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DISTINGUISHING INTERNALLY CLUB AND APPROACHABLE

ON AN INFINITE INTERVAL

HANNES JAKOB AND MAXWELL LEVINE

Abstract. Krueger showed that PFA implies that for all regular Θ ≥ ℵ2,
there are stationarily many [H(Θ)]ℵ1 that are internally club but not inter-
nally approachable. From countably many Mahlo cardinals, we force a model
in which, for all positive n < ω and Θ ≥ ℵn+1, there is a stationary subset
of [H(Θ)]ℵn consisting of sets that are internally club but not internally ap-
proachable. The theorem is obtained using a new variant of Mitchell forcing.

This answers questions of Krueger.

1. Introduction

Following work of Foreman and Todorčević [4], Krueger wrote a series of pa-
pers exploring variations of internal approachability, in particular proving that the
variations are distinct [10]. He showed that these distinctions can be obtained
using mixed-support iterations, which resemble the forcings Mitchell used to ob-
tain the tree property at double successor cardinals. Notable developments in the
study of the tree property pertain to obtaining the tree property simultaneously on
long intervals of cardinals, and this area of research requires analyses of variants
of Mitchell’s forcing. In this spirit, Kruger raised the question of whether these
properties could be separated for successive cardinals, or even an infinite sequence
of cardinals [12]. We studied the case in which internally stationary is distinguished
from internally club by using forcings that accomplish the work of mixed support
iterations while more explicitly resembling Mitchell’s forcing [13, 7].

In this paper we will demonstrate the robustness of this idea by addressing the
separation of internally club from internally approachable. We introduce a new ver-
sion of Mitchell forcing, for which we must consider somewhat elaborate termspaces.
The benefit is derived from having an Abraham-style projection analysis. We hope
that this concept will be useful for points in the literature where mixed support
iterations are called for (see [5], for example).

The concepts we study here are framed in terms of the notion of stationarity
for spaces of the form [X ]≤µ, which was formulated by Jech (see [9]). We say that
some N ∈ [X ]µ is:

• internally unbounded if [N ]<µ ∩N is unbounded in [N ]<µ,
• internally stationary if [N ]<µ ∩N is stationary in [N ]<µ,
• internally club if [N ]<µ ∩N contains a club in [N ]<µ,
• internally approachable if there is a continuous sequence 〈Ni : i < µ〉 con-
sisting of elements of [N ]<µ such that for all i < µ, 〈Nj : j ≤ i〉 ∈ N and
N =

⋃

i<µ Ni.

For clarity, let ICNIA(Θ, µ) be the statement that Θ ≥ µ+ and that there ex-
ist stationarily many N ∈ [H(Θ)]≤µ which are internally club but not internally
approachable. Since the assumption that µ is regular is standard for stationary
subsets of [H(Θ)]≤µ, this distinction does not make sense if µ is singular. Further-
more, it cannot hold if µ is inaccessible, so in all cases we are assuming that µ is
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2 HANNES JAKOB AND MAXWELL LEVINE

a double successor. Krueger showed that PFA implies ICNIA(Θ,ℵ1) for all Θ ≥ ℵ2

[10] and later showed that ICNIA(µ+, µ) is consistent from a Mahlo cardinal for
regular µ [12]. We extend that result here:

Theorem 1.1. Assume there are countably many Mahlo cardinals in V . Then
there is a forcing extension in which, for all 1 ≤ n < ω, ICNIA(Θ,ℵn) holds for all
Θ ≥ ℵn+1.

This resolves a case of [12, Question 12.9], where the projection analysis allows
us to obtain consecutive instances of ICNIA(Θ,ℵn). It also resolves a case of [12,
Question 12.7], where the idea of the solution is more or less that the image of the
Mostowski collapse cannot distinguish between H(Θ)’s for large Θ.

2. The New Forcing

In this section we will define the new forcing and present a simple application
before moving on to the proof of our main theorem.

2.1. Defining the Forcing. The idea of our forcing is to take the two-step iter-
ation used to establish ICNIA(Θ,ℵ1) and build it into a variant of Mitchell forcing
that enjoys some of the nice properties of the more standard variants. First, we
need the collapse that Krueger used, which forces a chain through a stationary set.

Definition 2.1 (see [10]). Let µ ≤ δ be cardinals and S ⊆ [X ]<µ be stationary
for some set X . P(S) consists of closed sequences of length < µ through S, i.e. it
consists of sequences s such that dom(s) is a successor ordinal below µ, s(α) ∈ S
for all α ∈ dom(s), and s(γ) =

⋃

α<γ s(α) for all limit γ ∈ dom(s).

The poset P(S) is used because it allows us to collapse δ while retaining both
the approximation property and the clubness of the “old” sets.

Fact 2.2. Let µ ≤ δ be cardinals and S ⊆ [H(δ)]<µ stationary.

(1) P(S) adds an increasing and continuous sequence of elements 〈Si : i < µ〉
of S with union H(δ)V , thus collapsing δ to have cardinality µ.

