
Revisiting Unnaturalness for Automated Program
Repair in the Era of Large Language Models

Aidan Z.H. Yang ∗, Sophia Kolak †, Vincent J. Hellendoorn ‡, Ruben Martins §, Claire Le Goues ¶

Carnegie Mellon University
Pittsburgh United States

Email: ∗aidan@cmu.edu, †sdkolak@andrew.cmu.edu, ‡vhellendoorn@cmu.edu, §rubenm@cs.cmu.edu, ¶clegoues@cs.cmu.edu

Abstract—Language models have improved by orders of mag-
nitude with the recent emergence of Transformer-based Large
Language Models (LLMs). LLMs have demonstrated their ability
to generate “natural” code that is highly similar to code written
by professional developers. One intermediate value an LLM can
emit is entropy, which measures the “naturalness” of a token
of code. We hypothesize that entropy can be used to improve
the performance of Automated Program Repair (APR) tasks.
While much progress has been made in Automated Program
Repair (APR), fault localization techniques suffer from a lack
of diversity in ranking scores, patch generation tools tend to be
inefficient as all tests need to run before determining if a patch
is likely to be correct, and patch ranking often suffers from the
test-suite over-fitting problem. However, using an LLM directly
for APR introduces concerns for training data leakage. In this
work, we introduce a novel way of using the entropy of LLMs in
combination with prior APR tools to improve all stages of APR.
By using only the prefix and suffix context of a line or block
of code to describe “naturalness”, we can use LLMs to localize
faults and rank patches all while eliminating the dependency
for test-suites. We show that entropy is highly complementary
with prior fault localization tools. Our proposed re-ranking
method achieves a 50% Top-5 score improvement over SBFL.
We propose a patch-naturalness measurement, entropy-delta, to
improve the efficiency of template-based repair techniques by
ranking plausible patches before undergoing testing. When using
entropy-delta for patch ranking and classification, our proposed
method can rank correct patches more effectively than state-
of-the-art machine learning tools with an 49% improvement in
Top-1. Our work suggests that LLMs can be an effective addition
to compliment prior APR tasks while minimizing both the test-
suite overfitting problem and the LLM data leakage problem.

I. INTRODUCTION

The problem of software quality has motivated the devel-
opment of a variety of techniques for Automatic Program
Repair (APR) [1], [2], [3], [4], [5]. At a high level, dy-
namic APR approaches use test cases to define a defect to
be repaired and functionality to retain, and to localize the
defect to a smaller set of program lines. APR techniques
generate candidate patches in a variety of ways, such as by
heuristically instantiating pre-defined repair template [1], [6],
or by customizing symbolic techniques to synthesize new
code [5], [7].

Meanwhile, the recent advances in machine learning and
AI, including but by no means limited to advances in Trans-
former [8] based language models, have produced orders

of magnitude performance improvements over previous ML
techniques for code generation [9], [10]. ML therefore affords
promising opportunities for program repair [2], [3], [11],
[12], [13] and fault localization [14]. The applicability of
language models to the repair process makes sense: these
models are trained on large volumes of code in which defects
are relatively rare. Since their training objective encourages
next-token prediction, well-trained language models tend to
simultaneously perceive faulty code as unlikely (or “unnat-
ural”) and to produce code that is correct, as correct code is
more “natural” [15]. The naturalness of code and unnaturalness
of buggy code is now a well-established phenomenon [16],
[15]. However, the bulk of prior research on this topic relied
on relatively simple n-gram language models [17]. Compared
to present-day LLMs, these models provided a very poor
estimator of code predictability. The “unnaturalness” of buggy
lines was therefore mainly useful as an explanatory metric,
but showed limited utility for precisely localizing defects, let
alone repairing programs. The recent advancement of much
larger and more sophisticated LLMs have decreased model
perplexities by multiple orders of magnitude. This makes them
a much more accurate adjunct both for estimating naturalness
and for fault localization or correct patch identification [18],
[19].

In this paper, we revisit the idea of (un)naturalness for
program repair. The fundamental idea behind using an LM
alone — even a hypothetically optimal one — for repair
treats predictability as ultimately equivalent to correctness.
This assumption is specious: LLMs adopt preferences based
on a corpus with respect to training loss that rewards imitation.
Beyond the fact that LLMs necessarily train on buggy code,
LLMs generate and score text one token at the time. Given
that, they may well prefer a subtly incorrect implementation
spread across several readable lines over a correct but difficult-
to-understand one-line solution, as the per-token surprisal of
the former may be strictly lower than the latter. Judgement of
code correctness requires substantially more context than an
LLM has access to including, but not limited to, test cases
test behavior, and developer intent. Although some of this
information could be provided as context, it will lie outside
the training distribution.

This implies that LLMs can only go so far on their own in
reasoning about and fixing buggy code. It moreover motivates

ar
X

iv
:2

40
4.

15
23

6v
1

 [
cs

.S
E

]
 2

3
A

pr
 2

02
4

the use of traditional tools, which compress such information,
as a complement to LLMs in repair, which has indeed shown
promising recent results for the patch generation stage in
particular [18] (acknowledging the risk of training data leakage
in any such experiment [20]).

We go beyond prior work by interrogating the role of
entropy as a complement to traditional repair at every stage:

Fault localization (FL). End-to-end dynamic APR relies on
fault localization to narrow a bug to a smaller set of source
locations. Improving fault localization accuracy is key to
improving repair efficiency [21], [22]. Although FL accuracy
is improving, both commonly-used [23] and state-of-the-art
ML-based techniques still suffer from the tendency to assign
the same FL score to large amounts of code. For example, we
find that Ochiai SBFL [23] assigns the same suspiciousness
score to 1137 lines of code in the dataset Defects4J (an average
of 2.9 ties per bug), and TransferFL [22] assigns the same
suspiciousness score to 380 lines of code in the same dataset
(an average of 0.96 ties per bug).

We show that by incorporating entropy into fault localiza-
tion, the variance of suspicious scores increase by 87% for
Ochiai SBFL, and overall accuracy increases as well (e.g., the
Top-5 score improves from 94 to 145).

Plausible patch generation. APR approaches typically gen-
erate multiple potential code changes in search of plausible
patches that cause the program to pass all tests. Executing
tests (and to some extent, compiling programs to be tested)
dominates repair time: the template-based approach TBar [1]
spends about 2% of its total time creating patch templates, 6%
generating patches from templates, and 92% running tests on
generated patches. Regardless of the patch generation method
(e.g., symbolic techniques [5], [4], [7], template instantia-
tion [1], [6], or machine learning models [18]) repair efficiency
is best approximated in terms of the number of patches that
must be evaluated to find a (good) repair [24].

