP utilizes the angle
hop subgraph and new node labeling called degree double radius
node labeling (Degree DRNL), distinguishing the information of
graphs better than DRNL. Using only a classifier, PHLP performs
similarly to state-of-the-art (SOTA) models on most benchmark
datasets. Incorporating the outputs calculated using PHLP into
the existing GNN-based SOTA models improves performance
across all benchmark datasets. To the best of our knowledge,
PHLP is the first method of applying PH to LP without GNNs.
The proposed approach, employing PH while not relying on
neural networks, enables the identification of crucial factors for
improving performance.

Index Terms—Graph analysis, link prediction, persistent ho-
mology, topological data analysis.

I. INTRODUCTION

GRAPH data pervade numerous domains such as social
networks, biological systems, recommendation engines,

and e-commerce networks [1], [2]. The graph is well-suited
for modeling complex real-world relationships.

Predicting missing or potential connections within a graph is
essential for many applications, unlocking valuable insight and
facilitating intelligent decision-making. The ability to predict
future network interactions can be applied to diverse domains,
including friend recommendations on social networks [3]–[5],
knowledge graph completion [6], [7], identification of potential
drug-protein interactions in bioinformatics [8], [9], prediction
protein interactions [9]–[11], and optimization of supply chain
logistics [12], [13].

The link prediction (LP) problem has been categorized
into three major paradigms: heuristic methods, embedding
methods, and graph neural network (GNN)-based methods,
which are explored in detail in Section II. Recently, compared
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Fig. 1. Difference between the GNN-based and proposed methods. (Left)
The GNN-based method extracts feature vectors through optimization (dashed
area), making it difficult to interpret what these vectors represent. (Right)
The proposed method extracts feature vectors through the designed analysis
process, resulting in interpretable vectors.

to heuristic [3], [14]–[18] and embedding methods [19]–[22],
GNN-based models have achieved significant score improve-
ments in capturing intricate relationships within graphs [23]–
[28].

However, GNN-based methods are comprised of neural
networks, making it challenging to understand the reasons
for their performance. To explore these reasons, we employ
persistent homology (PH), a mathematical tool in topological
data analysis (TDA) that enables the inference of topolog-
ical information regarding the manifold approximating the
data [29], [30] by quantifying the persistence of topological
features across multiple scales. Various research has had
successful outcomes in applying PH to graph classification and
node classification tasks [31]–[40]. In contrast, relatively few
studies have explored using PH for LP. The topological loop-
counting (TLC) GNN [27] is a notable example that uses PH.
The TLC-GNN injects topological information into a GNN,
and experiments were conducted on benchmark data where
node attributes are available.

In this context, as illustrated in Fig. 1, we present a novel
approach to LP, called PHLP, which calculates the topological
information of a graph. To use the topological information of
subgraphs for LP, we measure how the topological information
changes depending on the existence of the target link, as
illustrated in Fig. 2. To extract topological information from
various perspectives, we utilize angle hop subgraphs for each
target node. Additionally, we propose new node labeling
called degree double radius node labeling (Degree DRNL),
which incorporates degree information for each node, using
DRNL [24].

The contributions are summarized as follows:
• We develop an explainable LP method, PHLP, that em-
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Fig. 2. Topological features in subgraphs with and without a target link (u, v). The diagram illustrates the topological information extraction process for the
subgraph N , as described in Section III-D. The presence (top) or absence (bottom) of the target link changes the topological structure of the graph. Top row:
When the target link is connected, three features (C1, C2, and C3) are detected shown in the persistence image (PI) in the right column. The PI represents the
topological features of the subgraph N (Section III-E). Bottom row: When the target link is absent, only two features (C2 and C3) are detected as depicted
in the corresponding PI.

ploys the topological information for LP through PH
without relying on neural networks, as illustrated in
Fig. 1.

• We demonstrate that the proposed method, even with a
simple classifier such as a multilayer perceptron (MLP),
can achieve LP performance close to that of state-of-the-
art (SOTA) models. This method surpassed the SOTA
performance for the Power dataset.

• We reveal that merely incorporating vectors computed by
PHLP into existing LP models, including SOTA models,
can improve their performance.

• To the best of our knowledge, the proposed method using
PH without a GNN is the first to achieve performance
close to that of SOTA models.

II. RELATED WORK

A. Link Prediction

Heuristic Methods. Heuristic-based approaches to LP com-
pute the predefined structural features within the observed
nodes and edges of the graph. Classic methods, such as com-
mon neighbors [3], Adamic-Adar [3], Jaccard coefficient [14],
and preferential attachment [15], rely on simple heuristics
that capture certain aspects of node relationships. Zhou et
al. [16] proposed a local random walk method, whereas Jeh
and Widom [18] developed SimRank to quantify similarity
based on the structural context. Although heuristic methods
provide a preliminary understanding of LP, they are limited by
their inability to capture complex relationships within graphs.
Furthermore, heuristic methods are effective only when the
defined heuristics align with the graph structure; therefore,
applying heuristic methods across all graph datasets can be
challenging.
Embedding Methods. Embedding methods map nodes from
the graph into a low-dimensional vector space where geometric
relationships mirror the graph structure. Koren et al. [19]
demonstrated the power of matrix factorization for collabora-
tive filtering. Perozzi et al. [20] introduced DeepWalk, using
random walks to generate node sequences and employing the
skip-gram model to produce embeddings. Tang et al. [22]
developed large-scale information network embedding (LINE),
which preserves local and global structures. Grover and
Leskovec [21] further advanced this approach with Node2Vec
(N2V), proposing a flexible notion of the neighborhood to
capture diverse node relationships.

