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Abstract

The Kernel-Free Boundary Integral (KFBI) method presents an iterative solution to

boundary integral equations arising from elliptic partial differential equations (PDEs). This

method effectively addresses elliptic PDEs on irregular domains, including the modified

Helmholtz, Stokes, and elasticity equations. The rapid evolution of neural networks and

deep learning has invigorated the exploration of numerical PDEs. An increasing interest

is observed in deep learning approaches that seamlessly integrate mathematical principles

for investigating numerical PDEs. We propose a hybrid KFBI method, integrating the

foundational principles of the KFBI method with the capabilities of deep learning. This

approach, within the framework of the boundary integral method, designs a network to

approximate the solution operator for the corresponding integral equations by mapping the

parameters, inhomogeneous terms and boundary information of PDEs to the boundary den-

sity functions, which can be regarded as the solution of the integral equations. The models

are trained using data generated by the Cartesian grid-based KFBI algorithm, exhibiting

robust generalization capabilities. It accurately predicts density functions across diverse

boundary conditions and parameters within the same class of equations. Experimental re-

sults demonstrate that the trained model can directly infer the boundary density function

with satisfactory precision, obviating the need for iterative steps in solving boundary inte-

gral equations. Furthermore, applying the inference results of the model as initial values for

iterations is also reasonable; this approach can retain the inherent second-order accuracy

of the KFBI method while accelerating the traditional KFBI approach by reducing about

50% iterations.
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INTRODUCTION AND RELATED WORKS

1 Introduction and Related Works

Elliptic problems are widely applied in the fields of electrochemistry [11, 43], electromagnetism

[6], computational fluid dynamics [21, 44], shape optimisation problems [19, 67] and other areas

in science [7, 9, 50, 66]. Representative methods for solving specific elliptic problems numerically

are the finite difference method [1, 4, 16, 25, 30, 32, 41, 51, 65], finite element method [8, 10, 24,

27, 33, 34] , boundary integral method [22, 28, 57, 58]. Some numerical methods based on deep

learning [14, 15, 23, 26, 35, 38, 47, 60] are becoming popular in recent years. As a competitive

approach to traditional and new methods, the Kernel-Free Boundary Integral (KFBI) method

[52–54] has shown its advantages .

The KFBI method is executed on a Cartesian grid for the resolution of general elliptic PDEs

within domains of irregular shape with smooth perimeters. The KFBI method iteratively ad-

dresses the boundary integral equations and maintains symmetry and positive definiteness in

the resultant discrete systems. This preservation enables the employment of effective solution

strategies, including FFT-based or geometric multigrid solvers. Originating in the boundary

integral method, the KFBI method not only retains the favourable conditioning of the boundary

integral equation but also obviates the direct computation of Green’s function, which is notably

complex in irregular domains [53, 55]. Consequently, its effectiveness is particularly notable in

overcoming computational mathematics challenges. In recent years, the KFBI method has been

extensively applied[12, 55, 56, 62, 64].

Deep learning methodologies have been acknowledged for their transformative potential in

scientific research, offering accelerated solutions that approximate or surpass traditional meth-

ods in some specific scenarios [20, 29, 31, 46]. Deep neural networks (DNNs) have been in-

creasingly utilized for solving PDEs, circumventing the explicit discretization requirement, and

learning mappings in specific spaces favorable for discovering solutions to PDEs. Simultaneously,

DNN-based methods demonstrate efficacy in mitigating the curse of dimensionality and prove

beneficial in addressing certain inverse problems. Various neural network architectures, loss

functions, and activation functions have been explored for this purpose. For instance, the deep

Galerkin method (DGM) [49] and physics-informed neural networks (PINNs) [48] employ equa-

tion residuals as loss functions within a general framework for PDE resolution. These networks

are refined through stochastic gradient descent, applying spatial point random sampling within

the domain. Implement of conditions is achieved by network integration [3] or loss penalization,

with the latter relying on penalty coefficients as hyper-parameters. However, the fine-tuning of

these coefficients is a complex process necessitating further methodical investigation. A recently

proposed boundary integral network (BINet) [37] presented a convolution representation of the

solutions to elliptic PDEs using Green’s functions. This approach was subsequently extended

to a method for discovering general Green’s functions, which can be acquired through training

neural networks [36].

In the context of operator learning, classical neural networks, which are confined to mapping

between finite-dimensional spaces, face limitations in learning discretization-specific solutions

on two-dimensional or higher-dimensional grids. This necessitates the development of mesh-

invariant neural networks and other DNN-based methods who can play the role of reducing

the dimension of operator learning. Recent studies have introduced the concept of learning

mesh-free, infinite-dimensional operators using neural networks [5, 35, 38, 40, 42]. These neural

operators, capable of resolving a class of PDEs rather than specific instances, allow evaluations

at arbitrary temporal and spatial points. As an example, the Fourier Neural Operator (FNO) is

proposed in [35], utilizing Fourier transformation for network architecture design. For DeepONet

proposed in [38], a network structure comprising branch and trunk nets is introduced, addressing
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PRELIMINARIES

PDE parameters and spatial coordinates, respectively. Additionally, Deep Green [18] and MOD-

net [61] employ neural networks to approximate Green’s function, effectively representing the

solution operator for nonlinear PDEs by mapping source terms or boundary values to solutions.

To a certain extent, the previously mentioned class of operator learning methods appears

to lack precision assurances, with some methods exhibiting less satisfactory accuracy. This

deficiency can be attributed to inadequate utilization of mathematical prior knowledge. In this

work, we introduces a novel approach called hybrid kernel-free boundary integral (hybrid KFBI)

method that integrates operator learning with the KFBI method. The method solves equations

within the framework of boundary integral methods, featuring DNNs designed to approximate

the solution operators of the corresponding boundary integral equations, which maps from the

parameters, inhomogeneous terms and boundary information of PDEs to the boundary density

functions. The hybrid KFBI Method has advantages including:

High Data Quality: KFBI is fundamentally a boundary integral method that transforms

two-dimensional problems into one-dimensional boundary problems, achieving dimensionality

reduction in the model. Furthermore, due to its high precision, the KFBI method can produce

high-quality data for training process of hybrid KFBI method.

High Precision: The trained model can directly predict density functions (instead of solv-

ing the boundary integral equations iteratively) for computing solutions for the original PDEs,

significantly reducing the solution time for the KFBI method while maintaining high accuracy

(relative error in the order of 1E-3 or 1E-4). It can also be employed as an initial value, substan-

tially decreasing the number of iterations required without compromising the accuracy relative

to the KFBI method.

Strong Generalizability: Based on our meticulously designed network architecture and

input-output methodology, each trained model is applicable to a broad range of equations. For

instance, when elastic equations are considered, the different inhomogeneous terms, boundary

conditions, and physical parameters can be inputted into the same model, which demonstrates

robust generalization capabilities.

Model Dimensionality Reduction: The boundary density functions are defined on the

boundary whose dimension is less by 1 than the original computational domain, which is helpful

for operator learning. Lower dimension leads to fewer sampling points which will reduce the

computational cost.

High Integration Capability: Our approach possesses the ability to integrate with cer-

tain other methods, such as those reliant on high-performance computing using GPUs, thereby

achieving a more efficient solution efficiency.

The structure of this paper is methodically organized as follows. Initially, the fundamental

theory underlying the boundary integral (BI) method and the KFBI method is introduced in

Section 2. Following this, Section 3 elaborates on various aspects of the hybrid KFBI method

in detail, which integrates operator learning techniques to enhance its efficacy and versatility.

Subsequently, Section 4 is dedicated to presenting the numerical results obtained. The concluding

Section 5 engages in a comprehensive discussion regarding the merits, limitations, and prospects

of the hybrid KFBI method, encapsulating the essence of this research.

2 Preliminaries

In this section, we will expound upon a segment of knowledge pertaining to BI methods, serving

as the foundation for both the KFBI method and the hybrid KFBI approach. Let Ω be a bounded,

two-dimensional domain of irregular and complex structure, with a boundary Γ = ∂Ω possessing
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PRELIMINARIES

at least C2 continuity. The function u(x) = u(x, y), where x ∈ R2, remains undetermined

(analogous considerations apply to Rd for d > 2). The foundational principles of the BI method

are discussed for the Dirichlet boundary condition. The case with the Neumann condition is

addressed in Appendix B.

As shown in Fig. 1, to solve the boundary value problems on domain Ω by the BI method, we

first embed the irregular domain Ω into a larger rectangle domain B and denote by Ωc = B\Ω
the complement of the domain Ω in B.