We show that entropy, when used to order candidate patches
for evaluation, can improve the efficiency of generic template-
based repair by 24 tested patches per bug, on average.

Patch correctness assessment. Plausible patches are not
always correct, in that they can fail to generalize to the desired
behavior beyond what is tested in the provided test suite [25].
Some recent work aims to address this in the form of a
post-processing step that identifies (and filters) plausible-but-
incorrect patches, typically by combining program analysis
and machine learning [26], [27], [19]. However, techniques
to date are typically trained on the same test suites used for
patch generation, imposing a project-specific training burden
(and an expensive one, when dynamic signals are required),
and posing a significant risk of overfitting [25], [19].

We show that entropy can rank correct patches 49% more
effectively (in Top-1) than state-of-the-art patch ranker Shib-
boleth [27], without using any project-specific training data.

In summary, we make the following contributions.
• End-to-end entropy APR. We propose a technique that

uses a combination of an LLM’s inherent ability to detect

4473 XYItemRenderer r = getRendererForDataset(d);
//SBFL=0.52, E=0.48

4474 ...
4493 - Collection c = getRenderer().getAnnotations();

//SBFL=0.49, E=1.59
4494 + if (r != null) {
4495 + Collection c = r.getAnnotations();

//E=1.34
4496 ...
4502 + }

(a) Chart 4 buggy code and developer fix.

4493 - Collection c = getRenderer().getAnnotations();
//E=1.59

4494 + if (r == null) {
4495 + return null; //E=2.77
4496 + }

(b) Chart 4 buggy code and test failing TBar patch #1.

4493 - Collection c = getRenderer().getAnnotations();
//E=1.59

4494 + if (r == null) {
4495 + continue; //E=1.98
4496 + }

(c) Chart 4 buggy code and test passing TBar patch #19.

Fig. 1: Chart bug 4 from Defects4J with its developer-written
fix, a test-failing patch generated by TBar, and a test-passing
patch generated by TBar. We show the InCoder-produced
entropy of code in each patch.

“naturalness” (i.e., entropy) and an LLM’s generation
ability to predict faulty lines, rank untested patches, and
classify tested but potentially incorrect patches.

• Entropy-delta for efficient template-based patch
generation. We introduce entropy-delta as a patch-
naturalness measure that can rank patches before run-
ning tests. We show that entropy-delta can be used to
immediately filter out test-failing patches, and on average
reduce running tests for 24 patches for each bug in our
dataset. We combine entropy-delta patch ranking with a
prior template-based program repair technique, TBar [1],
and release a more efficient version of TBar for future
research.

• Artifact availability. Our data, tool, and results are
available and will be released as open-source.1

II. ILLUSTRATIVE EXAMPLE

Consider the buggy and fixed versions of (Chart, 4) from
Defects4J [28], shown in Figure 1a. The original buggy code
is missing a null check, which the developer fixed by adding
if(r != null) around the implicated code at line 4493.

The TBar [1] template-based program repair technique pro-
duces candidate patches by repeatedly instantiating applicable
templates at program statements, ordered by Ochiai SBFL sus-
piciousness score. For example, Figure 1b a TBar-generated
patch that does not cause the tests to pass, and so is discarded,

1https://zenodo.org/records/10851256

https://zenodo.org/records/10851256

and the search continues. Given Chart’s associated test suite,
the Ochiai SBFL approach [21] assigns line 4473 the highest
suspicious score in Chart of 0.52; line 4493, a suspiciousness
score of 0.49; and 0.03 to lines 4494 and onward. Using only
SBFL for fault localization ranking, the actual faulty line at
line 4493 is ranked as 10th most suspicious. This does not
prevent TBar from considering it, but does cost time.

TBar can produce patches that pass all tests for this bug,
such as the one shown in Figure 1c. In the interest of reasoning
about efficiency, we hold fault localization constant [24]; given
that, this is the 19th patch attempted. However, although this
patch prevents the null pointer exception, it does not generalize
beyond the provided tests to capture the apparent developer
intent. Importantly, TBar can produce the correct patch (from
Figure 1a), if configured to execute beyond the first test-
passing patch found — it is the 70th patch attempted, but
only the second that passes all tests.2

LLM-based entropy provides useful clues, here, however.
First, consider fault location: we use InCoder [29],3 to measure
the entropy of every line in this file. Rank-ordering them, line
4473 is ranked 8th-most-surprising. This is better than the
SBFL technique on face. However, their real utility appears to
lie in combination: re-ranking the lines receiving the Top-10
SBFL suspicious scores by InCoder entropy values, puts line
4493 at rank 2. We investigate how entropy in conjunction with
SBFL performs for fault localization across multiple bugs and
projects, as well as how different LLMs affect its performance.

We can also measure the naturalness of generated patches,
such as by calculating the change in entropy, which we call
entropy-delta (△E), between the original buggy line of code
and the proposed patches. The △E for the test-failing patch is
−0.39; for the test-passing but still-incorrect patch is −1.18;
and for the correct patch is 0.25.

The entropy-delta scores do not perfectly predict behavior
(note that the test-failing patch has a higher score than the
test-passing-but-incorrect patch), but it still suggests:

1) Entropy-delta can improve efficiency by suggesting the
order to test patches. Test execution time is the dominant
cost in program repair. By using entropy to rank potential
patches before testing them, to suggest the order in which
to do so, both test-passing patches can be found within 6
attempts (improving on 19 to the first test-passing in the
default mode, and 90 to find the second, correct patch).

2) Entropy-delta can potentially help disambiguate
plausible-but-incorrect from genuinely correct patches.

We evaluate these relationships in detail in the rest of this
work, showing how entropy can usefully complement tradi-
tional approaches to automatic localization and transformation
in the context of program repair.

III. APPROACH

We ask and answer the following three research questions
about the utility of LLM-entropy for APR.

• RQ1: How can entropy improve fault localization? We
perform an empirical evaluation of prior state-of-the-art
fault localization tools and observe whether and how they
benefit from the use of entropy scores.

• RQ2: How can entropy improve patch generation
efficiency? To measure how entropy can be used for patch
generation efficiency, we use it to rank proposed patches
generated by an APR technique before running tests.

• RQ3: How well does entropy-deltas identify correct
patches? We investigate if entropy-delta can differentiate
plausible patches (patches that passes all tests) and correct
patches (patches that correctly fix the bug).