Embedding methods are advantageous due to their applica-
bility regardless of the data characteristics using optimization.
Node representations capture global properties and long-range
effects through the learning process. However, these methods
often require significantly large dimensions to express basic
heuristics, resulting in lower performance than heuristic meth-
ods [41]. Moreover, in embedding methods, Ribeiro et al. [42]
explained that two nodes with similar neighborhood structures
may have vastly different embedded vectors, especially when
they are far apart in the graph, leading to incorrect predictions.
GNN-Based Methods. The GNN has become a pivotal ap-
proach to LP due to its ability to grasp graph-structured
data. By effectively incorporating local and global information
through message passing and graph aggregation layers, GNNs
enhance LP performance. The model by Zhang et el. [24]
uses subgraphs as the primary structural units to learn and
predict connections, resulting in significant improvement. This
paradigm shift led to research focusing on refining and advanc-
ing subgraph methods in the context of GNNs [25], [26], [28].
Following this trend, Pan et al. [28] proposed WalkPool (WP),
a new pooling mechanism that uses attention to jointly encode
node representations and graph topology into learned topo-
logical features. However, despite their superior performance,
GNN-based methods pose a challenge in comprehending the
underlying mechanisms driving their predictions. Within this
context, we develop the PHLP, based on PH, with performance
comparable to GNN-based models.

B. Persistent Homology on Graph Data

In recent years, PH, a method of analyzing the topological
features of data, has been widely used to analyze graph data.
It has demonstrated its effectiveness in graph classification
tasks by analyzing the topology of graphs [31]–[38] and has
been applied to node classification tasks [31], [39], [40].
However, its suitability for LP tasks has been limited, and
research on applying PH for LP has progressed slowly. Yan
et al. [27] proposed an intriguing approach by integrating PH
with GNNs. While their model demonstrates the potential of
PH for capturing topological features of graph data, it relies on
GNN structures. Additionally, the TLC-GNN requires further
research on datasets without node attributes.

Although PH has demonstrated success in graph and node
classification tasks, its filtration technique, tailored to analyz-
ing the entire graph structure, might not be optimal for LP
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Fig. 3. Overall structure of persistent homology for link prediction (PHLP) and multiangle PHLP (MA-PHLP). (a) PHLP calculates the topological information
based on the existence of target links in angle hop subgraphs for each target node. (b) With a classifier, MA-PHLP integrates topological information across
various angles to perform LP.

as the role of each node in LP differs from that in graph
or node classification tasks. To address this challenge and
advance research in LP, we develop a filtration method tailored
explicitly to LP tasks.

III. METHOD

A. Outline of the Proposed Methods
We propose (a) PHLP and (b) multiangle PHLP (MA-

PHLP) as described in Fig. 3. The PHLP method analyzes the
topological structure of the graph, focusing on target links.
First, PHLP samples a (k, l)-angle hop subgraph for the given
target nodes (Section III-B). Then, PHLP computes persistence
images (PIs; Section III-E) for cases with and without the
target link. To calculate PIs, we introduce the node labeling
and define the edge-weight function (Section III-C). Through
PHLP, each target node is transformed into a vector comprising
PIs. In addition, LP is performed using the calculated vectors
with a classifier (Section III-F). To reflect diverse topological
information, we also propose MA-PHLP, which analyzes data
from various angles (Section III-G).

B. Extracting Angle Hop Subgraph
Given a graph G = (V,E) and two nodes u, v ∈ V , a k-hop

enclosing subgraph for (u, v) is defined as N k
u,v = (V ′, E′)

such that

V ′ = {z ∈ V | d(u, z) ≤ k or d(z, v) ≤ k},
E′ = {(z, w) ∈ E | z ∈ V ′ and w ∈ V ′},

where d(z, w) is the minimum number of edges in any
path from z to w in G. We define a (k, l)-angle hop en-
closing subgraph, where the term “angle” signifies viewing
the subgraph from multiple perspectives. The (k,l)-angle hop
subgraph is a generalization of the k-hop subgraph. Given a
graph G = (V,E) and two nodes u, v ∈ V , a (k, l)-angle hop
enclosing subgraph for (u, v) is defined as N (k,l)

u,v = (V ′, E′)
such that

V ′ = {z ∈ V | d(u, z) ≤ k or d(z, v) ≤ l},
E′ = {(z, w) ∈ E | z ∈ V ′ and w ∈ V ′}.

Thus, the angle hop can generate subgraphs in various forms,
providing flexibility to adapt to various graph characteristics.

C. Filtration of the Subgraph

For a given subgraph, the Rips filtration [43]–[45] is em-
ployed to calculate the topology using PH. To apply the
Rips filtration, we define an edge-weight function using node
labeling that reflects the topology of the given graph.

(a) DRNL

(b) Degree DRNL

Fig. 4. Node labeling on graphs. (a) Node label values without considering
the graph structure cannot distinguish between G1 and G2 using DRNL. (b)
Applying Degree DRNL allows G1 and G2 to be distinguished solely by
node label values.