Figure 1: BI method and KFBI method computation domain

Suppose L is an elliptic operator, consider the elliptic equation

(Lu)(x) = f(x), in Ω, (1)

where L = ∇ ·σ(x)∇−κ(x) with the diffusion tensor σ and the reaction coefficient κ ≥ 0 which

are at least continuously differentiable over the regular domain B [52]. Subject to pure Dirichlet

boundary condition

u(x) = gD(x), on Γ, (2)

where f(x) and gD(x) are known functions of x = (x, y) with sufficient smoothness for solving

the corresponding equation.

According to the standard BI method [2, 59], let G(x,y) be Green’s function on the rectangle

B associated with the elliptic PDE (1), which satisfies for any y ∈ B,

LG(x,y) = δ(x− y), x ∈ B, (3)

G(x,y) = 0, x ∈ ∂B, (4)

where δ(x− y) is the Dirac delta function. Let ny be the unit outward normal vector at point

y ∈ Γ, ϕ be a function defined on the boundary Γ and F be a function defined on Ω, we firstly
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PRELIMINARIES

define the double layer boundary integral and volume integral by

(Wϕ)(x) :=

∫
Γ

∂G(y,x)

∂ny
ϕ(y)dsy, for x ∈ Ω ∪ Ωc, (5)

(Y F )(x) :=

∫
Ω

G(y,x)F (y)dy, for x ∈ Ω. (6)

Thanks to the symbols and properties of the involved potential and volume integral, the

boundary integral equation(BIE) about the density function φ for (1)-(2) can be reformulated

as a Fredholm boundary integral equation of the second kind [17, 45]

1

2
φ(x) + (Wφ)(x) + (Y f)(x) = gD(x), x ∈ Γ. (7)

The solution u(x) to the Dirichlet BVP (1)-(2) is given by

u(x) = (Wφ)(x) + (Y f)(x), x ∈ Ω, (8)

where φ is the solution of equation (7).

From (7), it is convenient to denote

W̃ (φ)(x) := (
1

2
I +W )(φ)(x), x ∈ Γ, (9)

where I is the identity operator.

In the KFBI method, the boundary integral equation (7) can be solved by the Richardson

iteration numerically. Given any initial guess φ0(x), for k = 0, 1, 2, · · · , perform the following

steps until convergence (within a predefined tolerance)

u+k (xm) = W̃φk(xm), m = 1, 2, · · · ,M, (10)

φk+1(xm) = φk(xm) + 2γ[g̃D(xm)− u+k (xm)], m = 1, 2, · · · ,M, (11)

where {xi}Mi=1 are discrete points on boundary Γ and g̃D(x) := gD(x) − (Y f)(x) need only

calculate once before Richardson iteration. Note that equation (10) is from potential theory

about double potential [28] instead of an arbitrary definition. It can be shown by considering the

spectral radius of W̃ that the Richardson iteration is convergent if γ ∈ (0, 1). The superscript ‘+’

in the BIE means one-sided limit from the domain Ω. More specifically, let w(x) be an arbitrary

piecewise smooth function with discontinuities only existing at the interface Γ. We denote

w+(x) = lim
z→x,z∈Ω

w(z). (12)

Similarly, the restriction of w(x) in Ωc, w−(x) is defined as

w−(x) = lim
z→x,z∈Ωc

w(z). (13)

Once the unknown density function φ(x) is obtained when the iteration (11) converges. The

unknown function u(x) can be calculated according to the formula (8).

The remaining task involves determining an efficient approach for computing volume integrals

Y f and boundary integrals Wφ to achieve the equations (10) during iteration. The KFBI

method offers a methodology that eliminates the need for an explicit expression of the Green’s

function. This involves transforming computation of volume and boundary integrals into solution

of corresponding interface PDEs whose details are shown in Appendix A.
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3 Methodology for Hybrid KFBI Method

This section introduces the hybrid KFBI method, which combines traditional KFBI methods

detailed in Appendix A with deep learning techniques, emphasizing efficient solutions for multiple

instances of the same type of PDEs. A specialized class of networks designed to learn the solution

operator for boundary integral equations will be integrated into the KFBI framework for PDE

resolution. Attention is restricted to PDEs subject to Dirichlet boundary conditions. However,

it is noted that Neumann boundary conditions are addressed within a similar framework, which

will not be extensively discussed here.

3.1 Solution Operator for Integral Equations

In the KFBI method, the boundary integral equation (7) is resolved iteratively, utilizing methods

like Richardson iteration. Given that equation (7) remains non-singular for a general symmetric

positive definite diffusion tensor σ and non-negative reaction coefficient k [52], the solution

operator SL,Ω can be defined as mapping the modified boundary value g̃D to the density φ. The

encapsulation of the right-hand side f of equation (1) and the boundary condition gD into g̃D
enables the learning of SL,Ω, thereby facilitating the resolution of a wide range of equations with

variable f and assorted boundary conditions.

Remark 1. For fixed elliptic operator L and domain Ω satisfying the requirement of the KFBI

method, the operator SL,Ω between the function spaces defined above is linear.

3.2 Operator Learning

A natural and appealing wish is to obtain the explicit or computationally convenient form of the

operator SL,Ω, which was nearly impossible in the past. With advanced deep learning and related

technologies, models based on deep neural networks now offer the potential to realize this vision.

In other words, we can use neural networks to approximate this operator and aim to obtain the

best network parameters through training on data for the most effective approximation.

We provide a detailed exposition of the methodology tailored for Ω ∈ R2, noting that analo-

gous approaches apply to higher-dimensional contexts. Recall that in the standard KFBI method,

we can discretize the larger rectangle B using a rectangular grid with cell numbers I × J , for

which B ⊃ Ω and ∂Ω∩ ∂B = ∅. The discretization of the density φ is achieved through periodic

cubic splines, facilitating the straightforward and efficient computation of density derivatives.

More precisely, we presuppose the existence ofM quasi-uniformly spaced nodes on the boundary

∂Ω. Note the meanings of I, J , and M will be consistently employed throughout the subsequent

sections of this paper. To better integrate with the standard KFBI method, a natural and ef-

fective approach for operator learning is to set the input and output of the neural network to

be the values of g̃D and φ at the M points on the closed curve ∂Ω, respectively, when using

network NL,Ω to approximate the operator SL,Ω. In addition, we facilitate the utilization of the

standard KFBI method for the generation of multiple datasets (which will be elaborated upon

in detail in subsection 3.2.2), expediently employed in the training of the neural network.

If the neural network NL,Ω can be successfully trained and possesses high approximation

accuracy and strong generalization, it will significantly aid in solving equations Lu = f in

the fixed domain Ω with free inhomogeneous term f and Dirichlet-type boundary conditions

u|∂Ω = gD by KFBI method (the role of the model, or its specific application, will be discussed in

detail in next section 3.3). The networkNL,Ω has already been demonstrated to yield satisfactory

results in subsequent numerical examples.
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METHODOLOGY FOR HYBRID KFBI METHOD

However, a more ambitious idea is to explore incorporating entire or partial boundary in-

formation yielded by boundary curves into the network, enabling it to operate beyond the con-

straints of solving equations solely within a fixed region. Considering the difficulties posed

by arbitrarily closed curves are incalculable, a more common approach is considering a class

of parametric curves. Specifically, SL can be considered as a solution operator for equation
1
2φ + Kφ = g̃D (caused by the fixed operator L) on a class of ∂Ω, which is mapping (∂Ω, g̃D)

to the density φ. Thus, we aspire for a neural network NL, that can simultaneously intake

boundary position information of ∂Ω and values about the function g̃D, yielding output val-

ues about density φ. Denote by {xi}Mi=1 the point set in the KFBI method which are used to

discrete the boundary ∂Ω. Recall that in the previous network NL,Ω, we configured the input

of this network as (g̃D(x1), g̃D(x2), ..., g̃D(xM))T and the output as (φ(x1), φ(x2), ..., φ(xM))T .