This section describes how we use entropy for fault local-
ization (Section III-A); our development of entropy delta for
evaluating patches (Section III-B); and our modifications to
TBar to enable our study of improved patch efficiency (Sec-
tion III-C). The next section describes datasets and metrics.

A. Entropy for fault localization

We integrate raw entropy scores into prior fault localization
techniques. Figure 2 overviews the approach. We take suspi-
ciousness scores provided by a given prior FL tool for a given
file. For consistency with prior studies of fault localization, we
focus on top-N identified lines (as developers do not typically
inspect more than 5 candidates [30]). We choose 6 and 10 for
N, and name the two approaches 6-filter and 10-filter, as these
are two quantities near the Top-5 that can still significantly
impact Top-5 scores.

We then query an LLM for entropy scores for each line
of code in that file. We tokenize the entire file, iteratively
masking each line, and querying the model for each line’s
entropy. We used a sliding context window with 2048 tokens
(i.e., the maximum attention window of our smallest selected
LLM) surrounding the mask as suffix and prefix context. This
allows us to assign entropy-based scores for all code in a file,
even those longer than a given LLM’s context window.

We then re-rank the suspiciousness code identified by SBFL
by entropy score, and validate the ranked list according to the
actual fault location in the dataset.

We incorporate entropy into three previous FL techniques:
SBFL using the Ochiai formula [21], TransferFL [22] and
LLMAO [14]. Ochiai is a common formula in SBFL used
in traditional APR practices (e.g., TBar). TransferFL and
LLMAO are the current state-of-the-art FL techniques using
transfer-learning and LLMs, respectively.

2Using SBFL fault localization, TBar produces these patches at 1076 and
1127, respectively.

3When prompted with the code and asked to fix the bug directly, InCoder
does not produce a test-passing patch in few-shot setting. Note that GPT4
fixes the bug correctly, and reports the git commit associated with the fix,
implicating data leakage.

Input for
prior-FL +
entropy:

 (,)
Source-code, Test results

1. Prior-FL Suspicious Lines
2.

LLM

E : line a : (gen0,...genn)
E : line b : (gen0,...genn)

…
E : line x : (gen0,...genn)

line a :
line b :

…
line x :

Entropy ranked lines & generations

3.

Patch generation Patch ranking

Input for
entropy
direct: Source-code

Fig. 2: Fault localization pipeline using entropy. (1) We take a prior-FL suspicious score list, (2) query each code-line for
entropy values, and (3) re-rank the list using LLM entropy scores.

Generation Query

Prefix

Prefix

Suffix

Suffix

(a) An example of entropy-delta query from a code-line deletion
patch. The entropy-delta value of the deleted line is the difference
between the original line and a blank line.

(b) An example of entropy-delta query from a code-line replacement
patch. The entropy-delta value of the replaced line is the difference
between the original line and the replacement line.

Fig. 3: Example entropy-delta queries from an LLM. The
MASK tokens enable models to learn the contextual rela-
tionships between tokens and make entropy predictions for
missing, new, or replacement tokens. The EOM token is a
special token that indicates the end of a mask.

B. Entropy-Delta

To evaluate patch naturalness, which we use in both patch
prioritization during generation/evaluation and patch correct-
ness prediction, we introduce the concept of an “entropy-
delta”. Entropy delta describes how code replacement changes
the naturalness of a block of code. Figure 3a and Figure 3b
give examples for our usage of entropy-delta for assigning
a ranking score for patches. Figure 3a shows the process of
masking out a deleted line of code and querying the LLM
for the change in entropy using that mask (i.e., the change in
entropy without the original line). Figure 3b shows the process
of querying the LLM for the change in entropy if the tokens
of the original line of code is replaced with new tokens of
patch code. If the patch is an insertion of a blank new line,
we query the entropy-delta between the “newline” token and
the original line of code. For the case of an insertion, we
measure the entropy-delta between the new code line and the
original blank line.

An entropy-delta is simply the change in entropy before and
after a line in code is replaced. For instance, if the line’s orig-
inal entropy is 1.0, and the replacement line’s entropy is 0.5,
then the line has an entropy-delta of +0.5, as in, replacing that
line lowered entropy by 0.5. A significant reduction in entropy
(large, positive entropy-delta) means that the replacement code
lowered the entropy, implying both that the original statement
may have been buggy and that the patch is more natural for
that region of code. A large, negative entropy-delta means that
the replacement code increased entropy, meaning that the patch
is less natural at that location. An entropy-delta of 0 means
that the patch has the exact same naturalness as the original
code.

C. Modified TBar

Our patch efficiency experiments ask how entropy can
speed up patch generation and evaluation. We evaluate it

in context of TBar [1], the best-performing template-based
program repair technique in the existing literature. We avoid
using ML-based APR techniques (even though some may
outperform TBar [18], [22], [31]) because our goal is a
controlled evaluation of entropy without learned patterns from
the test suite. Evaluating based on a technique that otherwise
also relies on trained ML models fails to isolate the effect of
entropy per se.

TBar is a template-based patch generation technique inte-
grated with Defects4J V1.2. Our experiments require several
modifications to the codebase. First, we enable TBar to
continue seeking patches after the first test-patching patch
is found. Second, we enable TBar to generate patches, or
evaluate them in a customized order (such as one provided by
an entropy-delta ranking). Our TBar extension also includes
some refactoring for modifiability/extensibility, as well as a
more accurate patch caching mechanism (caching the patched
source code, rather than the patch alone). We provide the
modified code with our replication package.

IV. DATASETS AND METRICS

In this section, we describe the models we use for entropy
(Section IV-A), the bug and patch datasets considered (Sec-
tion IV-B), as well as evaluation metrics (Section IV-C).

A. LLMs

We used InCoder [29], Starcoder [32], and Code-Llama2
[33]. The three LLMs were trained on open-source code and
are capable of infilling with bidirectional context. The InCoder
model [29] is a large-scale decoder-only Transformer model
with 6.7 billion parameters. The model was trained on a dataset
of code from public open-source repositories on GitHub and
GitLab, as well as from StackOverflow. InCoder was primarily
trained for code infilling, which involves the insertion of
missing code snippets in existing code, using a causal-masked
objective during training. However, its versatility enables it
to be utilized in a variety of software engineering tasks,
including automatic program repair. Starcoder and Llama-2
were trained with a similar autoregressive plus causal-mask
objective as InCoder. Starcoder was trained with 15.5 billion
parameters. Code-Llama2 have three versions available: 7B,
13B and 34B. We choose the 7B version as it is the closest in
size to the other two models. Although the three LLMs were
not specifically trained for repair, their large architectures and
training objectives could imply that their entropy values on a
particular region of code could suggest code naturalness. For
all experiments, we set the LLM temperature to 0.5.