(a) DRNL (b) Degree DRNL

Fig. 5. Persistence images (PIs) for two node labeling methods for the graphs
in Fig. 4. (a) DRNL exhibits identical zero-dimensional PIs for G1 and G2, (b)
Degree DRNL produces distinct outcomes, effectively distinguishing between
the two.

Degree DRNL. Zhang et al. [24] introduced DRNL, which
computes the distance from any node to two fixed nodes. For
any subgraph N = (V ′, E′) of G and two nodes a, b ∈ V ′,
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the DRNL f
(a,b)
drnl : V ′ → N based on (a, b) of G for any vertex

w in V ′, is defined as

f
(a,b)
drnl (w) = 1 +min(d(w, a), d(w, b)) + qw(qw + rw − 1),

where qw ∈ Z and rw ∈ {0, 1} are integers representing
the quotient and remainder, respectively, such that d(w, a) +
d(w, b) = 2qw + rw. We call these two nodes, a and b, center
nodes. These center nodes do not need to be the target nodes
used when extracting the subgraph.

However, DRNL encounters limitations when the graph
is transformed into node-label information. As depicted in
Fig. 4a, DRNL assigns the same node labels to different
graphs, resulting in identical zero-dimensional PIs (Fig. 5a,
Section III-E). To incorporate the local topology of each node
with the effects of DRNL, we introduced Degree DRNL. For a
given subgraph N = (V ′, E′) of G and center nodes a, b ∈ V ′,
the Degree DRNL f

(a,b)
degdrnl : V

′ → R based on (a, b), for all
vertex w in V ′, is defined as

f
(a,b)
degdrnl(w) = f

(a,b)
drnl (w) +

M − deg(w)

M
,

where M denotes the maximum degree of nodes in N . The
(M − deg(w))/M term above assigns larger values for lower
degrees of w. When M = deg(w), the value of Degree
DRNL matches the original DRNL, ensuring that the edges
connected to nodes with higher degrees are assigned smaller
values, promoting their earlier emergence in the filtration.
Fig. 4b demonstrates various node labels obtained using De-
gree DRNL, resulting in PIs that can be distinguished from
each other (Fig. 5b).
Edge-weight function. For a given subgraph N = (V ′, E′),
f : V ′ → N denotes any node labeling function. The edge-
weight function W : E′ → R, for any edge (w, z) in E′, is
defined as

W (w, z) = max(f(w), f(z)) +
min(f(w), f(z))

max(f(w), f(z))
.

The min/max term in the definition of W refines values
further, enhancing the discriminative power by reducing the
occurrence of identical edge weights.

D. Persistent Homology

Given an edge-weighted subgraph N = (V ′, E′,W ), we
construct a Rips filtration and compute its PH. First, we create
a sequence of subgraphs {Nϵ}ϵ∈R, where each Nϵ = (V ′, E′

ϵ)
and E′

ϵ = {e ∈ E | W (e) ≤ ϵ}. Second, we convert each
subgraph Nϵ into the Rips complex Kϵ = {τ ∈ X | (w, z) ∈
E′

ϵ for any two vertices w, z ∈ τ}, where X is the power set
of V ′. In Kϵ, a simplex τ is formed when the vertices in
τ are pairwise connected by edges in Nϵ. Then, the Rips
filtration is obtained as Kϵ1 ↪→ Kϵ2 ↪→ · · · ↪→ Kϵm = X for
ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵm. Third, we compute the p-dimensional
homology group Hp(Kϵ) for each complex Kϵ and track how
these groups change as ϵ increases. The persistence diagram
D [45] comprises persistence pairs (b, d) representing the ϵ
values at which a homological feature appears b and disappears
d, respectively, in the filtration.

E. Persistence Image

We convert the persistence diagram into a PI [46]. For a
given persistence diagram D, consider a linear transform L :
R2 → R2 defined by L(x, y) = (x, y − x). The image set
of D under this transformation is denoted as L(D). For each
point (b, d′) in L(D), a weight function ϕ(b,d′) : R2 → R is
defined that assigns a weight to each point in the persistence
diagram. A common choice for ϕ(b,d′) is the Gaussian function
centered at (b, d′). The nonnegative function is defined as h :
R2 → R, as h(x, y) = 1/ log(1 + |y|). The function h is zero
along the horizontal x-axis, and is continuous and piecewise
differentiable, satisfying the conditions presented in [46]. The
persistence surface ρD : R2 → R is defined as

ρD(z) =
∑

(b,d′)∈L(D)

h(b, d′)ϕ(b,d′)(z).

The continuous surface ρD is discretized into a finite-
dimensional representation over a predefined grid. This grid
consists of n cells, each corresponding to a specific region
in the plane. The PI is defined as an array of values I(ρD)p
for each cell p. Each I(ρD)p in this array is computed by
integrating the persistence surface ρD over the area of cell p:

I(ρD)p =

∫∫
p

ρD dy dx.

F. Predicting the Existence of the Target Link

For the given target nodes (u, v), we sample the (k, l)-angle
hop subgraph N (k,l)

u,v , denoted as N− (Section III-B), assuming
that the target link does not exist during this process. On this
subgraph, we extract topological features by calculating PH
and its vectorization (i.e., the PI, as described in Sections III-D
and III-E). The vectorization is calculated for each dimension
and concatenated. If k ̸= l, for symmetry, we repeat the same
process with the (l, k)-angle hop subgraph once and consider
the average of the two vectors, denoting this vector as x−.
To observe the difference in topological features, we consider
a subgraph N+ obtained by connecting the target link to
N−. For this graph, x+ denotes the vector obtained using
this method.