Returning to the discussion about network NL, the required input should be divided into two

parts. One component consists of the values of the function g̃D, which remains consistent with

the above, while the other component should incorporate spatial location information yielded

by a class of boundary, such as ellipses with different major and minor axes. Here, we propose

two methods for incorporating boundary position information into the network. One approach

is to directly incorporate the positional coordinates into the network, that is, setting the net-

work’s input as (x1,x2, ...,xM)T and (g̃D(x1), g̃D(x2), ..., g̃D(xM))T , where xi = (xi,1, xi,2)
T is

the coordinate for all i = 1, 2, ..., N . Another approach involves adding only the parameters

of the boundary curve to the network’s input. For instance, the ellipses with parameters of

axial lengths ra, rb can be defined as ∂Ω{ra,rb} := {(x, y) : (x−x0)
2

r2a
+ (y−y0)

2

r2b
= 1}, here x0 and

y0 are constant numbers. Then the input of the network NL can be designed as (ra, rb)
T and

(g̃D(x1), g̃D(x2), ..., g̃D(xM))T . While it is true that various methods can be suggested, these

two approaches have been observed to be effective and computationally efficient in subsequent

numerical experiments, especially the first approach that was able to include more information.

The parametric PDEs that we aim to investigate not only manifests in the ability to represent

the domain boundaries parametrically but also occasionally entails solving equations induced by

a parametric operator L, such as the Helmholtz equations and screened Poisson equations. In

this case, we need a neural network NΩ to approximate the solution operator SΩ, which is

defined as mapping (L, g̃D) to the density φ for a class of parameterized elliptic operator L.
Similar to the preceding discussion, we can incorporate the parameters of operator L into the

network’s input. Specifically, if the operator L has parameters k1, k2, ..., kn, we can set the input

of networks NΩ as (k1, k2, ..., kn)
T and (g̃D(x1), g̃D(x2), ..., g̃D(xM))T .

Remark 2. Our ultimate goal is to incorporate both the parameters of the equation operator

L and the parameters of the boundary ∂Ω into the network N , which is used to approximate

the solution operator S of equation 1
2φ + Kφ = g̃D caused by the parametric operator L and

on a class of parametric ∂Ω. Incorporating the operator’s parameters L and the boundary ∂Ω

parameters into the network does not pose new technical challenges. However, concerns arise

regarding the difficulties in generating sufficient data and potential issues related to the increased

size of network parameters that might result in slower inference speeds. The subsequent numerical

experimentation section will elucidate the attempts we made, while this could become a significant

topic for consideration in our future exploration.

3.2.1 Network Architectures

Networks without Parameter Component The specific structure of the network NL,Ω,

which receives (g̃D(x1), ..., g̃D(xM))T as input and outputs (φ(x1), ..., φ(xM))T , is outlined in

this section. Note that the network must possess a linear structure by remark 1. A fully con-

7
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nected neural network, comprising only input and output layers without or with linear activation

functions, is typically utilized. A network directly mapping input to output with M2 param-

eters is considered suitable. However, for large M values (e.g., M = 1024 when discretizing

the boundary ∂Ω with 1024 points), the number of network parameters can be substantial. To

address this, a multi-layered network structure is recommended for largeM values. This involves

mapping the M -dimensional input to a hidden layer of M//d dimensions (where d is a constant

such as 2, 4, or 8, and the operator ‘//’ signifies floor division), then mapping to another hidden

layer of M//d dimensions, before reaching the M -dimensional output. The total parameters in

this network are calculated as 2 ×M × (M//d) + (M//d)2, significantly less than M2 for an

appropriately chosen d.

Networks with Parameter Component In this part, the parameter component is incor-

porated into the input of the network NL, NΩ or N . As outlined in the previous subsection, this

input component may extra include positional coordinates of points on the domain boundary

(x1,x2, ...,xM)T , boundary parameters such as ra, rb, or operator parameters like k1, k2, ..., kn.

It is noted that if the quantity of parameters is insufficient, an additional preprocessing layer

is introduced. This layer, a fully connected network (with or without an activation function),

maps a limited number of initial input parameters to a broader set. All parameters from PDEs

(after the preprocessing if it is necessary) are collectively denoted as p1, p2, ..., pN for clarity in

the network structure description. Each pi can be a scalar or a coordinate, with N representing

the total number of parameters, including those from any preprocessing layer. Precise deter-

mination of these details based on the input and output shapes is crucial when constructing a

specific network.

A structure combining convolutional neural networks (without pooling layers) and fully con-

nected networks is employed to handle the parameter component input (p1, p2, ..., pN )T . The

aim is to produce an intermediate element, denoted as I1, matching the dimensions of the input

(g̃D(x1), ..., g̃D(xM))T . Simultaneously, a linear transformation, devoid of nonlinear activation

functions and maintaining the shape for (g̃D(x1), ..., g̃D(xM))T , yields another intermediate ele-

ment, denoted as I2. Element-wise multiplication is then applied between these two intermediate

elements. Following this, a linear structure similar to the previous section is applied to the post-

multiplication result. Note that nonlinear operations, such as the ReLU activation function,

acting only on the component of parameter input, this architectural design ensures input lin-

earity for function values when input parameters remain constant while effectively utilizing the

information in the parameter component of the input. The subsequent figure 2 illustrates the

specific network architecture and note that the network architecture is partly inspired by Deep-

ONet [38].

Remark 3. The ‘parameter’ mentioned in the preceding paragraph refers to the neural network’s

parameter input, denoted as (p1, p2, ..., pN )T , rather than the model parameters of the neural

network itself. Please avoid any confusion between them.

3.2.2 Strategies for Generating Training Data

Initially, with fixed L and Ω, focus is placed on data generation for training the operator NL,Ω.

For fixed operator L and domain Ω, an exact solution to equation (1) can be constructed, and the

KFBI method can be executed based on the inhomogeneous term f and boundary condition gD
derived from this exact solution. This process yields a pair (g̃D, φ), assuming the KFBI method’s

minor error is negligible. Specifically, pairs (g̃D(x1), ..., g̃D(xM))T and (φ(x1), ..., φ(xM))T are

obtained from each exact solution. To train the linear neural network NL,Ω effectively, more than

8



METHODOLOGY FOR HYBRID KFBI METHOD

Figure 2: Network architecture schematic for networks with parameter component. In this graph,

(I1,1, I1,2, ..., I1,M )T = I1 and (I2,1, I2,2, ..., I2,M )T = I2 are used to present the intermediate

elements, g̃i is used to present g̃D(xi) and φi is used to present φ(xi) for all i = 1, 2, ...,M . The

schematic diagram of fully connected networks do not represent the actual size of the network

model in practical use, they are for illustrative purposes only and these three blocks do not

share their parameters. Also note that the ‘Flatten’ and ‘reshape’ operations are performed to

obtain the correct shapes of tensors, enabling them to be properly passed to the next network

block, and some terms in this diagram have the same meanings as their corresponding terms

in the PyTorch library, such as ‘Conv2d’ represents 2D convolution and ‘ConvTransposed2d’

represents 2D transposed convolution.

M linearly independent vectors g̃D should be added to the dataset. Consequently, constructing

over M exact solutions for equation (1) to obtain corresponding sets of g̃D and φ becomes

necessary. Typically, M can be chosen as a power of 2, like 128, 256, 512, etc. In general, to get

a more generalized model, we will make the size of the data set much larger than M although

a training data set with M linearly independent pairs is enough due to the linearity of real

operators and the networks. For instance, several thousand pairs of g̃D and φ are enough to

train the model when M = 128.

For training NL, NΩ or N , sufficient data sets are generated in the same manner for each

parameter pair (p1, p2, ..., pN ). These parameter pairs (p1, p2, ..., pN ) are uniformly sampled

within the given parameter space to ensure adequate data volume.

3.2.3 Loss Function and Training Process

For fixed L and Ω, training the parameters ΘL,Ω of operator NL,Ω with dataset {(g̃Di, φi)}ni=1

gained from the strategy mentioned above by using this trivial loss function:

loss(ΘL,Ω) =

n∑
i=1

||NL,Ω(g̃Di; ΘL,Ω)− φi||22, (14)

where g̃Di = (g̃Di(x1), g̃Di(x2), ..., g̃Di(xM))T , φi = (φi(x1), φi(x2), ..., φi(xM))T are the i-th

pair of data and || · ||2 is used to represent the 2-norm of vectors. For training NL, NΩ or N ,

similar loss functions are utilized.

The dataset derived from the strategy above is divided into two parts for training: an 80%
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training set and a 20% test set through a random split. This division aims to mitigate overfitting

and underfitting risks. The training process uses the PyTorch deep learning framework, with

Adam as the optimizer. An initial learning rate of 0.001 is set, and a learning rate scheduler

with reduced rate 0.6 is incorporated to dynamically adjust the learning rate if the loss exceeds

1500 times without a decrease. When no further reduction in the loss function is observed,

typically after not exceeding 500,000 or 800,000 epochs, the training terminates, at which point

the value of the loss function is generally within the magnitude of 1E-5 in our experiments.