B. Dataset

We use the Defects4J [28] dataset as the basis of our
experiments. Defects4J is a well-established set of documented
historical bugs in Java programs with associated tests and
developer patches. It is commonly used in APR, testing, and
fault localization research. However, each research question
requires a different subset of the data. Table I shows the
number of bugs in each project that have at least one patch

TABLE I: Defects4J bugs with at least one patch passing tests (RQ2
- efficiency), and a developer fix (RQ3 - patch correctness).

Defects4J V1.2 #bugs Defects4J V2.0 #bugs
Patch efficiency (RQ2) Patch correctness (RQ3)
Incl. Total Incl. Total

Chart 11 26 19 26
Closure 19 133 64 174
Lang 14 65 35 64
Math 21 106 67 106
Mockito 3 38 1 38
Time 4 27 11 26

Total 72 395 197 434

passing tests (for analyzing patch efficiency) and a developer
fix (for analyzing patch correctness) along with plausible but
incorrect patches. In total, we analyze 72 bugs from Defects4J
V1.2 for patch efficiency and 197 bugs from Defects4J V2.0
for patch correctness.

We used Defects4J V1.2 for the fault localization and patch
generation experiments. We do this because off-the-shelf TBar,
as well as prior fault localization tools’ replication packages,
are all only compatible with Defects4J V1.2. The fault local-
ization experiments consider all 395 bugs in Defects4J V1.2.
We choose not to use Defects4J V2.0 for fault localization
because prior tools’ replication packages are only compatible
with Defects4J V1.2.

For patch generation, the goal is to evaluate the degree
to which entropy can improve repair efficiency; we therefore
focus on the subset of Defects4J V1.2 bugs on which vanilla
TBar succeeds at least once.

For patch correctness ranking, we use curated datasets from
prior tools’ replication packages directly, namely, Shibbo-
leth [27] and Panther [26]. Shibboleth and Panther are both
tools that leverage static and dynamic heuristics from both
test and source code to rank and classify plausible patches,
built on top of the updated Defects4J V2.0 dataset. We use a
dataset of 1,290 plausible patches on Defects4J V2.0 curated
by Ghanbari et al. [27]. For patch classification, we use a
dataset of 2,147 plausible patches on Defects4J V2.0 curated
by Tian et al. [26]. The patches from Tian et al. [26] were
generated by seven different APR techniques. Each bug in the
data set has one correct patch and several plausible (i.e., test
passing) but incorrect ones. We calculate the change in entropy
between the section of code in the original (buggy) file and the
patched version. Note that both datasets only contain patches
in projects Chart, Closure, Lang, Math, Mockito, and Time
(6/17 of Defects4J V2.0’s total projects), to compare with prior
work built on Defects4J V1.2. Instead of the total number of
bugs 835 in Defects4J V2.0, we only consider the 434 bugs
in the 6 projects included by Shibboleth [27] and Panther [26]
(shown in Table I).

C. Metrics

Fault localization and patch ranking. We measure the effec-
tiveness of both fault localization ranking and patch ranking by
counting the number of correct faults or patches that appear in

TABLE II: Top-N scores on 395 bugs from Defects4J V1.2.0 from 3
prior tools and re-ranking with entropy from three pre-trained LLMs:
InCoder (6B), LLAMA-2 (7B), and Starcoder (15.5B)

FL type re-rank
Filter

Technique Top-1 Top-3 Top-5

Entropy entropy-Llama2 5 20 41
entropy-Starcoder 9 35 55
entropy-InCoder 38 90 116

SBFL
SBFL 24 61 94

10-filter entropy-Llama2 15 37 84
entropy-Starcoder 15 40 88
entropy-InCoder 50 98 133

6-filter entropy-Llama2 25 84 145
entropy-Starcoder 28 86 144
entropy-InCoder 55 117 141

TransferFL
TransferFL 69 126 145

10-filter entropy-Llama2 33 82 105
entropy-Starcoder 39 92 126
entropy-InCoder 49 114 144

6-filter entropy-Llama2 38 131 184
entropy-Starcoder 44 138 178
entropy-InCoder 57 156 182

LLMAO
LLMAO 87 134 149

10-filter entropy-Llama2 38 131 145
entropy-Starcoder 45 107 144
entropy-InCoder 77 131 146

6-filter entropy-Llama2 49 121 143
entropy-Starcoder 36 84 151
entropy-InCoder 81 142 151

the Top-N position. The Top-N measure has been widely used
in APR research [34]. Existing studies [30] showed that over
70% of developers inspect only the Top-5 suggested elements.
We use Top-5, Top-3, and Top-1 for fault localization ranking.
We only use Top-2 and Top-3 for patch ranking following
Ghanbari et al. [27], as some bugs in our dataset only have 2
plausible patches available.
Patch generation efficiency. We measure the effect of rerank-
ing generated potential patches in terms of the number of
patch evaluations saved by doing so. Patch evaluations are
established as a hardware- and program-independent measure
for APR efficiency [24], and a proxy for compute time.
Patch correctness. For patch classification tasks, we convert
entropy-delta values into binary labels. We label patches with
a positive entropy-delta as “more natural” (i.e., more likely
to be correct), and patches with a negative entropy-delta “less
natural” (i.e., less likely to be correct). To measure entropy’s
ability to isolate correct and incorrect patches, we use +recall
and -recall. +Recall measures to what extent correct patches
are identified, while -recall measures to what extent incorrect
patches are filtered out. We use accuracy, precision, and F1
scores to assess classification effectiveness over the entire
dataset.

V. RESULTS

In this section, we present results on the performance of
entropy and entropy-delta on our three research questions:

RQ1: Can entropy improve fault localization?
RQ2: Can entropy improve patch generation efficiency?
RQ3: How well does entropy-deltas identify correct patches?

RQ1: Can entropy improve fault localization?