To predict the existence of the target link with the vectors
x− and x+, we employ an MLP classifier Φ : R2(d+1)n2 → R
where n represents the resolution of the PI, and d denotes the
maximal dimension of PH. The model predicts the existence of
a link between two target nodes with the following probability:

zuv = σ(Φ(x)),

where x is the concatenation of x− and x+, and σ is the
activation function. For the training dataset X ⊆ V × V ,
comprising positive and negative links corresponding to the
elements of E and (V × V ) \ E, respectively, we define the
loss function as follows:∑

(u,v)∈X

BCE(zuv, yuv),

where BCE(·, ·) represents the binary cross-entropy loss and
yuv denotes the label of the target link (u, v), which is 0 for
negative links or 1 for positive links.
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G. Multiangle PHLP

The MA-PHLP maximizes the advantages of PHLP by
examining data from various angles through the extraction of
subgraphs based on a hyperparameter, the maximum hop (max
hop, denoted as H). The types of angles are elements of all
combinations of k and l within the set {(k, l) ∈ Z2|0 ≤ l ≤
k ≤ H, k > 0}. If we define the prediction probability of a
PHLP for each type of angle hop as zi for i = 1, 2, ..., N ,
then MA-PHLP predicts the likelihood of the link existence
with the following probability:

p =

N∑
i=1

αizi,

where α = (α1, ..., αN ) ∈ RN is a trainable parameter. We
apply the softmax function to the parameter α to ensure that
the sum of all elements equals 1. Moreover, MA-PHLP is
trained using the binary cross-entropy loss.

H. Hybrid Method

The proposed approach easily integrates with existing sub-
graph methods. Subgraph methods treat the LP task as a binary
classification problem comprising two components: a feature
extractor F and classifier P . Vectors with PH information cal-
culated using the proposed methods are incorporated through
concatenation before the classifier. The detailed process of the
hybrid method is outlined as follows:

1) Subgraph Extraction: For the given graph G and target
nodes (u, v), k-hop subgraph N k

u,v is extracted.
2) Feature Extraction: Existing methods extract features

Z = F (N k
u,v) from the subgraph.

3) Persistent Image Calculation: The methods described
in Sections III-C, III-D, and III-E are applied to N k

u,v ,
where I denotes the PI vector. An MLP Φ : Rm →
Rn transforms the PI into a format similar to Z. For
the hybrid method of MA-PHLP, N k

u,v is replaced with
multiangle subgraphs, concatenating their PI vectors.

4) Classification: Next, α1Z and α2Φ(I) are concatenated,
where α1 and α2 are trainable parameters. The softmax
function is applied to the parameter α = (α1, α2),
ensuring that the sum of elements equals 1, denoted
by J . This concatenated vector is classified using the
existing method’s classifier, P (J).

IV. EXPERIMENTS

This section evaluates the performance of MA-PHLP. The
experiments were also conducted using only zero-dimensional
homology (MA-PHLP (dim0)). We used the area under the
curve (AUC) [47] as an evaluation metric. We repeated all
experiments 10 times and reported the mean and standard
deviation of the AUC values.

A. Experimental Settings

Baselines. To evaluate the effectiveness of PHLP, we com-
pared the proposed model with five heuristic methods, four
embedding-based methods, and two GNN-based models. The

heuristic methods include the Adamic-Adar (AA) [3], Katz
index (Katz) [48], PageRank (PR) [49], Weisfeiler-Lehman
graph kernel (WLK) [50], and Weisfeiler-Lehman neural
machine (WLNM) [51]. For the embedding-based methods,
we applied N2V [21], spectral clustering (SPC) [52], matrix
factorization (MF) [19], and LINE [22]. Moreover, SEAL [24]
and WP [28] represent the GNN-based methods.
Datasets. In line with previous studies [24] and [28], we eval-

TABLE I
STATISTICS OF THE DATASETS

Dataset #Nodes #Edges Avg. node deg. Density

USAir 332 2126 12.81 3.86e-2
NS 1589 2742 3.45 2.17e-3
PB 1222 16714 27.36 2.24e-2
Yeast 2375 11693 9.85 4.15e-3
C.ele 297 2148 14.46 4.87e-2
Power 4941 6594 2.67 5.40e-4
Router 5022 6258 2.49 4.96e-4
E.coli 1805 15660 16.24 9.61e-3

uate the performance of our MA-PHLP on the eight datasets in
Table I without node attributes: USAir [53], NS [54], PB [55],
Yeast [56], C. elegans (C. ele) [57], Power [57], Router [58],
and E. coli [59]. The detailed statistics for each dataset are
summarized in Table I.
Implementation Details. All edges in the datasets were split
into training, validation, and testing datasets with proportions
of 0.85, 0.05, and 0.1, respectively, ensuring a fair comparison
with previous studies. The max hop M was set to 3 for most
datasets (Table II). However, for the E. coli dataset, it was
reduced to 2 when employing one-dimensional homology due
to memory constraints. Conversely, for the Power dataset, the
max hop was set to 7 because it does not demand heavy
memory and computation time. The sigmoid function was
employed for the activation function of the PHLP classifier.
Tables III and IV present the results of the hybrid methods
using SEAL [24] and WP [28], respectively. For these exper-
iments, a two-layer MLP was used for the MLP Φ in Step
3 of Section III-H. We set the k-hops following the original
methods, SEAL and WP, and the max hops M of MA-PHLP
were set as the k, except for the Power dataset. For the Power
dataset, we set the k-hop to 1-hop and max hop M to 7,
respectively, which is discussed in detail in Section IV-D.