(2) If δ<δ = δ, then P(S) has cardinality δ and therefore is δ+-cc.

Note that to obtain <µ-distributivity of P(S), S needs to satisfy some additional
assumptions.

Now we are ready to define our Mitchell forcing. We need to take some care
regarding the model in which the Cohen sets are defined. This is analogous to
constructions in which the tree property holds on an interval of cardinals (see [3]),
and is done here in anticipation of the iteration used to prove Theorem 1.1. We
will therefore use the following basic fact from here on without comment:

Fact 2.3. Suppose that W ⊆ V are models of set theory such that τ is regular and
κ is inaccessible in in W . Suppose also that τ and κ are cardinals in V and that
the extension W ⊆ V has the κ-covering property. Then AddW (τ, κ), the version
of Add(τ, κ) defined in W , has the κ-Knaster property in V . (See [3, Lemma 2.6]
and [1].)

Definition 2.4. Let W ⊆ V be models of ZFC containing the ordinals such
(Add(τ, κ))W is µ-Knaster. Let τ < µ < κ be cardinals in V such that τ<τ = τ
and κ is inaccessible. Then we define M⊕(τ, µ, κ,W ) in V to be the poset consists
of pairs (p, q) such that:

(1) p ∈ (Add(τ, κ))W

(2) q is a < µ-sized function on κ such that
(a) for each α ∈ dom(q), α = δ + 1 for an inaccessible cardinal δ,
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(b) q(α) is an (Add(τ, α))W -name for an element in the chain forcing
P([H(δ)]<µ ∩ V [(Add(τ, δ))W ]).

We let (p′, q′) ≤M⊕(τ,µ,κ,W ) (p, q) if

(1) p′ ≤(Add(τ,κ))W p
(2) dom(q′) ⊇ dom(q) and for all α ∈ dom(q),

p′ ↾ α 
 q′(α) ≤Add(τ,α)W q(α).

For simplicity, we define M⊕(τ, µ, κ) := M⊕(τ, µ, κ, V ).

Given our definition of the Mitchell forcing, it then becomes clear that we can
define a termspace forcing, which is essentially the main benefit of this presentation.

Definition 2.5. Let T = T(M⊕(τ, µ, κ,W )) be the termspace of M⊕(τ, µ, κ,W ).
For the sake of explicitness, this is the poset consisting of conditions q such that:

(2) q is a < µ-sized function such that for each α ∈ dom(q):
(a) α = δ + 1 for an inaccessible cardinal δ,
(b) q(α) is an (Add(τ, α))W -name for an element in the chain forcing

P([H(δ)]<µ ∩ V [(Add(τ, δ))W ]).

Most importantly, we let q ≤ q′ if and only if:

(1) dom q ⊇ dom q′,
(2) for all α ∈ dom q, 
P([H(δ)]<µ∩V [(Add(τ,δ))W ]) “q(α) ≤ q′(α)”.

Next we will establish strategic closure properties of our forcing.

Definition 2.6. Let P be a forcing order, δ an ordinal. The completeness game
G(P, δ) on P with length δ has players COM (complete) and INC (incomplete)
playing elements of P with COM playing at even ordinals (i.e. limit ordinals and
ordinals of the form α+n for α a limit and n < ω) and INC playing at odd ordinals.
COM starts by playing 1P, afterwards pα has to be a lower bound of (pβ)β<α. INC
wins if either player is unable to play at some point < δ. Otherwise, COM wins.

A poset P is δ-strategically closed if COM has a winning strategy for the game
G(P, δ). We say that P is strongly δ-strategically closed if COM has a winning
strategy for the version of the game where they play at odd ordinals and INC plays
at even ordinals (see [2] for background on these definitions).

The subtlety here is that, even though P(S) is in most cases not µ-strategically
closed since it destroys the stationarity of a subset of [δ]<µ, the term ordering on
Add(τ) ∗ P([δ]<µ ∩ V ) is µ-strongly strategically closed.

Lemma 2.7. Let τ < µ < δ be cardinals such that τ<τ = τ . Then the term forcing
T(M⊕(τ, µ, κ,W )) is strongly µ-strategically closed.

Proof. Since products of strongly µ-strategically closed forcings are strongly µ-
strategically closed, it is sufficient to argue that the direct extension ordering on
Add(τ)W ∗ P([δ]<µ ∩ V ), i.e. the ordering ≤∗ for which (p, q) ≤∗ (p′, q′) holds if
and only if p = p′ and q ≤ q′, is µ-strongly strategically closed.1 We will suppress
notation for the inner model W in this proof for the sake of readability.

We give a winning strategy for COM by describing a play of the game of the
form 〈(p, qγ) : γ < µ〉 where p ∈ Add(τ). At any odd stage γ, COM will play q̇γ
such that the following holds:

(1) There is νγ such that p 
 dom(q̇γ) = ν̌γ + 1
(2) There is xγ ∈ V such that p 
 q̇γ(ν̌γ) = x̌γ .

1The strategicaly closure of the direct extension ordering was first noticed by Krueger with a
different proof [11].
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We will argue both that this choice will be possible at every stage and that this is
sufficient to keep the game going.