In this research question, we compared 24 different config-
urations for fault localization. Our analysis aims to determine
the most effective approach for identifying the buggy statement
in a series of one line bugs. We first measure entropy directly
for fault localization with our three selected LLMs: Code-
Llama2, Starcoder, and InCoder. We then measure the fault
localization accuracy of three prior fault localization tools:
SBFL [21], TransferFL [22], and LLMAO [14]. Finally, we
use entropy to re-rank prior fault localization tools and observe
that entropy re-ranking largely improves prior tools. Table II
shows the Top-N scores (N = 1,3,5) on all configurations of
our experiment. We observe that the entropy of InCoder, the
smallest LLM in our lineup, is the most effective for fault
localization. This is consistent with results from Xia et al. [18],
who found that InCoder, trained with an objective of predicting
missing code from a bidirectional context, is more effective at
program repair tasks than larger but purely causal generative
LLMs.
SBFL. From Table II, we observe an overall decrease in
Top-N scores using either Code-Llama2 or Starcoder entropy
with a 10-filter. However, all Top-N scores improve with
the 6-filter. In particular, the Top-3 score of 84 for Llama2
entropy improves upon SBFL by 38%, and the Top-3 score
of 86 for Starcoder entropy improves upon SBFL by 41%.
Using InCoder entropy to re-rank SBFL shows substantial
improvements across all Top-N and the two types of filters.
InCoder entropy-SBFL with a 10-filter achieves a Top-1 score
of 50 (108% improvement), and 5-filter achieves a Top-1 score
of 55 (129% improvement). Similarly, the Top-3 and Top-5
scores improve by 61% and 41%, respectively for InCoder
entropy-SBFL with a 10-filter. The Top-3 and Top-5 scores
improve by 92% and 50% respectively for the 10-filter.
TransferFL. As seen in Table II, we observe an improvement
from entropy on TransferFL’s Top-3 and Top-5 scores using a
6-filter. In particular, 6-filter InCoder-entropy with TransferFL
Top-3 is 156 (24% improvement), and 6-filter Llama2-entropy
with TransferFL Top-5 is 184 (27% improvement). How-
ever, 6-filter InCoder-entropy with TransferFL yields a Top-1
score of 57, which is a 17% decrease in performance than
TransferFL by itself. As compared to state-of-the-art machine
learning based FL techniques, we observe that entropy scores
perform worse on Top-1.
LLMAO. Similar to the results of TransferFL, re-ranking
with entropy only improves fault localization results using the
6-filter. Furthermore, only entropy calculated using InCoder
shows an improvement over LLMAO alone for Top-3 and
Top-5, with a 8% and 1% improvement, respectively. Since
LLMAO is already an LLM based FL tool, LLM entropy re-
ranking shows marginal improvements as compared to prior
non-LLM based FL tools. LLMAO finetunes on CodeGen
16B [35], which is a larger LLM than our three chosen LLMs.

TABLE III: entropy-delta ranking scores of 72 plausible patches
generated by TBar per Defects4J project. The mean rank decrease is
24 and the median is 5.

Project Improves ranking Lowers ranking

Chart 11 2
Closure 15 4
Lang 11 2
Math 16 3
Mockito 1 0
Time 3 1
Total 60 12

Chart Closure Lang Math Mockito Time

0

20

40

60

80

100

Pa
tc

h
ra

nk
in

g

Ranking method
T-bar
E-delta

Fig. 4: Entropy-delta and TBar ranking (lower is better) of
test-passing patches on 72 Defects4J bugs.

Our results indicated that SBFL benefits the most with In-
Coder’s entropy re-ranking. Since SBFL has the most amount
of tied suspicious scores (2.9 ties per bug on average), the
additional suspiciousness from entropy values helps to break
ties. TransferFL and LLMAO benefit from entropy re-ranking
mostly when using a 6-filter. These findings suggest that
incorporating entropy as a heuristic in fault localization can
improve the accuracy of identifying the buggy statement,
particularly when used in conjunction with SBFL.

RQ1 Summary
We leverage entropy for fault localization in Defects4J pro-
grams and show that, while entropy alone is only somewhat
useful for finding defective lines, the measure is highly
complementary when combined with prior fault localization
tools, which highlights the importance of combining LLM-
based methods with techniques from prior APR approaches.

RQ2: Can entropy improve patch generation efficiency?

In this section, we discuss the observed relationship of
entropy and test-passing patches. We use entropy from In-
Coder, the most successful LLM in RQ1’s fault localization.
We measure the impact of entropy-delta on patch generation
efficiency with two methods: (1) measuring each successful
(test-passing) patch’s ranking as ranked by original TBar and

Chart Closure Lang Math Mockito Time
0

25

50

75

100

125

150

175

200

M
ed

ia
n

nu
m

be
r o

f p
at

ch
es

 tr
ie

d

Entropy reranking
TBar

Fig. 5: Median number of patches tested (lower is better) per
project before succesful patch using TBar original ranking
and entropy-delta re-ranking of test-passing patches on 100
Defects4J bugs.

entropy-delta re-ranked TBar, and (2) incorporating entropy-
delta into TBar and measuring the total number of patches
generated to pass all tests.

We first configured TBar to generate only 100 patches per
each Defects4J bug, assuming perfect fault localization. Of the
TBar patches we generated, 72 passed all tests contained in
their bugs’ respective repositories (e.g., all tests written for
project Chart). Finally, we calculated the entropy-delta score
for each patch, and the test-passing patch’s original ranking ac-
cording to TBar. As seen in Table III, entropy-delta improves
60 out of the 72 rankings as compared to TBar’s original
ranking. On average, we observed a mean rank decrease of
24, meaning that using entropy-delta to rank the generated
TBar patches can reduce a mean of 24 full test iterations
(i.e., each potential patch must run through all test cases
in the repository before knowing if it is a plausible patch).
Liu et al. [24] compared 16 APR techniques and found that
TBar exhibits one of the highest number of patches generated,
but also the highest rate of bug fixing across Defects4J. We
posit that entropy-delta’s efficiency improvement over TBar
significantly boosts template-based APR’s overall utility.

Figure 4 compares the TBar ranking and entropy-delta
ranking. Each bar represents the rank of test-passing patches
compared to all generated patches per Defects4J project. A
lower rank signifies a more efficient repair process, as the
repair process ends when a test-passing patch is found. As seen
in Figure 4, TBar’s original ranking for test-passing patches
is higher than entropy-delta’s ranking across all projects.
Entropy-delta shows a higher disparity on ranking between test
passing and test failing patches (i.e., a lower median rank for
all test-passing patches). In particular, patches from projects
Chart and Time show the largest improvement from re-ranking
patches with entropy-delta. Successful patches in Chart and
Time typically require multi-line edits, and with a wider range

Chart Lang Mockito Time Closure Math

10

5

0

5

10

En
tro

py
 d

el
ta

correct_patch
False
True

Fig. 6: Entropy-delta across correct and incorrect patches on
Defects4J projects. A higher entropy-delta signifies a less
surprising patch to the LLM, and a lower entropy (sometimes
negative) entropy-delta signifies a more surprising patch to the
LLM.

of templates to choose from, entropy-delta can make a greater
impact in reducing the number of patches tested.