B. Results

Results of MA-PHLP. Table II presents the AUC scores
for each model on the benchmark datasets. Bold marks the
best results, and underline indicates the second-best results.
The results of AA, Katz, WLK, WLNM, N2V, SPC, MF,
LINE, and SEAL are copied from SEAL [24] for comparison.
The MA-PHLP demonstrates high performance across most
datasets, achieving competitive scores. The proposed model
outperforms several baselines, falling between the SEAL and
WP models in terms of the AUC score. Notably, for the Power
dataset, MA-PHLP achieves the highest AUC score, indicating
its effectiveness in capturing link patterns.
Results of Hybrid Methods. Simply concatenating the PI
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TABLE II
LINK PREDICTION PERFORMANCE MEASURED BY THE AUC ON BENCHMARK DATASETS (90% OBSERVED LINKS)

Dataset USAir NS PB Yeast C. ele Power Router E. coli

AA 95.06± 1.03 94.45± 0.93 92.36± 0.34 89.43± 0.62 86.95± 1.40 58.79± 0.88 56.43± 0.51 95.36± 0.34
Katz 92.88± 1.42 94.85± 1.10 92.92± 0.35 92.24± 0.61 86.34± 1.89 65.39± 1.59 38.62± 1.35 93.50± 0.44
PR 94.67± 1.08 94.89± 1.08 93.54± 0.41 92.76± 0.55 90.32± 1.49 66.00± 1.59 38.76± 1.39 95.57± 0.44
WLK 96.63± 0.73 98.57± 0.51 93.83± 0.59 95.86± 0.54 89.72± 1.67 82.41± 3.43 87.42± 2.08 96.94± 0.29
WLNM 95.95± 1.10 98.61± 0.49 93.49± 0.47 95.62± 0.52 86.18± 1.72 84.76± 0.98 94.41± 0.88 97.21± 0.27
N2V 91.44± 1.78 91.52± 1.28 85.79± 0.78 93.67± 0.46 84.11± 1.27 76.22± 0.92 65.46± 0.86 90.82± 1.49
SPC 74.22± 3.11 89.94± 2.39 83.96± 0.86 93.25± 0.40 51.90± 2.57 91.78± 0.61 68.79± 2.42 94.92± 0.32
MF 94.08± 0.80 74.55± 4.34 94.30± 0.53 90.28± 0.69 85.90± 1.74 50.63± 1.10 78.03± 1.63 93.76± 0.56
LINE 81.47± 10.71 80.63± 1.90 76.95± 2.76 87.45± 3.33 69.21± 3.14 55.63± 1.47 67.15± 2.10 82.38± 2.19
SEAL 97.10± 0.87 98.25± 0.61 95.07± 0.39 97.60± 0.33 89.54± 1.23 86.21± 2.89 95.07± 1.63 97.57± 0.30
WP 98.20± 0.57 99.12± 0.45 95.42± 0.25 98.21± 0.17 93.30± 0.91 92.11± 0.76 97.15± 0.29 98.54± 0.19

MA-PHLP 97.10± 0.69 98.88± 0.45 95.10± 0.26 97.98± 0.22 90.33± 1.16 93.05± 0.45 96.30± 0.43 97.64± 0.20
MA-PHLP (dim0) 97.10± 0.73 98.78± 0.65 95.06± 0.28 97.98± 0.23 89.88± 1.22 93.37± 0.41 96.37± 0.43 97.72± 0.17

TABLE III
AUC SCORES FOR SEAL WITH AND WITHOUT TDA FEATURES

Dataset SEAL MA-PHLP + SEAL

USAir 97.10± 0.87 97.41± 0.62
NS 98.25± 0.61 98.97± 0.30
PB 95.07± 0.39 95.14± 0.39
Yeast 97.60± 0.33 97.93± 0.18
C.ele 89.54± 1.23 89.61± 1.12
Power 86.21± 2.89 95.53± 0.33
Router 95.07± 1.63 96.15± 1.26
E.coli 97.57± 0.30 97.93± 0.34

vector calculated using PHLP with the final output of the
SEAL model increases AUC scores for all datasets, as listed
in Table III. This outcome suggests that when the SEAL
model lacks topological information for inference, the vectors
calculated using PHLP can serve as additional inputs.

TABLE IV
AUC SCORES FOR WALKPOOL (WP)
WITH AND WITHOUT TDA FEATURES

Dataset WP MA-PHLP + WP

USAir 98.20± 0.57 98.27± 0.53
NS 99.12± 0.45 99.24± 0.32
PB 95.42± 0.25 95.58± 0.32
Yeast 98.21± 0.17 98.25± 0.18
C.ele 93.30± 0.91 93.32± 0.71
Power 92.11± 0.76 96.09± 0.38
Router 97.15± 0.29 97.18± 0.24
E.coli 98.54± 0.19 98.57± 0.20

Similarly, we attempted to hybridize PHLP with the current
SOTA model, WP. As presented in Table IV, a slight increase
in AUC scores is observed for all datasets. The Power dataset
demonstrates significant improvement.