Suppose that γ is a limit ordinal: If COM has played according to the strategy
until γ, we let νγ :=

⋃

{να : α < γ, α ∈ Odd} and xγ :=
⋃

{xα : α < γ, α ∈ Odd}.
Then we can find a lower bound: Let q̇γ be a name for a condition with domain
νγ + 1 such that q̇γ(α) = q̇β(α) for some β < α whenever α < νγ and such that
q̇γ(νγ) = xγ . In particular, this works because we have made it explicit that xγ ∈ V .

Now assume γ = β + 1 is a successor ordinal and INC has just played q̇β .
Because Add(τ) is µ-Knaster and in particular has the < µ-covering property,
ν′γ := sup{ν | ∃p′ ≤ p(p′ 
 dom(q̇β) = ν̌)} is below µ and xγ := {ǫ | ∃p′ ≤ p(p′ 

ǫ̌ ∈

⋃

q̇β)} has size < µ. Let q̇γ be a function with domain ν′γ +1 extending q̇β and
such that q̇γ(ν

′
γ) = x̌γ .

We show that q̇γ is as required: q̇γ is obviously forced to extend q̇β . Furthermore,
the values of q̇γ are forced to be elements of V : Until ν′γ this holds because q̇β is
forced to be in P([δ]<µ ∩ S). At ν′γ , it holds because q̇γ(ν

′
γ) is the check-name

x̌γ . Lastly, q̇γ is continuous at every limit and increasing. Because dom(q̇γ) =
ˇνγ + α+ 1 and q̇γ(ν̌γ + α) = x̌γ , we are done. �

In particular, by Easton’s Lemma, P([δ]<µ ∩ V ) is <µ-distributive (actually
strongly <µ-distributive) in V [Add(τ)].

We note that what we have given is actually a winning tactic, i.e. in successor
stages the play by COM depends only on the last play of INC, not on the plays
before that (see [16]).

Now we can show that M⊕ has similar properties to more standard versions of
Mitchell forcing:

Proposition 2.8. Let M⊕ = M⊕(τ, µ, κ,W ):

(1) M⊕ is κ-Knaster,
(2) M⊕ is a projection of the product Add(τ, κ)W × T(M⊕(τ, µ, κ,W )),
(3) M⊕ forces κ = 2τ = µ+ = τ++.

Sketch. Recall that the first point follows from a ∆-system argument, the second
point uses some mixing of forcing names, and the third point uses the first two
points along with Easton’s Lemma. �

The next point will be the crux of what is needed to bring Krueger’s arguments
into our context.

Lemma 2.9. M⊕(τ, µ, κ,W ) has the < µ-approximation property.

The argument uses the fact that M⊕(τ, µ, κ,W ) is iteration-like, meaning that
we can mix the conditions in the second coordinate to “move disagreements into
the first coordinate”.2 Our argument here uses ideas of Usuba [15] and Unger [14].

Proof of Lemma 2.9. Let us abbreviate M⊕(τ, µ, κ,W ) as M.

Claim 2.10. Suppose that (p, q) ∈ M forces ẋ ∈ V but that there is no y ∈ V such
that (p, q) forces ẋ = y̌. Then there are q′, p0, p1 ≤ p and y0 6= y1 such that q′ ≤T q
and yi ∈ V and (pi, q

′) 
 ẋ = y̌i for i ∈ 2.

Proof. We consider two possible cases:
Case 1: There are q∗ and y0 such that (p, q∗) ≤M (p, q) and (p, q∗) 
 ẋ = y̌0.
Then choose (p1, q

∗∗) ≤M (p, q) and some y1 such that (p1, q
∗∗) 
 ẋ = y̌1.

Strengthen if necessary to assume that p1 is strictly below p and choose p0 ≤ p
incompatible with p1. Using standard arguments for the construction of names,

2See [7] for a generalization that uses the notion of strong distributivity, due to the first author.
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there is q′ such that q′ ≤T q and such that for all α ∈ dom q∗∗, p1 
 q∗∗(α) = q′(α)
and for all α ∈ dom q∗, p0 
 q∗(α) = q′(α). Then we have (p0, q

′) ≤M (p0, q
∗) ≤M

(p, q∗) ≤M (p, q) and (p1, q
′) ≤M (p1, q

∗∗) ≤M (p, q), and so have this case of the
claim.

Case 2: For all q∗ with (p, q∗) ≤M (p, q), (p, q∗) 6
 ẋ = y̌0 for any y0.
Then choose (p0, q

∗) ≤M (p, q) forcing ẋ = y̌0 for some y0. Using the mixing
of names, we can assume that q∗ ≤T q, and hence that (p, q∗) ≤M (p, q). The
present case implies that (p, q∗) 6
 ẋ = y̌0, so there is some (p1, q

′) ≤M (p, q∗)
forcing ẋ = y1 for some y1 6= y0. Again we can assume that q′ ≤T q∗. Therefore
(p0, q

′) ≤M (p0, q
∗) ≤M (p, q∗) ≤M (p, q) and (p1, q

′) ≤M (p, q∗) ≤ (p, q). �

Now suppose for contradiction that the lemma is false. Let ḟ be an M-name
such that some (p, q) forces every < µ-approximation to be in V , but ḟ itself to be
outside of V . For simplicity, assume (p, q) = 1M.