This training is executed on a single NVIDIA GeForce RTX 3080 graphics card utilizing the

CUDA platform.

3.3 Hybrid KFBI Method Based on Trained Models

This section introduces the significant role offered by the trained neural networks NL,Ω (or NL,

NΩ, N ). The networks are designed to infer the density function φ. Consequently, the inference

results from these neural networks can be directly utilized as density functions φ, which are

then integrated into the formula (8). Solving the corresponding interface problem (21) yields the

solution to the PDE (1). Alternatively, the output φ from the neural networks can be used as the

initial value in the iterative KFBI method, reducing the number of iterations and saving time.

These approaches are subsequently referred to as Strategies 1 and 2, respectively. Regarding the

utilization of neural network inference results as initial values, there exists lots of related works,

each demonstrating commendable efficacy within their respective applications, such as [39].

Remark 4. • The two methods above have been observed to significantly reduce iteration

count and time compared to the standard KFBI method. Being quite radical, the first

method effectively reduces the KFBI method’s iteration count to one, thereby consider-

ably decreasing the running time, though at some cost to precision (relative to the KFBI

method). However, as will be demonstrated in subsequent numerical experiments, this

approach still achieves reasonably good numerical accuracy. The second method offers a

balanced approach, acting as a preprocessing solution for setting the initial value in the

KFBI iterative process. This method reduces a portion of the iteration count without com-

promising precision (relative to the KFBI method). Both methods are proven feasible and

valuable through the upcoming numerical experiments. Additionally, due to the relatively

simple architecture of the neural network, the time required for a single inference is negli-

gible.

• The operator learning approach based on the KFBI method, as proposed in this work,

effectively reduces the problem’s dimensionality. When addressing equation (1) for d=2,

the input and output of the operator SL,Ω (or SL, SΩ), approximated by the neural network

NL,Ω (or NL, NΩ), are functions on a one-dimensional manifold, and thus are naturally

represented by vectors with M components. This aspect of the method significantly aids

in solving elliptic PDEs on Ω by learning mappings between functions defined on ∂Ω,

highlighting a significant advantage of the approach.

• The training of the neural network NL,Ω enables the solution of a wide range of equations

(1), where both the non-homogeneous term f and boundary conditions gD can vary. The

applicability of neural networks NL, NΩ and N is further extended, demonstrating their

powerful range, which stands as another distinctive feature of this method. These models

are pivotal in solving PDEs, as evidenced in Section 4.

10
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• The proposed method can be synergistically combined with other techniques, such as multi-

grid solvers and GPU acceleration, to enhance solution efficiency.

4 Numerical Experiments

This section presents numerical results for various classes of equations, including Laplace, Pois-

son, Stokes, modified Helmholtz, and Naiver equations. The focus is on the application of the

hybrid KFBI method, detailing its operational mechanism and demonstrating its superiority

in terms of numerical accuracy and iteration count. Since the neural network’s structure, loss

function, and training process have been elaborated in the preceding section, emphasis here is

placed on post-training neural network applications. Excluding the training phase, programming

in C and C++ is utilized, with the libtorch library on the C++ platform facilitating network

inference computations. The examples in section 4.1.1 are tested on a machine with a CPU

‘12th Gen Intel(R) Core(TM)i5-12600KF 3.70 GHZ’ while the other examples are tested on a

machine with a CPU ‘11th Gen Inter(R) Core(TM) i5-1135G7 @ 2.40GHz’.

For the KFBI method implementations, the Richardson iteration is employed as equation

(11) with γ = 0.75, setting the initial value to φ0 = 2gD and the relative tolerance to 1E-8, in

line with research [52]. Unless otherwise specified, the parameters regarding the iteration stages

mentioned above will be applied in each numerical experiment. Alphanumeric symbol definitions,

such as I, J , and M , align with those in the second paragraph of section 3.2. The numerical

solution error is calculated by evaluating the norm of the difference between the numerical and

exact solutions at all grid points in domain Ω, with the error typically referring to absolute error

unless stated otherwise.

4.1 Hybrid KFBI without Parameter Component

4.1.1 Laplace Equations

We focus on the post-training operations of the neural network model, excluding the train-

ing process, and this principle is consistently applied thereafter. In this context, the Laplace

equation is considered with L = ∆ and the fixed homogeneous term f = 0. The bound-

ary ∂Ω is defined by the set {(x, y) : x = cx + ra cos(α) cos(t) − rb sin(α) sin(t), y = cy +

ra sin(α) cos(t) − rb cos(α) sin(t) for t ∈ [0, 2π)}, where the ellipse, characterized as rotated, is

defined by cx = 0.2, cy = 0.4, ra = 1.0, rb = 0.5, and α = π
7 . The bounding box B for the

interface problem is established as B = [−1.2, 1.2] × [−1.2, 1.2]. The number of discrete points

along the boundary curve M is determined as M = max{I, J}. To demonstrate the network’s

generalization capability, the exact solutions chosen for testing in the following sections were not

included in the training data, a principle consistently upheld in subsequent examples.

We choose the boundary conditions given by different exact solutions to solve the Laplace

equation. Table 1 displays the results obtained for Laplace Equation 1, where the exact solution

u(x, y) = exp(x) cos(y) + exp(y) sin(x) is applied within the elliptic domain.

Remark 5. In table 1, the second-row records results where the model’s inference outputs are

directly employed as the density function for solving the corresponding interface problem, aligning

with Strategy 1 detailed in section 3.3. The last seven rows of the table compare the outcomes of

the standard KFBI method with those achieved by initiating the KFBI iterative process using the

model’s inference results, a method consistent with Strategy 2 in the same section. It is noted

that the precision of the numerical solutions obtained through this approach closely parallels that

11
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Grid size (I × J) 128× 128 256× 256 512× 512 1024× 1024

L∞ error for Strategy 1 5.4E-3 2.2E-3 1.3E-3 1.7E-3

L∞ error for standard KFBI 4.0E-5 1.4E-5 1.7E-6 1.4E-7

L∞ error for Strategy 2 4.0E-5 1.4E-5 1.7E-6 1.4E-7

Iterations (standard KFBI) 26 26 26 26

Iterations (Strategy 2) 11 12 12 11

Running time of
0.04154 0.1120 0.4010 1.513

standard KFBI (s)

Running time of
0.02233 0.05463 0.1997 0.8390

Strategy 2 (s)

Time saved (Strategy 2) 46% 51% 50% 45%

Table 1: Result of Laplace equation 1: comparison of accuracy and efficiency in solving Laplace

equation 1 using different methods.

of the standard KFBI method, attributable to the identical relative tolerance set for the iterative

processes. The subsequent formatting of the tables in section 4.1 will remain consistent.

Table 2 displays the results for Laplace Equation 2, characterized by the exact solution

u(x, y) = sin(3x) sinh(3y) + 0.5 cosh(x) cos(y), applied within the elliptic domain.

Grid size (I × J) 128× 128 256× 256 512× 512 1024× 1024

L∞ error for Strategy 1 2.7E-3 1.4E-3 7.0E-4 8.6E-4

L∞ error for standard KFBI 2.0E-4 5.2E-5 1.3E-5 3.3E-6

L∞ error for Strategy 2 2.0E-4 5.2E-5 1.3E-5 3.3E-6

Iterations (standard KFBI) 26 26 26 26

Iterations (Strategy 2) 11 10 12 9

Running time of
0.04230 0.1144 0.4040 1.545

standard KFBI (s)

Running time of
0.02296 0.05020 0.2023 0.7450

Strategy 2 (s)

Time saved (Strategy 2) 46% 56% 50% 52%

Table 2: Result of Laplace equation 2: comparison of accuracy and efficiency in solving the

Laplace equation 3 using different methods.

Results for Laplace Equation 3, featuring the exact solution u(x, y) = sin(2.5x) sinh(2.5y)

and applied to the elliptic domain, are detailed in Table 3.