C. Ablation Study

Effects of Degree DRNL. To assess the proposed Degree
DRNL regarding the influence of incorporating degree in-
formation on model performance, we conducted experiments
using DRNL and Degree DRNL and compared the results. We
used MA-PHLP (dim0) for the experiments. Table V presents
the AUC scores of MA-PHLP (dim0) with DRNL and Degree
DRNL. Across all datasets, MA-PHLP (dim0) yields higher

TABLE V
AUC SCORES FOR MA-PHLP (DIM0) BY NODE LABELING

Dataset DRNL Degree DRNL

USAir 96.73± 0.64 97.10± 0.73
NS 98.35± 0.58 98.78± 0.65
PB 94.49± 0.27 95.06± 0.28
Yeast 97.42± 0.27 97.98± 0.23
C.ele 88.97± 1.37 89.88± 1.22
Power 88.51± 0.81 92.77± 0.47
Router 96.21± 0.53 96.37± 0.43
E.coli 97.15± 0.18 97.72± 0.17

AUC scores when used with Degree DRNL than with DRNL.
The substantial improvement observed in the Power dataset is
noteworthy, where Degree DRNL yields an increase of over
4 points in the AUC score. These experiments demonstrate
the importance of incorporating degree information into node
labeling, revealing its efficacy in enhancing the performance
of MA-PHLP.

TABLE VI
AUC SCORES FOR MA-PHLP (DIM0) WITH VARIOUS (k, l)-ANGLE HOPS

Dataset (1,0) (1,1)

USAir 96.15± 0.83 95.87± 0.83
NS 98.28± 0.55 98.66± 0.66
PB 93.95± 0.34 94.46± 0.36
Yeast 95.52± 0.32 97.31± 0.20
C.ele 86.18± 2.12 87.57± 1.20
Power 73.39± 0.99 77.83± 1.44
Router 92.09± 0.57 93.25± 0.47
E.coli 96.94± 0.24 96.95± 0.28

Dataset (2,0) (2,1) (2,2)

USAir 96.69± 0.92 96.74± 0.84 96.85± 0.83
NS 98.72± 0.51 98.59± 0.65 98.56± 0.47
PB 94.78± 0.30 94.73± 0.30 94.82± 0.24
Yeast 97.71± 0.18 97.66± 0.27 97.58± 0.28
C.ele 88.86± 1.48 89.16± 1.31 89.08± 1.07
Power 80.27± 1.07 83.90± 1.29 86.12± 0.86
Router 95.65± 0.44 95.71± 0.39 94.51± 0.69
E.coli 97.26± 0.16 97.29± 0.24 97.41± 0.21

Angles of PHLP. Table VI presents the performance of
PHLP (dim 0) concerning various (k, l)-angle hop subgraphs.
Section III-B proposed angle hop subgraphs as an alternative
to traditional k-hop subgraphs to capture information from
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various perspectives. Moreover, MA-PHLP is proposed to
aggregate information from multiple angles. To investigate
performance when extracting information from specific angles,
we conducted experiments using PHLP at different angles. We
used only zero-dimensional PIs for the experiments. Overall,
the results demonstrate that the performance is favorable for
cases corresponding to the k-hop subgraph (where k and l
are the same). However, some datasets perform better when
k and l differ, highlighting the importance of varying angles
to achieve the best performance. Therefore, using MA-PHLP
is recommended to maximize performance consistently across
datasets.
Comparison with TLC-GNN. To demonstrate that the pro-
posed method extracts superior topological information com-
pared to the conventional TLC-GNN approach, we conducted
the same experiments. The TLC-GNN was constructed by
augmenting the graph convolutional network (GCN) model
with PI information. We replaced the PI component of the
TLC-GNN model with the PI vector produced by MA-PHLP,
resulting in the MA-PHLP-GNN. The zero-dimensional PH
was employed in this study for fair comparison because
TLC-GNN used only zero-dimensional PH. Additionally, we
conducted experiments where the PH vectors were replaced
with zero vectors, denoted as GCN. Table VII presents the
experimental results.

TABLE VII
COMPARISON OF AUC SCORES WITH TLC-GNN

Dataset GCN TLC-GNN MA-PHLP-GNN

Cora 92.20± 0.83 93.16± 0.56 93.14± 0.93
CiteSeer 86.52± 1.29 87.38± 0.97 92.08± 0.53
PubMed 96.63± 0.15 96.30± 0.25 98.07± 0.07

The TLC-GNN is employed when the given data includes
node attributes. Hence, we conducted experiments using the
following widely used benchmark datasets with node at-
tributes: Cora [60], CiteSeer [61], and PubMed [62]. The
MA-PHLP-GNN outperformed the TLC-GNN significantly on
the CiteSeer and PubMed datasets while achieving similar
performance on the Cora dataset. The TLC-GNN does not
exhibit performance improvement for the PubMed dataset
despite adding topological information. However, the pro-
posed MA-PHLP-GNN demonstrates substantial performance
enhancement. Although the proposed model is developed for
datasets without node attributes, it exhibits effective perfor-
mance on datasets with node attributes through hybridization
with the existing methods: SEAL+PHLP, WP+PHLP, and
MA-PHLP-GNN. These experiments verify the versatility and
effectiveness of this approach across diverse datasets.