We will use the winning strategy for COM in the completeness game of length
µ played on T. More precisely, the values of qγ chosen for γ ∈ Even are chosen by
INC, and the construction continues because of the winning strategy for COM.

We will construct (p0γ , p
1
γ , qγ , yγ)γ∈Even such that

(1) yγ ∈ [V ]<µ ∩ V , the sequence (yγ)γ∈Even is ⊆-increasing,
(2) the qγ ’s are ≤T-decreasing,

(3) (p0γ , qγ) and (p1γ , qγ) decide ḟ ↾ y̌α the same way for α < γ, but differently
for α = γ.

Assume the game has been played until some even ordinal γ < µ. Let y′γ+1 :=
⋃

α<γ yγ , which has size < µ. Because ḟ is forced not to be in V , there is yγ+1 ⊇

y′γ+1 of size < µ such that (1A, qγ) does not decide ḟ ↾ y̌γ+1. Thus, we find all
required objects by appealing to Claim 2.10. Formally, we can choose the plitting
below (p0γ , qγ) at every step.

We claim that {(p0γ , p
1
γ) | γ ∈ Even} is an antichain in A × A where A :=

Add(τ, κ)W , obtaining a contradiction since it is known that A × A has the µ-
chain condition. To this end, assume (p0, p1) ≤A×A (p0γ , p

1
γ), (p

0
γ′ , p1γ′) with γ >

γ′. Because p0 ≤A p0γ′ and p1 ≤A p1γ′ , (p0, qγ) ≤M (p0, qγ′) ≤M (p0γ′ , qγ′) and

(p1, qγ) ≤M (p1, qγ′) ≤M (p1γ′ , qγ′) decide ḟ ↾ y̌γ′ differently, but because p0 ≤A p0γ
and p1 ≤A p1γ , (p

0, qγ) ≤M (p0γ , qγ) and (p1, qγ) ≤M (p1γ , qγ) decide ḟ ↾ y̌γ′ the same
way, a contradiction. �

2.2. Considering Quotients. As is common when working with variants of Mitchell
forcing, we give an explicit description of the quotient forcing. In this subsection
we will define and state what we need in order to carry out the proof of our main
theorem, leaving out some of the details that are addressed elsewhere in the litera-
ture.

Definition 2.11. Let τ < µ < ν < κ be cardinals such that Add(τ, κ)W is µ-
Knaster. Let G ⊆ M⊕(τ, µ, ν,W ) be a generic filter. In V [G], defineM⊕(G, τ, µ, κr
ν,W ) to consist of (p, q) such that

(1) p ∈ Add(τ, κr ν)W

(2) q is a partial function on κr ν of size < µ such that for each α ∈ dom(q),
α = ν +1 for an inaccessible cardinal ν and q(α) is an Add(τ, αr ν)-name
for an element of P([ν]<µ ∩ V [G][Add(τ, ν r ν)]).

We let (p′, q′) ≤ (p, q) if

(1) p′ ≤ p
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(2) dom(q′) ⊇ dom(q) and for all α ∈ dom(q),

p′ ↾ α 
 q′(α) ≤ q(α).

We remark that we technically do not need the generic G to define the quotient.
The next lemma follows similarly to other known variants of Mitchell Forcing.

Lemma 2.12. Let τ < µ < ν < κ be regular cardinals such that τ<τ = τ
and ν, κ are inaccessible. There is a dense embedding from M⊕(τ, µ, κ,W ) into
M⊕(τ, µ, ν,W ) ∗M⊕(G, τ, µ, κr ν,W ).

Proof. As in other versions of Mitchell Forcing, we define

(p, q) 7→ (p ↾ ν, q ↾ ν, op( ˇp ↾ (κr ν), q))

where q reimagines q ↾ (κr ν) as an M⊕(τ, µ, ν)-name. �

Similarly, we have the following:

Proposition 2.13. Let τ < µ < ν < κ be cardinals such that τ<τ = τ and ν, κ are
inaccessible and let G be M⊕(τ, µ, ν,W )-generic over and let H be M⊕(G, τ, µ, κ \
ν,W )-generic over V [G]. Then there is a filter KA that is Add(τ)-generic over V [G]
and a filter KC that is P([ν]<µ ∩ V [G])-generic over V [G][KA] such that V [G][H ]
is a forcing extension of V [G][KA][KC ].