We then configured TBar to use entropy-delta ranked
patches directly, and measured the total number of patches
required until a successful bug fix (i.e., passing all tests).
Figure 5 shows the median number of patches tested per
project before a successful patch using TBar original ranking
and entropy-delta re-ranking. We observe that entropy-delta re-
ranking reduces the median number of patches tested across all
projects except for Mockito. Mockito has only three single line
bugs that TBar can fix. With a smaller total number of patches
to try on a single template (e.g., 11 total possible patches for
Mockito-26), entropy-delta re-ranking does not have as large
of an impact on APR efficiency.

RQ2 Summary
We show that entropy can be used to rank patches before
going through the entire test-suite, thereby reducing the test
overhead for template-based repair technique TBar by a
mean of 24 patches tested. Entropy-delta can both reduce
the median number of patches tried before finding a fix,
and consistently rank test patching patches higher than test-
failing patches without any dependency on the test-suite.
Entropy-delta is most useful for bugs that require multi-line
patches.

RQ3: How well does entropy-deltas identify correct patches?

In RQ2, we saw that entropy-delta can improve the effi-
ciency of patch generation by reducing number of patches
tested. However, it is important to note that a test-passing
patch is not necessarily correct. To further explore the issue
of correctness, we investigated the ability of entropy-deltas

to distinguish between correct and incorrect patches, both of
which are test-passing.

1) Patch ranking: We evaluate a dataset of 1,290 patches
generated by 7 prior APR methods collected by Ghanbari et
al. [27]. For each bug, the data set includes some number
of plausible (i.e., test passing) patches, where exactly one is
correct, and the rest are incorrect. We attempt to isolate the
true correct patch from the incorrect patches. We then rank
each patch according to its entropy-delta, querying the model
for the entropy of the entire patch region before and after the
replacement. Table IV shows the Top-1 and Top-2 results of
our approach on the labeled dataset of 1,290 patches. We see
from Table IV that entropy-delta outperforms both SBFL and
Shibboleth [27] on Top-2 across all projects, and entropy-delta
outperforms Shibboleth on Top-1 across all projects but Chart
(10 Top-1 as compared to Shibboleth’s 11 Top-1). Overall, we
see that entropy-delta improves upon Shibboleth by 49% for
Top-1, and 27% for Top-2.

The difference in entropy reduction between correct and
plausible but incorrect patches is shown in greater detail in
Figure 6. We see a clear difference in entropy-delta across
correct and incorrect patches. In particular, the correct patches
for all six projects have a median entropy-delta value of above
0, and the incorrect patches for all six projects have a median
entropy-delta value of below 0. A correct patch tends to appear
more natural to the LLM as compared to its original buggy
line.

2) Patch classification: Table V shows our classification
results on a labeled dataset of 2,147 plausible patches curated
by Tian et al. [26] for classifying patches as correct or
incorrect. Entropy-delta improves upon the accuracy score of
PATCH-SIM [5] and Panther [26], but only slightly improves
+recall score over both PATCH-SIM and Panther. For -recall,
entropy-delta performs better than PATCH-SIM by 9%, but
performs worse than Panther by 10%. Entropy-delta slightly
improves accuracy over Panther by 0.6%, and 89% over
PATCH-SIM. Entropy-delta improves precision over Panther
by 18%, and PATCH-SIM by 267%. Finally, entropy-delta
performs better than both PATCH-SIM and Panther on F1
score, by 118% and 10% respectively. As compared to the
state-of-the-art, entropy improves classification performance
on true positives more than true negatives.

Our analysis focused on comparing the degree of entropy re-
duction between true correct patches and plausible test-passing
patches. As shown in Table IV, Table V, and Figure 6, our
results suggest that correct patches tend to lower entropy (i.e.,
increase naturalness) more than incorrect patches. Specifically,
entropy-delta ranks 49% more correct patches in the Top-1
than the state-of-the-art patch ranker Shibboleth, and entropy-
delta can classify correct patches with an 18% higher precision
than the state-of-the-art patch classifier Panther. These findings
suggest that entropy-deltas can be a valuable heuristic for
distinguishing between correct and incorrect patches.

TABLE IV: Ranking results of 1290 plausible patches per Defects4J project using ranking methods SBFL, Shibboleth, and entropy-delta

Project #Patches #Correct #Incorrect Top-N SBFL Shibboleth Entropy-delta

Chart 201 19 182 Top-1 3 11 10
Top-2 6 14 14

Closure 269 64 205 Top-1 19 27 48
Top-2 38 47 58

Lang 220 35 185 Top-1 1 14 20
Top-2 12 22 27

Math 541 67 474 Top-1 10 27 39
Top-2 30 38 55

Mockito 2 1 1 Top-1 0 1 1
Top-2 1 1 1

Time 57 11 46 Top-1 3 8 9
Top-2 5 5 10

Total 1290 197 1093 Top-1 36 85 127
Top-2 92 130 165

TABLE V: Classification scores of 2,147 plausible patches on
Defects4J projects using classification methods PATCH-SIM, Panther,
and entropy-delta

Score PATCH-SIM Panther Entropy-delta

Accuracy 0.388 0.730 0.735
Precision 0.245 0.760 0.900
+ Recall 0.711 0.757 0.760
- Recall 0.572 0.696 0.624

F1 0.377 0.750 0.824

RQ3 Summary
The entropy-delta from an LLM distinguishes between cor-
rect and plausible (test-passing but incorrect) patches with
higher precision and accuracy than state-of-the-art patch
disambiguation tools.

VI. RELATED WORK

We discuss in the following sections the most recent ad-
vances in LLM for code, fault localization, and patch ranking.

A. LLM for code

Language models have been used for code generation,
bug detection, and patch generation. Recent language models
finetune on code as training data and can perform code
completion [36], [29], and generate code based on natural
language [37] with impressive results. Large Language Models
(LLMs), such as Codex [9], GPT-Neo [10], and Llama-
2 [33] have raised performance on these tasks by using
more trainable parameters and training data. Ray et al. [15]
study the relationship between bugginess and LLM-entropy.
Ray et al. empirically showed that n-gram models trained
over a large corpus of code will find buggy statements more
surprising, as indicated by a high entropy score. Kolak et
al. [38] revisit the question of naturalness (i.e., the human-
readability) of patches in the era of large language models.
Kolak et al. experimented with models ranging from [160M
to 12B] parameters, and measured the similarly between LLM
generated patches and developer written patches. Their results

show that larger models tend to generate test-passing lines
at a higher rate. Additionally, LLM generated patches tend
to be more similar to the human-written patch as model size
increases. Xia et al. [18] directly applied LLMs for APRs
and found that LLMs can suggest multi-line fixes with higher
accuracy than state of the art APR tools. Our study performs
an empirical evaluation of how code naturalness (i.e., entropy)
can improve prior APR tools across three different stages of
automated program repair: fault localization, patch generation,
and patch ranking.