The experimental data reveal that adopting Strategy 1 enables the accurate resolution of the

corresponding Laplace equation with the model’s assistance, resulting in a substantial reduction

in the time required for solving PDEs, approximately 10% of that required by the standard KFBI

method. Moreover, implementing Strategy 2 significantly reduces iterative time (by about 50%)

while maintaining precision comparable to the standard KFBI method.
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Grid size (I × J) 128× 128 256× 256 512× 512 1024× 1024

L∞ error for Strategy 1 2.0E-3 9.6E-4 6.0E-4 1.0E-3

L∞ error for standard KFBI 9.1E-5 3.7E-5 4.7E-6 1.2E-6

L∞ error for Strategy 2 9.1E-5 3.7E-5 4.7E-6 1.2E-6

Iterations (standard KFBI) 25 25 25 25

Iterations (Strategy 2) 11 11 14 12

Running time of
0.04061 0.1099 0.3988 1.510

standard KFBI (s)

Running time of
0.02237 0.05335 0.2289 0.8460

Strategy 2 (s)

Time saved (Strategy 2) 45% 51% 43% 44%

Table 3: Result of Laplace equation 3: comparison of accuracy and efficiency in solving Laplace

equation 4 using different methods.

4.1.2 Two-Dimensional Stokes Equations

In this section, 2D Stokes equation with Dirichlet boundary condition is defined as

−∆u+∇p = f , in Ω+ ∪ Ω−,

∇ · u = 0, in Ω+ ∪ Ω−,

u = gD, on ∂Ω,

(15)

In the context presented, u =
(
u(1), u(2)

)T
and p denote the unknown fluid velocity and pressure

functions, respectively, while f =
(
f (1), f (2)

)T
represents the external force function.

The application of the KFBI method to solve the Stokes equation, as elaborated in the

paper by Dong et al. [13], needs to be delved into here. This equation’s solution (u, p) is

expressible in terms of volume and boundary integrals, involving the density function φ, which

solves the corresponding boundary integral equation. The right-hand side of this boundary

integral equation is denoted as ›gD. Terms such as SL,Ω (or SL, SΩ) and NL,Ω (or NL, NΩ)

retain their previous meanings. Notably, ›gD becomes a vector function (g̃D
(1)
, g̃D

(2)
), and a

similar transformation applies to φ. However, this does not introduce complications in the

network’s construction and training, as a tensor of size (M, 2) can be conveniently reshaped into

a vector of length 2M . For this example, the absolute tolerance for iteration is set at 1E-8, and

the initial value in the standard KFBI is φ0 = (0, 0)T .

The boundary ∂Ω = {(x, y) : x = cx + racos(α)cos(t) − rbsin(α)sin(t) and y = cy +

rasin(α)cos(t) − rbcos(α)sin(t) for t ∈ [0, 2π)} with cx = 0, cy = 0, ra = 1.0, rb = 0.6 and

α = 0 such that Ω is an ellipse. The bounding box B for the interface problem is set to

be B = [−1.2, 1.2] × [−1.2, 1.2]. The discrete number of the boundary curve M is set as

M = max{I, J}.
Table 4 displays the results for Stokes Equation 1, using the exact solution specified in

equation (16), applied to the elliptic domain.


u(1) = [(x2 + y2) cos(7 arctan( yx )) + 3.5(1− (x2 + y2)) cos(5 arctan( yx ))](x

2 + y2)
5
2

u(2) = −3.5(1− (x2 + y2)) sin(5 arctan( yx ))(x
2 + y2)

5
2

p = −14 cos(6 arctan( yx ))(x
2 + y2)3

(16)
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Grid size (I × J) 128× 128 256× 256 512× 512 1024× 1024

L∞ error for Strategy 1

1.4E − 3

1.1E − 2

1.3E − 2

 1.1E − 4

1.2E − 4

1.3E − 3

 2.1E − 4

2.3E − 4

1.9E − 3

 1.9E − 4

1.7E − 4

3.6E − 3


L∞ error for KFBI

2.5E − 4

5.2E − 4

3.9E − 3

 6.3E − 5

9.4E − 5

6.0E − 4

 1.3E − 5

2.4E − 5

1.7E − 4

 3.1E − 6

6.2E − 6

4.5E − 5


L∞ error for Strategy 2

2.5E − 4

5.2E − 4

3.9E − 3

 6.3E − 5

9.4E − 5

6.9E − 5

 1.3E − 5

2.4E − 5

1.7E − 4

 3.1E − 6

6.2E − 6

4.5E − 5


Iterations (KFBI) 20 20 20 20

Iterations (Strategy 2) 10 10 12 12

Running time of 1.368 5.404 23.84 119.3

KFBI (s)

Running time of 0.7433 2.939 14.08 68.40

Strategy 2 (s)

Time saved (Strategy 2) 46% 46% 41% 43%

Table 4: Result of 2D Stokes equation 1: comparison of accuracy and efficiency in solving 2D

Stokes equation 1 using different methods. The error vector is computed by the numerical

solution (u
(1)

numerical
, u

(2)

numerical
, pnumerical) and the exact solution (u

(1)

exact, u
(2)

exact, pexact).

From this table, it can be observed that our model significantly enhances the efficiency of

solving the Stokes equation. When employing Strategy 1, we achieve high-precision numerical

solutions. Moreover, timing experiments indicate that the time required to solve the equation on

grids of size 128× 128, 256× 256, 512× 512 and 1024× 1024 using Strategy 1 is merely 0.1280s,

0.3862s, 1.650s and 6.103s, respectively. This leads to a substantial reduction in computation

time, approximately 90%! On the other hand, when employing Strategy 2, we can reduce the

running time by almost half without compromising precision compared to the standard KFBI

method.

4.2 Hybrid KFBI on Parametric PDEs

4.2.1 Poisson Equations on Star-Shaped Domains

In this section, L is designated as ∆, with f being freely chosen as the inhomogeneous term

of the Poisson equation. The boundary defining the star-shaped domain Ω is characterized by

∂Ω = {(x, y) : x = (1.0 − Sc + Sc cos(Smt)) cos(t), y = (1.0 − Sc + Sc cos(Smt)) sin(t) for t ∈
[0, 2π)}, where Sm ∈ {3, 4, 5, 6} and Sc ∈ [0.05, 0.20] are parameters included in the input part

of networks. The bounding box B for the interface problem is established as B = [−1.5, 1.5] ×
[−1.5, 1.5]. The discrete number of points along the boundary curve M is determined as M =

max{I, J}, with I = J = 256 in this example.

Table 5 presents the results for Poisson Equation 3 with the exact solution u(x, y) = exp(x)

cos(y) + exp(y) sin(x) + exp(0.6x+0.8y), applied to star-shaped domains varying in parameters

Sm, Sc.

Remark 6. In Table 5, the second-row records results where the model’s inference outputs are

directly used as the density function for solving the corresponding interface problem, aligning

with Strategy 1 in section 3.3. The last six rows of the table compare outcomes between the
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(Sm, Sc) (3, 0.20) (4, 0.10) (5, 0.05) (6, 0.15)

L∞ error for Strategy 1 4.2E-3 5.8E-3 3.3E-3 7.8E-3

L∞ error for standard KFBI 1.2E-5 1.3E-5 1.3E-5 5.0E-5

L∞ error for Strategy 2 1.2E-5 1.3E-5 1.3E-5 5.1E-5

Iterations (standard KFBI) 26 26 25 27

Iterations (Strategy 2) 14 13 14 17

Network inference cost
0.69 0.67 0.57 0.63

(converted to iteration counts)

Saved iterations 43% 47% 42% 35%

Table 5: Result of Poisson equation 1: comparison of accuracy and efficiency in solving Poisson

equation 1 using different methods.

standard KFBI method and those achieved by initiating the KFBI iterative process using the

model’s inference results, as outlined in Strategy 2 of the same section. Notably, the penultimate

row in the table represents the conversion of network inference time into an equivalent number

of iterations, offering an alternative perspective on observing the saving of iteration time. The

subsequent formatting of the tables in sections 4.2 will remain consistent.

The table illustrates that, despite including parameter components, the trained model retains

its accuracy and robust generalization capabilities. The error associated with Strategy 1 is con-

sistently maintained at magnitudes of 10−3, and its execution time is notably reduced compared

to the standard KFBI method, equivalent to a saving of about 22.6 iterations (considering that

Strategy 1 entails one network inference and a single call to the interface problem solver). In

the case of Strategy 2, the model demonstrates the ability to reduce approximately 45% of the

iteration steps required by the standard KFBI method without compromising precision.

4.2.2 Stokes Equations on Ellipses

In this section, Stokes Equation (15) is considered. The boundary defining the elliptic domain

Ω is described by ∂Ω = {(x, y) : x = ra cos(t), y = rb sin(t) for t ∈ [0, 2π)}, with parameters

ra, rb ∈ [0.8, 1.2]. The coordinates on parameterized ∂Ω appear in the networks. The bounding

box B for the interface problem is established as B = [−1.5, 1.5] × [−1.5, 1.5]. The discrete

number of points along the boundary curve M is set at M = max{I, J}, with I = J = 128 in

this example, and the absolute tolerance for iteration is fixed at 1E-8.