Proof. Use a map similar to the one from the previous lemma. This is where we
use the fact that dom(q) consists of ordinal successors of inaccessibles for (p, q) ∈
M⊕(τ, µ, κ,W ). Here we also note that P([ν]<µ ∩ V [G]) = P([ν]<µ ∩ V [A]) where
A is the Add(τ, ν)-generic induced by G. �

In V [G], M⊕(G, τ, µ, κ r ν,W ) has similar properties to M⊕(τ, µ, κ,W ) using
arguments similar to the ones we detailed:

Lemma 2.14. Let τ < µ < ν < κ be cardinals such that Add(τ, κ)W is µ-Knaster
and ν, κ are inaccessible. Let G be M⊕(τ, µ, ν,W )-generic. The following holds in
V [G]:

(1) M⊕(G, τ, µ, κr ν,W ) is κ-Knaster.
(2) The term ordering on M⊕(G, τ, µ, κrν,W ) is µ-strongly strategically closed.

It is crucial for us to obtain the approximation property for quotients, which we
can obtain from trivial modifications of the proof of Lemma 2.9.

Lemma 2.15. Let τ < µ < ν < κ be cardinals such that τ<τ = τ and ν, κ are
inaccessible. Let G be M⊕(τ, µ, ν,W )-generic. In V [G], M⊕(G, τ, µ, κ r ν,W ) has
the < µ-approximation property.

2.3. Distinguishing Internally Club and Approachable for a Single Car-

dinal. In this subsection we show that M⊕(τ, µ, κ,W ) forces ICNIA(κ, µ) to hold
at κ = µ+. Technically, the next theorem will become redundant after giving the
proof of Lemma 3.6. However, the proof serves as a gentle introduction to these
arguments.

Definition 2.16. [6] Let K be a model of some fragment of ZFC. We say that
M ≺ K is rich or rich with respect to κ if the following hold:

(1) κ ∈ M ;
(2) κ̄ := M ∩ κ ∈ κ and κ̄ < κ;
(3) κ̄ is an inaccessible cardinal in K;
(4) The cardinality of M is κ̄;
(5) M is closed under <κ̄-sequences.

It is easy to show that:
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Fact 2.17. If κ is Mahlo and K is a model of a sufficiently rich fragment of ZFC
with κ+ 1 ⊆ K, then for all a ∈ [K]<κ, there is a model M ≺ K such that a ⊆ M
and M is rich with respect to κ.

Theorem 2.18. M⊕(τ, µ, κ) forces that there exist stationarily many N ∈ [H(κ)]≤µ

such that N is internally club but not internally approachable.

Proof. To aid in the legibility, we let M⊕ := M⊕(τ, µ, κ).

Let Ċ be an M⊕-name for a club. Let Ḟ be an M⊕-name for a function
[H(κ)]<ω → [H(κ)]<κ such that the closure points of Ḟ are contained in Ċ. Let Θ

be a cardinal such that Ḟ ∈ H(Θ) and let M ′ ≺ H(Θ) be rich with respect to κ

such that Ḟ ,M⊕, τ, µ, κ ∈ M ′, µ ⊆ M ′.
Let G be M⊕-generic and consider M ′[G]: Since ḞG ∈ M ′[G], M ′[G] ∩H(κ) is

closed under ḞG and thus M ′[G]∩H(κ) ∈ ĊG. Furthermore, because M⊕ is κ-cc.,
M ′[G]∩H(κ) = (M ′∩H(κ)V )[G] =: M [G]. We will show that M [G] is as required.

Let π : M → N be the Mostowski-Collapse of M . Because M⊕ is κ-cc., M [G] ∩
V = M and thus π extends to π : M [G] → N [G′], where G′ := π[G]. Looking at
the proof of Lemma 2.12, G′ is also equal to the M⊕(τ, µ, ν)-generic filter induced
by G and there is an M⊕(G′, τ, µ, κ r ν)-generic filter (over V [G′]) G′′ such that
G = G′ ∗G′′.

Claim 2.19. M [G] is internally club.

Proof. We first show that N [G′] is internally club. We have N [G′] ⊆ V [G′]. Addi-
tionally, the reverse inclusion holds for many sets:

Subclaim 2.20. If x ∈ [N [G′]]<µ ∩ V [G′], x ∈ N [G′].

Proof. If x ∈ [N [G′]]<µ ∩ V [G′], x has been added by Add(τ, ν). Let ẋ be an
Add(τ, ν)-name for x. By the τ+-cc. of Add(τ, ν), we can assume that ẋ is a <µ-
sized subset of N (since ẋ(α) is an element of N [G′] for every α). Then ẋ ∈ N and

thus ẋG′

∈ N [G′]. �

Subclaim 2.21. N [G′] is internally club.

Proof. By the previous claim, [N [G′]]<µ ∩ V [G′] = [N [G′]]<µ ∩N [G′]. M⊕(ν + 2)
collapses ν by adding a continuous and cofinal sequence into [ν]<µ∩V [Add(τ, ν)] by
Proposition 2.13. This is isomorphic to [N [G′]]<µ ∩ V [G′] since |N [G′]| = |N | = ν.
Hence, M⊕(ν+2) forces that we can write N [G′] =

⋃

i<µ Ni whereNi ∈ [N [G′]]<µ∩

V [G′] = [N [G′]]<µ ∩N [G′] for every i < µ. �

Since π is an “internal” isomorphism of M [G] and N [G′], M is also internally
club: Write N [G′] =

⋃

i<µ Ni such that Ni ∈ [N [G′]]<µ ∩N [G′] for every i. Then

M [G] =
⋃

i<µ π
−1[Ni] and π−1[Ni] = π−1(Ni) ∈ [M [G]]<µ∩M [G] for every i (since

otp(Ni) < µ < crit(π−1)). �

Thus we are finished after showing:

Claim 2.22. M [G] is not internally approachable.