D. The hops and max hops of the hybrid methods

Determining the hyperparameters such as “hop” and “max
hop” is crucial for the performance of the hybrid method. We
conducted experiments to explore the effects of different com-
binations of these parameters. Given that the hybrid methods
(e.g., MA-PHLP + SEAL and MA-PHLP + WP) exhibited
the highest performance improvement on the Power dataset,

we conducted experiments on the Power dataset. Table VIII
presents the AUC scores for varying hop (SEAL or WP) and
max hop (MA-PHLP). For each target node, while the SEAL
and WP extract a k-hop subgraph, the MA-PHLP calculates
the PIs based on a subgraph with max hop M . When the
parameter M is 1 or 2, the AUC scores are not robust to
k, showing large variations; however, when M is 3, although
MA-PHLP + SEAL still exhibits variations up to 2, MA-PHLP
+ WP shows only minor variations. As M exceeds 3, the AUC
scores of MA-PHLP + SEAL and MA-PHLP + WP are robust
to k, exhibiting little sensitivity (maximum 0.84) to variations.
This suggests that setting both the hop and the max hop to
identical values may be permissible without further searching
for optimal hyperparameters.

V. ANALYSIS

A. Analysis of the PHLP

Figs. 6 and 7 visualize concatenated PIs to illustrate how
MA-PHLP (dim0) extracts topological features for LP. We
let Z ⊆ R2×k×r2 be a set of vectors calculated by MA-
PHLP, where k is the number of angles, and r denotes the PI
resolution. For (z1, z2) ∈ Z , z1 ∈ Rk×r2 is the concatenation
of PIs for all angles with a target link, and z2 ∈ Rk×r2 is
the concatenation for cases without a target link. We consider
a function h : Rk×r2 → R defined as h(v⃗1, ..., v⃗k) =
1
k

∑k
i=1∥v⃗i∥1, where v⃗i ∈ Rr2 are PIs, and ∥·∥1 denotes the

L1-norm. For visualization, we transform Z into points in R2

using the function G, defined as G(z1, z2) = (h(z1), h(z2))
for each (z1, z2) ∈ Z .

We plot distributions of points separately for positive and
negative links, considering both DRNL and Degree DRNL.
The distributions of the NS and Yeast datasets between positive
and negative links display significant differences, supporting
the highest performance in Table V. In contrast, the distribu-
tions for the C. ele and Power datasets are the most similar
when using Degree DRNL, correlating with the lowest scores
in Table V.

B. Analysis of the Power Dataset

In most LP models, including the SOTA models SEAL and
WP, the Power dataset tends to have the lowest AUC scores
among the datasets. In Table II, the Power dataset is at the
bottom in terms of scores across models (e.g., WLK, WLNM,
MF, LINE, SEAL, and WP). However, the proposed model
achieves the highest AUC scores on the Power dataset among
baseline models, prompting an analysis of the reasons for this
performance.

In Fig. 7, for DRNL, the Power dataset exhibits horizontal
lines, indicating that the values h(z2) have a limited range of
outcomes for vectors z2 in cases without the target link; thus,
the set of values h(z2) with the same value should be spread
out. This observation implies that, for numerous subgraphs
the calculation of PIs yields similar outcomes despite the
differences in their topological structures, posing a challenge
in distinguishing between them.

To address this problem, we applied Degree DRNL, which
incorporates degree information. The points in Fig. 7 are
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Fig. 6. Visualization of vectors calculated using MA-PHLP (dim0). For each dataset, the first and second columns depict the projections of persistence images
(PIs) when double radius node labeling (DRNL) is applied for node labeling, and the third and fourth columns represent the values obtained when Degree
DRNL is applied. The first and third columns plot the values produced from positive edges (i.e., target nodes labeled 1), and the second and fourth columns
plot the values produced from negative edges (i.e., target nodes labeled 0).
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TABLE VIII
AUC SCORES ON THE POWER DATASET VARYING k-HOP AND MAX HOP M OF THE HYBRID METHODS

MA-PHLP (with max hop M )

M 1 2 3 4 5 6 7
SE

A
L

(w
ith

k
-h

op
) k not robust to k robust to k

1 86.66± 0.56 90.22± 0.79 92.63± 0.54 94.50± 0.41 95.12± 0.40 95.46± 0.38 95.53 ± 0.33
2 91.40± 0.88 90.20± 0.80 92.50± 0.59 94.39± 0.39 95.00± 0.46 95.31± 0.40 95.39 ± 0.36
3 93.21± 0.64 92.79± 0.60 92.57± 0.58 94.22± 0.43 94.86± 0.42 95.21 ± 0.45 95.19± 0.44

4 94.51± 0.58 94.23± 0.34 94.21± 0.41 94.31± 0.40 94.80± 0.37 95.10± 0.33 95.27 ± 0.36
5 94.73± 0.56 94.45± 0.44 94.61± 0.51 94.80± 0.53 94.91± 0.54 95.13± 0.51 95.19 ± 0.46
6 94.58± 0.94 94.81± 0.32 94.87± 0.42 95.06± 0.50 95.11± 0.46 95.25 ± 0.45 95.25± 0.46

7 93.97± 0.73 94.22± 0.35 94.43± 0.44 94.78± 0.45 94.92± 0.39 94.99 ± 0.52 94.98± 0.39