Table 6 displays the results for Stokes Equation 2, using the exact solution given by equation

(17), and applied to ellipses with varying parameters ra, rb.
u(1) = 2xy

u(2) = 1− (x2 + y2)

p = −4y

(17)

From the data presented in this table, a conclusion akin to that drawn in section 4.2.1 is

derived regarding our trained model. It is observed that employing the model’s direct inference

results as the exact solution for the density function (namely, Strategy 1) yields sufficiently high

accuracy.
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(ra, rb) (0.8, 0.8) (1.0, 1.1) (1.1, 1.0) (1.1, 1.1)

L∞ error for Strategy 1

7.6E − 4

3.5E − 4

9.7E − 3

 5.4E − 4

7.7E − 4

5.1E − 3

 5.0E − 4

4.8E − 4

5.5E − 3

 7.6E − 4

7.2E − 4

6.2E − 3


L∞ error for KFBI

5.2E − 5

3.5E − 5

1.3E − 3

 3.5E − 5

2.8E − 5

6.9E − 4

 2.5E − 5

2.4E − 5

5.5E − 4

 2.9E − 5

3.2E − 5

5.5E − 4


L∞ error for Strategy 2

5.2E − 5

3.5E − 5

1.3E − 3

 3.5E − 5

2.8E − 5

6.9E − 4

 2.5E − 5

2.4E − 5

5.5E − 4

 2.9E − 5

3.2E − 5

5.5E − 4


Iterations (KFBI) 26 26 26 26

Iterations (Strategy 2) 17 14 15 15

Network inference cost
0.19 0.22 0.21 0.20

(converted to iteration counts)

Save iterations 34% 45% 41% 42%

Table 6: Result of 2D Stokes equation 2: comparison of accuracy and efficiency in solving 2D

Stokes Equation 2 using different methods. The error vector is computed by the numerical

solution (u
(1)

numerical
, u

(2)

numerical
, pnumerical) and the exact solution (u

(1)

exact, u
(2)

exact, pexact).

4.2.3 Modified Helmholtz Equations

In this section, the operator L is defined as ∆ − κI, where I represents the identity operator,

and κ > 0 serves as the coefficient for the modified Helmholtz equation. The domain Ω is

designated a dumbbell-shaped area, as depicted in figure 3. Specifically, ∂Ω is a periodic C2

cubic spline curve, passing through control points detailed in Appendix C.1. The coefficient κ,

ranging between 1 and 5, is integrated into the input part of the networks. The bounding box B
for the interface problem is established as B = [−1.2, 1.2] × [−1.2, 1.2]. The number of discrete

points along the boundary curve M is set at M = 92, with I = J = 256 in this example. The

absolute tolerance for iteration is fixed at 1E-8, and the initial value for the standard KFBI

method is set as φ0 = (0, 0)T .

Table 7 presents the results for modified Helmholtz Equation 1, featuring the exact solution

u(x, y) = exp(x) cos(y)+exp(y) sin(x)+exp(0.6x+0.8y), applied to the dumbbell-shaped domain

with varying values of κ. For illustration, numerical solutions obtained through Strategy 1 and

Strategy 2, using a grid size of 256× 256 and a coefficient κ = 3, are depicted in figure 3.

κ 1.1 1.3 π
2 2 3

L∞ error for Strategy 1 1.3E-3 1.4E-3 1.3E-3 1.2E-3 1.3E-3

L∞ error for standard KFBI 1.5E-4 1.8E-4 2.2E-4 2.8E-4 4.2E-4

L∞ error for Strategy 2 1.5E-4 1.8E-4 2.2E-4 2.8E-4 4.2E-4

Iterations (standard KFBI) 57 56 55 53 49

Iterations (Strategy 2) 25 25 27 26 25

Network inference cost
0.18 0.19 0.16 0.20 0.19

(converted to iteration counts)

Save iterations 56% 55% 51% 51% 49%

Table 7: Result of modified Helmholtz equation 1: comparison of accuracy and efficiency in

solving modified Helmholtz equation 1 using different methods.
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The table demonstrates that the model trained in this example exhibits exceptional and

consistent performance. For varying κ values, Strategy 1 enables the achievement of satisfactory

precision. Furthermore, the application of Strategy 2 significantly reduces the iteration time of

the KFBI method. Notably, due to the domain’s shape in this example, the iteration count for

the standard KFBI method is considerably higher than in previous cases. However, the models

outperform through both Strategy 1 and Strategy 2. Particularly with Strategy 1, corresponding

to only about 1.2 iterations (involving one network inference and a single call to the interface

problem solver), the method saves over 97% of iteration time compared to the standard KFBI

method, which requires over 50 iterations.

Numerical solution by Strategy 1. Numerical solution by Strategy 2.

Figure 3: Numerical solutions of Modified Helmholtz equation 1 given by Strategy 1 and Strategy

2 in grid 256 × 256. Note that the figures show the results given by solving the corresponding

interface problem in KFBI whose interior solution is the desired results for the original PDE.

4.2.4 Modified Helmholtz Equations on Parametric Domains

In this section, we extend the framework presented in 4.2.3 by incorporating diversity in the

computational domain. Specifically, beyond varying the parameter κ within the range [0.5, 3.0],

the computational domain Ω can also undergo transformations involving rotation by an angle

α and scaling by a factor r relative to the original domain Ω0. Here, the boundary of domain

Ω0 is similarly obtained through cubic spline interpolation of a set of control points (which is

recorded in Appendix C.1 for details), and α ∈ [0, 2π], r ∈ [0.6, 1]. In this case, both κ and

the coordinates of ∂Ω along with the values of g̃D at M discrete points are the input of the

network model. The number of discrete points along the boundary curve M is set at M = 46,

with I = J = 128 in this example. The absolute tolerance for iteration is fixed at 1E-6, and the

initial value for the standard KFBI method is set as φ0 = (0, 0)T . Other details correspond to

the experiments in 4.2.3.

Table 8 presents the results for modified Helmholtz Equation 2, featuring the exact solution

u(x, y) = sin(2.1x) cos(1.9y), applied to the transformed dumbbell-shaped domain with varying

values α, r and κ. For illustration, numerical solutions obtained through Strategy 1 and Strategy

2, using a grid size of 128 × 128 and coefficients α = π
3 , r = 0.7 and κ = 2.8, are depicted in

figure 4.

From the above results, it is evident that our model can effectively handle parametric PDEs,
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(α, r, κ) (π3 , 0.7, 2.8) (π4 , 0.7, 2.8) (π6 , 0.71, 0.9) (π5 , 0.68, 1.3)

L2 error for Strategy 1 1.1E-3 1.5E-3 4.2E-3 1.6E-3

L2 error for standard KFBI 4.4E-5 4.8E-5 1.7E-5 2.2E-5

L2 error for Strategy 2 4.4E-5 4.8E-5 1.7E-5 2.2E-5

Iterations (standard KFBI) 50 49 54 54

Iterations (Strategy 2) 28 26 32 32

Network inference cost
0.86 0.81 0.83 0.79

(converted to iteration counts)

Save iterations 42% 45% 39% 39%

Table 8: Result of modified Helmholtz equation 2: comparison of accuracy and efficiency in

solving modified Helmholtz equation 2 using different methods.

Exact solution. Numerical solution by Strategy 1.

Figure 4: Exact solution and Numerical solution of Modified Helmholtz equation 2 given by

Strategy 1 in grid 128 × 128. Note that the right figure show the result given by solving the

corresponding interface problem in KFBI whose interior solution is the desired result for the

original PDE.

where not only the parameters of the equation can vary but also systematic variations can be

applied to the computational domain. Figure 4 above further demonstrates that our Strategy 1

exhibits remarkable accuracy, while its computational speed is astonishing, consuming less than

3% of the time required by the traditional KFBI method.