Proof. Again, we show the following first:

Subclaim 2.23. N [G′] is not internally approachable.

Proof. Assume toward a contradiction that N [G′] =
⋃

i<µ Ni such that for each j,

(Ni)i<j ∈ N [G′]. In particular, (Ni)i<j ∈ V [G′]. Because G = G′ ∗ G′′ and G′′

is generic for an ordering with the < µ-approximation property (2.15), (Ni)i<µ ∈
V [G′]. However, this implies that N [G′] has size µ in V [G′], a contradiction as
M⊕(τ, µ, ν) is ν-cc. and |N [G′]| = |N | = |ν|. �
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Now assume M [G] =
⋃

i<µ Mi such that for each j < µ, (Mi)i<j ∈ M [G]. Then

N [G′] =
⋃

i<µ π[Ni] and for each j < µ, (π[Ni])i<j = (π(Ni))i<j = π((Ni)i<j) ∈

N [G′], since π(µ) = µ, giving us a contradiction. �

Thus we have produced a set in ĊG which is internally club but not internally
approachable. �

3. Distinguishing Internally Club and Approachable on an Infinite

Interval

In this section we apply the previous results to obtain the distinction between
internally club and approachable on the interval [ℵ2,ℵω), thus obtaining our main
theorem.

3.1. Preservation of the Distinction. First we do some preliminary work by
establishing some conditions under which ICNIA(Θ,ℵn) is preserved by sufficiently
well-behaved forcings.

To obtain the model for 1.1, we will make use of a projection analysis, showing
that, for a given n, the distinction holds in an outer model of the target model.
With this intention, we introduce a slight strengthening of ICNIA which is more
easily preserved downwards.

Definition 3.1. Let ICNIA+(Θ, µ) be the statement that Θ ≥ µ+ and there exist
stationarily many N ∈ [H(Θ)]≤µ such that

(1) N is internally club.
(2) There is no sequence (Xi)i<µ of elements of [Θ]<µ such that

⋃

i<µ Xi =

N ∩Θ and (Xi)i<j ∈ N for all j < µ.

We say that N is not ordinal-internally approachable if clause (2) holds.

We easily see that ICNIA+(Θ, µ) implies ICNIA(Θ, µ): if N is internally approach-
able, simply intersect the approaching sequence with the class of ordinals.

Proposition 3.2. Assume W is a forcing extension of V by a forcing order P

which is <µ+-distributive. If ICNIA+(Θ, µ) holds in W , ICNIA+(Θ, µ) holds in V .

Proof. In V , let C be club in [H(Θ)V ]≤µ. Then in W := V [G], C is club in
[H(Θ)V ]≤µ by the distributivity. Let Θ′ be larger than Θ and at least so large that
P ∈ H(Θ′). We have the following statement whose form connects it to notions of
properness:

Claim 3.3. In V [G], the set

D′ := {M ∈ [H(Θ′)V ]µ | M [G] ∩ V = M}

is club in [H(Θ′)V ]µ.

Proof. For closure, notice that




⋃

i<µ

Mi



 [G] ∩ V =





⋃

i<µ

Mi[G]



 ∩ V =
⋃

i<µ

(Mi[G] ∩ V ).

For unboundedness, let M0 ∈ [H(Θ′)V ]µ be arbitrary. Inductively define Mn+1 :=
Mn ∪ (Mn[G] ∩ V ). Then

(

⋃

n∈ω

Mn

)

[G] ∩ V =
⋃

n∈ω

Mn

since, given some τ ∈ Mn with τG ∈ V , τG ∈ Mn[G] ∩ V = Mn+1. �
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Additionally, C′ := {M ∈ [H(Θ′)V ]µ | M ∩ H(Θ)V ∈ C} is club in [H(Θ′)V ]µ.
Thus

E′ := {M [G] | M ∈ D′ ∩ C′}

is club in [H(Θ′)V [G]]µ which equals [H(Θ′)W ]µ by the size of Θ′. This implies
that the set

E := {M [G] ∩H(Θ)W | M [G] ∈ E′}

contains a club in [H(Θ)W ]µ.
Thus there exists M ∈ D′ ∩ C′ such that M [G] ∩H(Θ)W is internally club but

µ+ is not ordinal internally approachable in M [G]∩H(Θ)W . We aim to show that,
in V , M ∩H(Θ)V is internally club but µ+ is not approachable in M ∩H(Θ)V .

Claim 3.4. M ∩HV (Θ) is internally club in the model V .