W
P

(w
ith

k
-h

op
)

k not robust to k robust to k

1 87.53± 0.73 91.48± 0.64 93.55± 0.48 94.84± 0.43 95.53± 0.46 95.88± 0.31 96.09 ± 0.38
2 92.51± 0.58 91.59± 0.77 93.49± 0.58 94.83± 0.53 95.56± 0.59 95.88± 0.38 96.06 ± 0.45
3 94.04± 0.46 93.07± 0.67 93.61± 0.52 94.86± 0.54 95.61± 0.60 95.86± 0.40 96.00 ± 0.52
4 93.55± 0.71 92.61± 0.76 93.68± 0.55 94.85± 0.55 95.59± 0.58 95.87± 0.38 96.03 ± 0.45
5 93.40± 0.70 92.64± 0.69 93.66± 0.53 94.84± 0.54 95.55± 0.59 95.85± 0.39 96.04 ± 0.52
6 93.34± 0.75 92.66± 0.72 93.64± 0.55 94.91± 0.57 95.55± 0.58 95.85± 0.44 95.98 ± 0.55
7 93.30± 0.73 92.61± 0.69 93.65± 0.56 94.87± 0.56 95.56± 0.58 95.90± 0.39 96.01 ± 0.52

Fig. 7. Visualization of vectors calculated using MA-PHLP (dim0).

distributed without horizontal lines, leading to the highest
score increase, as listed in Table V.

The performance of heuristic methods, such as AA, Katz,
and PR, tend to be similar to random guessing on datasets with
low density, particularly in the cases of the Power and Router

datasets. Embedding methods also display low performance.
In contrast, the GNN-based methods demonstrate improved
performance using subgraphs and the network learning ability.
However, the performance for the Power dataset is signifi-
cantly lower than that for the Router dataset.
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TABLE IX
AVERAGE NUMBER OF NODES IN SUBGRAPHS

FOR THE POWER AND ROUTER DATASETS

Power Router

positive negative positive negative

1-hop 8.03 9.12 5.11 6.72
2-hop 22.26 24.85 29.21 13.94
3-hop 43.11 49.50 120.35 55.22
4-hop 71.72 82.16 411.87 176.34
5-hop 99.28 116.75 740.80 411.35
6-hop 136.23 158.27 1272.42 852.13
7-hop 182.22 210.35 1835.46 1498.58

To bridge this gap, we analyzed subgraphs with node
labeling. The number of nodes within the selected subgraphs
between positive and negative links was significantly different
on the Router dataset but not the Power dataset (Table IX).
This difference is attributed to the presence of the hub nodes in
the Router dataset, which are connected to numerous nodes.
Thus, the subgraphs corresponding to positive links tend to
have more nodes than those corresponding to negative links.

TABLE X
COMPARISON OF MODELS BY MAX HOP SETTINGS

ON THE POWER AND ROUTER DATASETS

Model MA-PHLP MA-PHLP WP MA-PHLP + WP

Center target random - random

Po
w

er

1-hop 78.05± 1.20 85.66± 0.86 80.24± 0.95 87.53± 0.73
2-hop 86.34± 1.04 90.52± 0.73 89.40± 1.00 91.59± 0.77
3-hop 89.65± 0.64 91.90± 0.58 92.11± 0.77 93.61± 0.52
4-hop 91.38± 0.53 92.67± 0.55 91.67± 0.80 94.85± 0.55
5-hop 92.27± 0.40 93.06± 0.44 91.39± 0.78 95.55± 0.59
6-hop 92.77± 0.47 93.16± 0.49 91.55± 0.83 95.85± 0.44
7-hop 93.06± 0.43 93.37± 0.41 91.50± 0.89 96.01± 0.52

R
ou

te
r

1-hop 93.12± 0.45 93.40± 0.46 94.48± 0.36 94.83± 0.41
2-hop 95.96± 0.40 95.70± 0.45 97.15± 0.27 97.22± 0.23
3-hop 96.38± 0.41 96.11± 0.43 97.28± 0.24 97.42± 0.27
4-hop 96.45± 0.40 96.22± 0.43 OOM1 OOM
5-hop 96.46± 0.42 96.24± 0.48 OOM OOM
6-hop 96.44± 0.45 96.23± 0.47 OOM OOM
7-hop 96.43± 0.45 96.19± 0.49 OOM OOM

However, the Power dataset does not have hub nodes,
and the number of nodes in the subgraph of positive links
remains small. We randomly changed the center nodes (a, b)

for node labeling f
(a,b)
degdrnl increasing the performance, as listed

in Table X. This outcome highlights that setting target nodes
as the center nodes may not effectively analyze the topolog-
ical structure in the case of small graphs. Furthermore, the
performance for the Power dataset continues to increase with
increasing hops (Table X), achieving an AUC score of 95.87,
which is significantly better than that of 92.11 for WP.

VI. CONCLUSION

This paper proposes PHLP, an explainable method that
applies PH to analyze the topological structure of graphs
to overcome the limitations of GNN-based methods for LP.
By employing the proposed methods, such as angle hop
subgraphs and Degree DRNL, PHLP improves the analysis of
the topological structure of graphs. The experimental results

1OOM denotes “out of GPU memory”.

demonstrate that the proposed PHLP method achieves com-
petitive performance across benchmark datasets, even SOTA
performance, especially on the Power dataset. Additionally,
when integrated with existing GNN-based methods, PHLP
improves performance across all datasets. By analyzing the
topological information of the given graphs, PHLP addresses
the limitations of GNN-based methods and enhances overall
performance. As demonstrated, PHLP provides explainable al-
gorithms without relying on complex deep learning techniques,
providing insight into the factors that significantly influence
performance for the LP problem of graph data.
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