4.2.5 Naiver Equations

In this section, Naiver equation with Dirichlet boundary condition is defined as

∇ · σ(u) + f = 0, in Ω,

u = gD, on∂Ω,
(18)

here u =
(
u(1), u(2)

)T
, f =

(
f (1), f (2)

)T
represent displacement variable and external force,

respectively. Stress tensor is

σ(u) = λ∇ · uI+ 2µϵ(u), (19)
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here ϵ(u) = 1
2

(
∇u+ (∇u)T

)
is the linear strain tensor, I is the 2 × 2 identity matrix. Laḿe

coefficients λ and µ is given by Young’s modulus E and Poisson’s ratio ν:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

By inserting equation (19) into equation (18), we can obtain this PDE with unknown u

−µ∆u− (λ+ µ)∇(∇ · u) = f , in Ω. (20)

The solution of the Naiver equation using the KFBI method, as detailed in the paper by Zhao

et al.[63], needs not to be elaborated upon here; readers interested in its implementation may

consult the referenced paper. It is important to note that the solution u to this equation can

be expressed through volume and boundary integrals, with the density function φ resolving the

corresponding boundary integral equation. In this work, the right-hand side of this boundary

integral equation is continued to be denoted as›gD, derived from both gD and f . Terms such as

SL,Ω and NL,Ω retain their previously established meanings.

This section defines the domain Ω as a heart-shaped area, as illustrated in figure 5. ∂Ω is a

periodic C2 cubic spline curve, traversing control points detailed in Appendix C.2. The param-

eters E ∈ [108, 109] and ν ∈ [0.35, 0.45] are integrated into the input part of networks, covering

the typical range of Young’s modulus and Poisson’s ratio for most plastics. The bounding box B
for the interface problem is established as B = [−1.2, 1.2] × [−1.2, 1.2]. The number of discrete

points on the boundary curve M is set at M = max{I, J} with I = J = 256. Absolute tolerance

for iteration is determined to be 1E-8, and the initial value for the standard KFBI method is set

as ϕ0 = (0, 0)T .

Remark 7. • In practice, log10E is used in the networks instead of E.

Table 9 presents the results for Naiver Equation 1, featuring exact solution u(1) = sinx cos y

+xy and u(2) = cosx sin y+xy, applied to the heart-shaped domain with various (E, ν) parameter

values. As an example, the numerical solution obtained through Strategy 2, employing a grid

size of 256× 256 and coefficients (E, ν) = (5.5× 108, 0.4), is depicted in figure 5.

(E, ν) (3E08, 0.4) (5.2E08, 0.35) (5.5E08, 0.4) (9E08, 0.36)

L∞ error for Strategy 1

ñ
9.5E − 4

8.5E − 4

ô ñ
5.1E − 4

4.9E − 4

ô ñ
9.6E − 4

8.5E − 4

ô ñ
1.8E − 3

1.1E − 3

ô
L∞ error for KFBI

ñ
1.4E − 4

1.2E − 4

ô ñ
1.0E − 4

8.9E − 5

ô ñ
1.4E − 4

1.2E − 4

ô ñ
1.1E − 4

9.3E − 5

ô
L∞ error for Strategy 2

ñ
1.4E − 4

1.2E − 4

ô ñ
1.0E − 4

8.9E − 5

ô ñ
1.4E − 4

1.2E − 4

ô ñ
1.1E − 4

9.3E − 5

ô
Iterations (KFBI) 26 26 26 26

Iterations (Strategy 2) 15 14 15 17

Network inference time
0.079 0.072 0.081 0.071

in iteration steps

Save iterations 42% 46% 42% 34%

Table 9: Result of Naiver equation 1: comparison of accuracy and efficiency in solving Naiver

equation 1 using different methods. The error vector is computed by the numerical solution

(u
(1)

numerical
, u

(2)

numerical
) and the exact solution (u

(1)

exact, u
(2)

exact).
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Displacement u(1). Displacement u(2).

Figure 5: Numerical solution of the 2D Naiver equation 1 given by Strategy 2 in grid 256× 256.

Note that the figures show the result given by solving the corresponding interface problem in

KFBI whose interior solution is the desired result for the original PDE.

From the data in this table, a conclusion is derived from section 4.2.3 regarding our trained

model. It becomes evident that applying direct model inference outcomes as the solution for the

density function (Strategy 1) yields a sufficiently high level of accuracy.

4.2.6 Naiver Equations on Domains with Boundaries Defined by Perturbed Control

Points

In this section, we continue to focus on the Naiver equations presented in 4.2.5. We allow

for perturbations to be applied to certain control points, and incorporate the coordinates of

these control points into the input of the model (note that ∂Ω is obtained through cubic spline

interpolation of the control points). Specifically in this experience, the original domain is a

heart-shaped domain whose boundary is obtained through cubic spline interpolation of 28 control

points, identical to the boundary described in 4.2.5. We allow for perturbations in the x-direction

of the 1st, 14th, and 27th control points, with distances of ϵ1, ϵ14, ϵ27, respectively. Here ϵi ∈
[−0.15, 0.15], i ∈ {1, 14, 27}. As previously mentioned, the coordinates of these three points

will be included in the model’s input along with the values of ›gD at M discrete points. The

equation parameters E and ν are fixed at 1E9 and 0.45, respectively. The bounding box B for

the interface problem is established as B = [−1.5, 1.5] × [−1.5, 1.5]. The number of discrete

points on the boundary curve M is set at M = max{I, J} with I = J = 128. Absolute tolerance

for iteration is determined to be 1E-8, and the initial value for the standard KFBI method is set

as ϕ0 = (0, 0)T .

Table 10 presents the results for Naiver Equation 2, featuring exact solution u(1) = sinx cos y

+ xy and u(2) = cosx sin y + xy, applied to the ‘quasi-heart-shaped’ domain with perturbed

boundary with various (ϵ1, ϵ14, ϵ27) parameter values. As an example, the numerical solution

obtained through Strategy 1, employing a grid size of 128×128 and perturbations (ϵ1, ϵ14, ϵ27) =

(+0.05,+0.05,−0.1), is depicted in figure 6.

In this section, we allow for perturbations to be applied to certain control points that deter-

mine the boundaries of the domain, incorporating this information as part of the model input.

Experimental results demonstrate that the model under this scenario still maintains strong ca-

pabilities. Particularly noteworthy, both the error metrics and figure 6 representations illustrate

the commendable accuracy achieved when employing the model and Strategy 1 to solve the
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(ϵ1, ϵ14, ϵ27) (+0.05, +0.05, -0.1) (-0.04, +0.02, 0) (+0.02, -0.01, +0.06)

L∞ error for Strategy 1

ñ
3.7E − 3

5.4E − 3

ô ñ
3.5E − 3

3.1E − 3

ô ñ
5.1E − 3

3.0E − 3

ô
L∞ error for KFBI

ñ
1.1E − 3

1.2E − 3

ô ñ
1.1E − 3

1.2E − 3

ô ñ
1.1E − 3

1.2E − 3

ô
L∞ error for Strategy 2

ñ
1.1E − 3

1.2E − 3

ô ñ
1.1E − 3

1.2E − 3

ô ñ
1.1E − 3

1.2E − 3

ô
Iterations (KFBI) 36 35 35

Iterations (Strategy 2) 23 20 22

Network inference time
0.12 0.11 0.14

in iteration steps

Save iterations 36% 43% 37%

Table 10: Result of Naiver equation 2: comparison of accuracy and efficiency in solving Naiver

equation 2 using different methods. The error vector is computed by the numerical solution

(u
(1)

numerical
, u

(2)

numerical
) and the exact solution (u

(1)

exact, u
(2)

exact).

Exact u(1). Numerical u(1). Exact u(2). Numerical u(2).

Figure 6: Exact solution and numerical solution of the 2D Naiver equation 2 given by Strategy

1 in grid 128 × 128. Note that the figures show the result given by solving the corresponding

interface problem in KFBI whose interior solution is the desired result for the original PDE.

equations.

5 Conclusion

In this study, a hybrid Kernel-Free Boundary Integral Method, integrated by KFBI method and

operator learning, was rigorously examined for solving parametric partial differential equations

(PDEs) in complex domains. This novel approach demonstrated significant advancements in

computational efficiency and accuracy.

Key findings include the model’s robust generalization capabilities, allowing for accurate

predictions across various boundary conditions and parameters within the same class of equa-

tions. The integration of neural network-trained models with the framework of boundary in-

tegral method significantly accelerates the computational process, reducing traditional KFBI

method iterations by approximately 50% times while retaining its inherent second-order accu-

racy. Moreover, the study highlighted the flexibility of the hybrid method in dealing with a range

of equations in complex domains. The method’s ability to transform two-dimensional problems

into one-dimensional boundary problems, coupled with its independence from Green’s functions,

positioned it as a highly efficient computational tool.
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However, challenges may appear related to generating sufficient data for training and po-

tential issues with the size of networks for more complicated problems, which may potentially

affecting inference speeds. These areas, identified for future exploration, underscore the ne-

cessity for continuous optimization of the method. To further align the hybrid KFBI Method

with engineering applications, it is proposed that its scope be expanded to encompass time-

dependent PDEs such as the Schrödinger, Navier-Stokes, and Maxwell equations. Additionally,

the development of a three-dimensional variant of the hybrid KFBI Method is identified as a

pressing objective. This expansion and enhancement are anticipated to significantly broaden the

method’s applicability and efficacy in complex engineering scenarios.