Proof. We can write M [G]∩HW (Θ) =
⋃

i<µ Mi, where the union is continuous and

increasing and each Mi is in [M [G] ∩H(Θ)]<µ ∩M [G] ∩H(Θ). Because M ∈ D′,
M = M [G] ∩ V , so

M ∩HV (Θ) =(M [G] ∩ V ) ∩HW (Θ) = (M [G] ∩HW (Θ)) ∩ V =

=
⋃

i<µ

Mi ∩ V =
⋃

i<µ

Mi ∩HV (Θ),

using that HV (Θ) = H(Θ)∩V as P does not collapse cardinals. As M [G]∩V = M ,
Mi ∩HV (Θ′) = Mi ∩HV (Θ) ∈ M [G] for every i < µ. Additionally, Mi ∩HV (Θ) is
a subset of HV (Θ) of size <µ, so Mi ∩HV (Θ) ∈ HV (Θ): Mi ∈ V by distributivity
and has hereditary size <Θ. Again, as M ∈ D, Mi ∩HV (Θ) ∈ M [G] ∩ V = M , so
in summary Mi ∩HV (Θ) ∈ M ∩HV (Θ). �

Claim 3.5. M ∩HV (Θ) is not ordinal-internally approachable in the model V .

Proof. Since M [G] ∩ V = M , (M [G] ∩HW (Θ)) ∩Θ = (M ∩HV (Θ)) ∩Θ. Thus, if
M ∩HV (Θ) were ordinal-internally approachable in the model V , the same would
be the case in the model W (witnessed by the same sequence), a contradiction. �

Thus we have produced an element of C which is as required. �

3.2. Proving the Main Theorem. Now we will set up the proof of Theorem 1.1.
Let (κn)n∈ω be a sequence of Mahlo cardinals. We force with the full support
iteration I = 〈Pn : n < ω〉 where P0 = M⊕(ω, ω1, κ0, V ) and given Pn we let

Pn+1 = Pn ∗ Ṁ⊕(κn−1, κ0, κn+1, V [Pn−1])

where κ−2 = ω, κ−1 = ω1, and V [P−1] = V for simplicity. Observe that the
iteration will turn κn into ℵn+2 for all 0 ≤ n < ω.

We start with a small improvement of Theorem 2.18:

Lemma 3.6. Let τ < µ < κ be cardinals such that τ<τ = τ , µ = µ<µ and κ is
Mahlo. If γ is any ordinal, M⊕(τ, µ, κ,W )×Add(µ, γ) forces ICNIA

+(Θ, µ) for all
regular Θ ≥ κ.

Proof of Lemma 3.6. We modify the proof of Theorem 2.18.
Define Q := M⊕(τ, µ, κ,W ) × Add(µ, γ). We will abbreviate this product as

M× Abig. We will write the product that projects onto M as T× Asmall.

Let Ċ be a Q-name for a club in [H(Θ)]≤µ and Ḟ a name for the corresponding

function. Let Ẋ be theM×Abig-name forH(Θ)V [M×Abig]. Suppose for contradiction

that there is a condition q̃ ∈ Q forcing that Ċ avoids the set of elements in [H(Θ)]≤µ

that are internally club and in which Ẋ is not ordinal internally approachable. (This
formulation is necessary because we are using Mahlo embeddings.) Let Θ′ > Θ be
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such that H(Θ′) contains Ḟ and choose a rich model M ≺ H(Θ) with respect to κ

of cardinality ν such that M contains q̃, Q and Ḟ .
Let M̄ = M ∩M = πM (M) = M(τ, µ, ν,W ). Let Ābig = Abig ∩M = πM (M).
Now we will argue that we can choose the generics in a way that will suit us. Let

G′ ×H ′ be a M̄× Ābig-generic filter containing q̃. We can find G′′
1 ×G′′

2 , a product
of filters that are T×Asmall-generic over V [G′] such that T induces a generic G′′

0 for
M/G using Lemma 2.14. Now we let G = G′ ∗G′′. Since Abig = πM (Abig) × A′

big

where A′
big is a remainder, there is H ′′ such that H = H ′ ×H ′′ is Abig-generic and

πM (G×H) = G′ ×H ′. (This can be formulated in terms of jM , the reverse of the
Mostowski collapse πM , and applying Silver’s classical lifting criterion.)

We will argue that (M ∩ H(Θ))[G][H ] is internally club and X := ẊG×H is
not internally approachable in (M ∩ H(Θ))[G][H ] in the model V [G][H ]. Since

(M ∩H(Θ))[G][H ] is closed under ḞG×H , this suffices. We will argue using N , the
image πM : M → N .

Claim 3.7. (M ∩H(Θ))[G][H ] is internally club.

Proof. This holds as in the proof of Theorem 2.18: The Mostowski-Collapse of
(M ∩H(Θ))[G][H ] is equal to π(H(Θ))[G′][H ′] which is closed under <ν-sequences
in V [G′][H ′]. As before, G × H adds a club in [π(H(Θ))[G′][H ′]]<µ consisting of
elements of π(H(Θ))[G′][H ′]. �

The slightly harder claim is:

Claim 3.8. (M ∩H(Θ))[G][H ] is not ordinal-internally approachable.