B. Fault localization

Prior fault localization tools use test output information,
code semantics, and naturalness of code to achieve a high
degree of confidence on bug detection. Spectrum-based Fault
Localization (SBFL) [23], [39] uses a ratio of passed and failed
tests covering each line of code to calculate its suspiciousness
score, in which a higher suspiciousness signifies a higher
probability of being faulty. Recent advances in deep learning
created a spur of research on using graph neural networks
(GNNs) [40] for fault localization. GRACE [41], DeepFL [42],
and DEAR [31] encode the code AST and test coverage as
graph representations before training deep learning models for
fault localization. TransferFL [22] combined semantic features
of code and the transferred knowledge from open-source
code data to improve the accuracy of prior deep learning
fault localization tools. LLMAO [14] finetuned a light-weight
bidirectional layer on top of code-tuned LLMs to show that
LLMs can detect both bugs and security vulnerabilities without
the use of test cases. Our work builds on top of the top-
performing prior fault localization tools and show that entropy
can be used as a light weight re-ranking tool that improves
fault localization scores without a dependency on test cases.

C. Patch correctness

Similarly to prior fault localization tools, prior patch dis-
ambiguation tools leverage test output information and code
information (both code syntax and code semantics) for ranking

or classifying patches. Qi et al. [43] analyzed the reported
bugs of three generate-and-validate APR tools: GenProg [44],
RSRepair [45], and AE [46] systems, to find that producing
correct results on a validation test suite is not enough to
ensure patch correctness. Smith et al. [25] performed an exper-
iment that interrogates whether or not automatically generated
patches are prone to overfitting to their test suite. Borrowing
the concept of training and test sets from machine learning,
they found that automated program repair (APR) typically
used the same test-suite for both “training” (generating the
patch), and “testing” (validation). Smith et al. found that both
the coverage rate of the test-suite, as well as the assignment
of test/train sets between the two suites, impact the degree of
overfitting in repair. To counteract the overfitting problem, Ye
et al. [47] proposed ODS (Overfitting Detection System), a
novel system to statically classify overfitting patches. Xiong
et al. [5] generated both execution traces of patched programs
and new tests to assess the correctness of patches. Ghanbari
et al. [27] used both the syntactic and semantic similarity
between original code and proposed patch, and code coverage
of passing tests to rank patches. Shibboleth [27] was able to
rank the correct patch in Top-1 and Top-2 positions in 66%
of their curated dataset. Tian et al. [26] proposed machine
learning predictor with BERT transformer-based learned em-
beddings for patch classification. Tian et al. found that learned
embeddings of code fragments with BERT [48], CC2Vec [49],
and Doc2Vec [50] yield similarity scores that, given a buggy
code, substantially differ between correctly-patched code and
incorrectly-patched one.

The most relevant work to our study of patch correctness
is Yang et al. [19]. Yang et al. [19] found that state-of-the-art
learning-based techniques suffered from the dataset overfitting
problem, and that naturalness-based techniques outperformed
traditional static techniques, in particular Patch-Sim [5]. Our
work uses 2,147 plausible patches collected in 2023 (past the
LLM training data cutoff of all our chosen LLMs), which
lowers the risk of LLM training data leakage. Our work
performs an empirical study on entropy against the most recent
state-of-the-art patch disambiguation techniques Panther [26]
and Shibboleth [27], on top of Patch-Sim [5]. Motivated by
Liu et al. [24], our work is the first to use LLM entropy on
plausible patches before undergoing testing to achieve more
efficient APR on prior template-based techniques. Finally, we
introduce a new naturalness measurement for patches, entropy-
delta, which achieves state-of-the-art results for plausible patch
disambiguation without depending on the test-suites of buggy
programs, which lowers the risk of dataset overfitting.

VII. THREATS

External validity. A threat to the external validity of our
study is the potential selection bias of our three selected
LLMs. We chose a representative set of LLMs with a range
of trainable parameters. We chose the three based on their
infill ability and built-in bidirectional attention mechanism.
Much larger LLMs (> 20 billion parameters) might have a
stronger ability to reason over faulty code lines and patches,

but require much larger computation power and time for
entropy calculation. Another threat to external validity is our
usage of Defects4J data throughout our empirical evaluation.
We chose Defects4J for our target bugs for fault localization
and patch disambiguation due to the data available and the
aim to compare against related work in APR. Data leakage of
Defects4J as training data for our selected LLMs is possible.
We mitigate this risk by (1) using entropy in combination with
prior APR techniques instead of direct LLM prompting for
patch generation, and (2) applying entropy-delta on untested
or plausible patches that are not available online (i.e., recently
generated and not used as an official patch for bug fixing).

Internal validity. An internal validity is the manual labeling
of plausible patches. We used manually labeled data released
by prior works [26], [27], in which the authors followed
clear and reproducible decision criteria. Although mistakes
could still be made on which plausible patches are correct or
incorrect, we use the same labeling for all prior tools studied
as well as entropy to create a standardized baseline on patch
classification.

Construct validity. One source of construct validity is the
measurements we chose for our empirical evaluation. We used
Top-N as a ranking measurement for both bugs and patches,
following prior APR work. To overcome some limitations of
Top-N, we also use multiple patch classification measurements
(accuracy, precision, recall, and F1) on a separate set of labeled
patch data to strengthen generalizability.

VIII. CONCLUSION

In this work, we propose the use of “unnaturalness” of code
for automated program repair through the measurement of
entropy generated by code-tuned LLMs. We also introduce the
term entropy-delta, which measures the difference in entropy
between a proposed code insert (i.e., a patch) and the original
code. Using three LLMs and three prior fault localization tools,
we show that entropy can improve Top-5, 3, and 1 scores
after re-ranking the first 6 potential bug localization. We use
entropy-delta on untested patches to save an average of 24
test runs per bug for the template-based APR technique TBar.
We show that entropy-delta can improve upon state-of-the-
art patch ranking by 49% for Top-1, and classify plausible
patches with a 18% higher precision. Our results indicate that
LLMs can be a powerful addition to state-of-the-art APR tools
without the dependency on tests, and the usage of LLM code-
generation. The reduction in both test suites and LLM code-
generation results in the reduction in model over-fitting and
training data leakage.