In conclusion, the hybrid KFBI Method, augmented with deep learning, presents a powerful

tool for operator learning and solving PDEs in complex domains, offering significant improve-

ments in computational efficiency especially under the situation of solving abundant PDEs of the

same class. Its potential applications span across various fields, necessitating further research to

harness its capabilities fully.
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THE KFBI METHOD FOR ELLIPTIC PDES WITH NEUMANN BOUNDARY
CONDITIONS

A Introduction to KFBI Method

In the BI method, Green’s function’s explicit expression is a prerequisite, yet its exact form

depends on the equation’s specifics and the integration region’s geometry. Despite attempts to

substitute Green’s function with a neural network [36], this approach has yet to attain high

accuracy levels and struggles with variable coefficients. The KFBI method [52] circumvents the

need for explicitly expressing Green’s function. Here, integrals in (5)-(6) are treated as equivalent

interface problems, facilitating the implementation of iterative steps (10)-(11). Specifically, the

double layer boundary integral (Wφ)(x) and volume integral (Y f)(x) are reformulated as the

solution v(x) of this interface problem, with pertinent terms detailed in table 11.

Lv(x) = F(x), x in Ω ∪ Ωc,

[v(x)] = Φ(x), x on Γ,

[∂nv(x)] = 0, x on Γ,

v(x) = 0, x on ∂B.

(21)

Integral F Φ

Wφ F = 0 Φ = φ

Y f F = f̃(x) =

{
f(x) in Ω

0 in Ωc
Φ = 0

Table 11: The relationship between boundary integral or volume integral and the interface

problem with specific terms.

In equation (21), the terms [v(x)] and [∂nv(x)] denote the jumps in the unknown [v(x)] =

v+(x) − v−(x) and its normal derivatives [∂nv(x)] = ∂nv
+(x) − ∂nv

−(x), respectively. The

function f̃(x) represents the zero extension of the given function f(x). Under addressing the

interface problem (21), the computation of integrals for iterative processes and the solution (8) is

contingent upon the numerical solution of (1) (2) within Ω. The solver for this interface problem,

developed by Ying and not the primary focus of this paper, is detailed in the literature[52].

B The KFBI Method for Elliptic PDEs with Neumann

Boundary Conditions

The BI method and KFBI method for elliptic PDEs with Dirichlet BVP has been introduced

in Section 2 and Appendix A. In this section, the elliptic equation (1) subject to Neumann

boundary condition is considered as:

∂nu(x) = gN (x). (22)

Similarly to the Dirichlet boundary condition, the single layer potential is defined as

(Sψ)(x) :=

∫
Γ

G(y,x)ψ(y)dsy for x ∈ Ω ∪ Ωc. (23)

Owing to detonations defined above, the BIEs for (1) and (22) also can be reformulated as a

Fredholm boundary integral equation of the second kind[17, 45], which follows

1

2
ψ(x)− ∂n(Sψ)(x) + ∂n(Y f)(x) = gN (x). (24)
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RECORD FOR CONTROL POINTS

The solution u(x) to Neumann BVP (1) and (22) is given by

u(x) = (Y f)(x)− (Sψ)(x), x ∈ Ω. (25)

Numerically, the boundary integral equation (24) can be solved by simply iteration: given the

artificial initial guess ψ0(x), for k = 0, 1, 2, · · · , do as follows:

∂nu
+
k (xm) =

1

2
ψ(xm)− ∂n(Sψ)(xm), m = 1, 2, · · · ,M, (26)

ψk+1(xm) = ψk(xm) + γ[ĝN (xm)− ∂nu
+
k (xm)], m = 1, 2, · · · ,M, (27)

where {xi}Mi=1 are control points on boundary Γ and ĝN (xm) := gN (xm)−∂n(Y f)(xm), for xm ∈
Γ. Suppose w(x) is an arbitrary piecewise smooth function with derivative discontinuities on

the interface Γ:

∂nw
+(x) = lim

z→x,z∈Ω
∂nw(z), (28)

∂nw
−(x) can be defined in the same way.

As for Neumann BVP, the single layer boundary integral (23) can be considered as a solution

to the following interface problem:

Lv(x) = 0, for x ∈ Ω ∪ Ωc,

[v(x)] = 0, for x ∈ Γ,

[∂nv(x)] = ψ(x), for x ∈ Γ,

v(x) = 0. for x ∈ ∂B.

(29)

The KFBI method is distinguished by its conversion of integral (23) into the resolution of

the interface problem (29).

C Record for Control Points

C.1 Control Points for Dumbbell-Shaped Domain

The control points for the dumbbell-shaped domain in section 4.2.3 are given as following:

{0.000e+00, 8.333e-02}, {-1.944e-01, 1.698e-01}, {-3.889e-01, 3.302e-01},
{-5.833e-01, 4.167e-01}, {-7.917e-01, 3.608e-01}, {-9.442e-01, 2.083e-01},
{-1.000e+00, 0.000e+00}, {-9.442e-01, - 2.083e-01}, {-7.917e-01, - 3.608e-01},
{-5.833e-01, - 4.167e-01}, {-3.889e-01, - 3.302e-01}, {-1.944e-01, - 1.698e-01},
{0.000e+00, - 8.333e-02}, {1.944e-01, - 1.698e-01}, {3.889e-01, - 3.302e-01},
{5.833e-01, - 4.167e-01}, {7.917e-01, - 3.608e-01}, {9.442e-01, - 2.083e-01},
{1.000e+00, 0.000e+00}, {9.442e-01, 2.083e-01}, {7.917e-01, 3.608e-01},
{5.833e-01, 4.167e-01}, {3.889e-01, 3.302e-01}, {1.944e-01, 1.698e-01}.

C.2 Control Points for Heart-Shaped Domain

The control points for the heart-shaped domain in section 4.2.5 are given as following:

{1.000e+00, 2.763e-01}, {9.639e-01, 5.482e-01}, {8.613e-01, 7.787e-01},
{7.076e-01, 9.328e-01}, {5.263e-01, 9.868e-01}, {3.070e-01, 9.118e-01},
{8.772e-02, 7.724e-01}, {-1.316e-01, 6.974e-01}, {-3.553e-01, 7.500e-01},
{-5.789e-01, 8.026e-01}, {-7.895e-01, 7.462e-01}, {-9.436e-01, 5.921e-01},
{-1.000e+00, 3.816e-01}, {-9.808e-01, 1.440e-01}, {-9.238e-01, - 8.645e-02},
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{-8.308e-01, - 3.026e-01}, {-7.045e-01, - 4.980e-01}, {-5.488e-01, - 6.667e-01},
{-3.684e-01, - 8.035e-01}, {-1.689e-01, - 9.043e-01}, {4.381e-02, - 9.661e-01},
{2.632e-01, - 9.868e-01}, {4.271e-01, - 9.552e-01}, {5.829e-01, - 8.618e-01},
{7.226e-01, - 7.113e-01}, {8.392e-01, - 5.113e-01}, {9.270e-01, - 2.717e-01},
{9.815e-01, - 4.763e-03}.

30


	Introduction and Related Works
	Preliminaries
	Methodology for Hybrid KFBI Method
	Solution Operator for Integral Equations
	Operator Learning
	Network Architectures
	Strategies for Generating Training Data
	Loss Function and Training Process

	Hybrid KFBI Method Based on Trained Models

	Numerical Experiments
	Hybrid KFBI without Parameter Component
	Laplace Equations
	Two-Dimensional Stokes Equations

	Hybrid KFBI on Parametric PDEs
	Poisson Equations on Star-Shaped Domains
	Stokes Equations on Ellipses
	Modified Helmholtz Equations
	Modified Helmholtz Equations on Parametric Domains
	Naiver Equations
	Naiver Equations on Domains with Boundaries Defined by Perturbed Control Points


	Conclusion
	Introduction to KFBI Method
	The KFBI Method for Elliptic PDEs with Neumann Boundary Conditions
	Record for Control Points
	Control Points for Dumbbell-Shaped Domain
	Control Points for Heart-Shaped Domain