Proof. Assume towards a contradiction that there is a sequence (Xi)i<µ of ele-
ments of [Θ]<µ such that (Xi)i<j ∈ (M ∩ H(Θ))[G][H ] for every j < µ and
⋃

i<µ Xi = (M∩H(Θ))[G][H ]∩Θ = ν. It follows that, for every j < µ, π((Xi)i<j) =

(π[Xi])i<j = (Xi)i<j ∈ N [G′][H ′] ⊆ V [G′][H ′] ⊆ V [G′][H ]. However, V [G][H ] is
an extension of V [G′][H ] by M(G′, τ, µ, κ r ν) which has the <µ-approximation
property in V [G′][H ]: one easily checks that the proof of Lemma 2.15 still works
because Add(µ, γ) is <µ-distributive and therefore does not change the definition
of M(G′, τ, µ, κr ν). Hence (Xi)i<µ ∈ V [G′][H ]. This implies that Θ ≥ ν has size
µ in V [G′][H ], a contradiction, as G′ ×H is generic for a ν-Knaster forcing. �

Again, we have produced (M ∩ H(Θ))[G][H ] ∈ ĊG×H which is internally club
but not internally approachable. This contradicts the choice of q̃. �

Now we can finish the proof of Theorem 1.1: Let n ∈ ω be arbitrary.
To obtain ICNIA(Θ, κn−1) we will view the iteration as a factorization Pn

low ∗

Ṗn
next ∗ Ṗ

n
high, where

• Pn
low := Pn−1,

• Ṗn
next is a Pn−1-name for

M⊕(κn−2, κn−1, κn, V [Pn−2])∗

Ṁ⊕(κn−1, κn,κn+1, V [Pn−1])∗

Ṁ⊕(κn, κn+1, κn+2, V [Pn])

• and Ṗn
high is a Pn

low ∗ Ṗn
next-name for

〈M⊕(κk−2, κk−1, κk, V [Pk−2]) : n+ 3 ≤ k < ω〉.

We want to show that P forces ICNIA(Θ, κn−1). Let Glow be Pn
low-generic over V

and work in V [Glow]. Because |Pn
low| < κn, κn remains Mahlo in this model.

Now we need to perform a termspace argument. Here we will use the notation
in which A(P1, Ṗ2) is the termspace forcing in which Ṗ2 is the underying forcing
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and the ordering is taken with respect to what is forced by the empty condition of
P1 (see [2, Section 22]).

By standard termspace arguments, Pn
next∗Ṗ

n
high is a projection of Pn

next×A(Pn
next, Ṗ

n
high).

Since Pn
next forces Ṗ

n
high to be <κn-strategically closed (using similar arguments to

[3]), A(Pn
next, Ṗ

n
high) is <κn-strategically closed. Now we focus on Pn

next. Writing

M⊕(τ, µ, κ,W ) as Add(τ, κ)W ∗ T(τ, µ, κ), we have

Pn
next = (M⊕(κn−2, κn−1, κn, V [Pn−2])×Add(κn−1, κn+1))

∗ (T(κn−1, κn, κn+1) ∗Add(κn, κn+2)
V [Pn] ∗ T(κn, κn+1, κn+2)).

Let

Pn
mid := M⊕(κn−2, κn−1, κn, V [Pn−2])×Add(κn−1, κn+1)

and

Tn
next := T(M⊕(κn−1, κn, κn+1))×A(M⊕(κn−2, κn−1, κn),Add(κn, κn+2)

V [Pn])

×A(M⊕(κn−2, κn−1, κn) ∗M
⊕(κn−1, κn, κn+1),T(M

⊕(κn, κn+1, κn+2))),

which is <κn-strategically closed. Then Pn
next is easily seen to be a projection of

Pn
mid × Tn

next.
So in summary, Pn

next ∗ P
n
high is a projection of Pn

mid × Tn
high, where

Tn
high := Tn

next ×A(Pn
next,P

n
high).

We can consider any extension by Pn
mid × Tn

high as an extension first by Tn
high

and then by Pn
mid. In such an extension, ICNIA+(Θ, κn−1) holds: Tn

high preserves
the Mahloness of κn by its strategic closure and does not add any new conditions
to Pn

mid. Ergo, by Lemma 3.6, Pn
mid forces ICNIA

+(Θ, κn−1). Furthermore, any

<κn-sequence added by Pn
mid×Tn

high has been added by Pn
mid, so ICNIA

+(Θ, κn−1)
also holds in any extension by Pn

next ∗ P
n
high by Proposition 3.2.

Remark 3.9. The first author obtained a proof of Theorem 1.1 using a product
rather than an iteration [8].

Here is a question related to the technical aspects of this paper:

Question 3.10. Suppose P is a ν+-closed forcing and S ⊆ Pν(H(Θ)) is a station-
ary set of internally club sets. Is S stationary in an extension by P?
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