REFERENCES

[1] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 31–42.

[2] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298–
312.

[3] D. Wu and J. M. Mendel, “Patch learning,” IEEE Transactions on Fuzzy
Systems, vol. 28, no. 9, pp. 1996–2008, 2019.

[4] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[5] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in Proceedings of the 40th
international conference on software engineering, 2018, pp. 789–799.

[6] M. Kim, Y. Kim, K. Kim, and E. Lee, “Multi-objective optimization-
based bug-fixing template mining for automated program repair,” in Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–5.

[7] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: scalable multiline
program patch synthesis via symbolic analysis,” in International Con-
ference on Software Engineering (ICSE). ACM, 2016, pp. 691–701.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[10] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Gold-
ing, H. He, C. Leahy, K. McDonell, J. Phang et al., “Gpt-neox-
20b: An open-source autoregressive language model,” arXiv preprint
arXiv:2204.06745, 2022.

[11] C. Koutcheme, S. Sarsa, J. Leinonen, A. Hellas, and P. Denny, “Au-
tomated program repair using generative models for code infilling,”
in International Conference on Artificial Intelligence in Education.
Springer, 2023, pp. 798–803.

[12] M. Jin, S. Shahriar, M. Tufano, X. Shi, S. Lu, N. Sundaresan, and
A. Svyatkovskiy, “Inferfix: End-to-end program repair with llms,” arXiv
preprint arXiv:2303.07263, 2023.

[13] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in
the era of large pre-trained language models,” in Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

[14] A. Z. Yang, R. Martins, C. Le Goues, and V. J. Hellendoorn,
“Large language models for test-free fault localization,” arXiv preprint
arXiv:2310.01726, 2023.

[15] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the” naturalness” of buggy code,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 428–439.

[16] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122–131, 2016.

[17] P. F. Brown, V. J. Della Pietra, P. V. Desouza, J. C. Lai, and R. L. Mer-
cer, “Class-based n-gram models of natural language,” Computational
linguistics, vol. 18, no. 4, pp. 467–480, 1992.

[18] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the
era of large pre-trained language models,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 1482–1494.

[19] J. Yang, Y. Wang, Y. Lou, M. Wen, and L. Zhang, “A large-scale
empirical review of patch correctness checking approaches,” in Proceed-
ings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2023, pp.
1203–1215.

[20] S. Balloccu, P. Schmidtová, M. Lango, and O. Dušek, “Leak, cheat,
repeat: Data contamination and evaluation malpractices in closed-source
llms,” arXiv preprint arXiv:2402.03927, 2024.

[21] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of sim-
ilarity coefficients for software fault localization,” in 2006 12th Pacific
Rim International Symposium on Dependable Computing (PRDC’06),
2006, pp. 39–46.

[22] X. Meng, X. Wang, H. Zhang, H. Sun, and X. Liu, “Improving fault
localization and program repair with deep semantic features and trans-
ferred knowledge,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 1169–1180.

[23] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in 2006 12th
Pacific Rim International Symposium on Dependable Computing. IEEE,
2006, pp. 39–46.

[24] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test suite based

program repair: A systematic assessment of 16 automated repair systems
for java programs,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 615–627.

[25] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 532–543. [Online].
Available: https://doi.org/10.1145/2786805.2786825

[26] H. Tian, K. Liu, Y. Li, A. K. Kaboré, A. Koyuncu, A. Habib, L. Li,
J. Wen, J. Klein, and T. F. Bissyandé, “The best of both worlds: Combin-
ing learned embeddings with engineered features for accurate prediction
of correct patches,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 4, pp. 1–34, 2023.

[27] A. Ghanbari and A. Marcus, “Patch correctness assessment in automated
program repair based on the impact of patches on production and
test code,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022, pp. 654–665.

[28] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 international symposium on software testing and
analysis, 2014, pp. 437–440.

[29] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative
model for code infilling and synthesis,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.05999

[30] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th international
symposium on software testing and analysis, 2016, pp. 165–176.

[31] Y. Li, S. Wang, and T. N. Nguyen, “Dear: A novel deep learning-based
approach for automated program repair,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 511–523.

[32] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[33] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[34] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, 2016.

[35] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[36] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,
and S. Roy, “Program synthesis using natural language,” in Proceedings
of the 38th International Conference on Software Engineering, 2016,
pp. 345–356.

[37] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of the 35th ACM SIGPLAN conference
on programming language design and implementation, 2014, pp. 419–
428.

[38] S. D. Kolak, R. Martins, C. Le Goues, and V. J. Hellendoorn, “Patch
generation with language models: Feasibility and scaling behavior,”
in Deep Learning for Code Workshop, 2022. [Online]. Available:
https://openreview.net/forum?id=rHlzJh b1-5

[39] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and industrial
conference practice and research techniques-MUTATION (TAICPART-
MUTATION 2007). IEEE, 2007, pp. 89–98.

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[41] Y. Lou, Q. Zhu, J. Dong, X. Li, Z. Sun, D. Hao, L. Zhang, and
L. Zhang, “Boosting coverage-based fault localization via graph-based
representation learning,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 664–676.

[42] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT international symposium on software testing and
analysis, 2019, pp. 169–180.

https://doi.org/10.1145/2786805.2786825
https://arxiv.org/abs/2204.05999
https://openreview.net/forum?id=rHlzJh_b1-5

[43] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 24–36.

[44] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on
software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[45] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “Does genetic program-
ming work well on automated program repair?” in 2013 International
Conference on Computational and Information Sciences. IEEE, 2013,
pp. 1875–1878.

[46] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in 2013 28th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2013, pp. 356–366.

[47] H. Ye, J. Gu, M. Martinez, T. Durieux, and M. Monperrus, “Automated
classification of overfitting patches with statically extracted code fea-
tures,” IEEE Transactions on Software Engineering, vol. 48, no. 8, pp.
2920–2938, 2021.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[49] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 518–529.

[50] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning. PMLR,
2014, pp. 1188–1196.

	Introduction
	Illustrative Example
	Approach
	Entropy for fault localization
	Entropy-Delta
	Modified TBar

	Datasets and metrics
	LLMs
	Dataset
	Metrics

	Results
	Patch ranking
	Patch classification

	Related Work
	LLM for code
	Fault localization
	Patch correctness

	Threats
	Conclusion
	References

