
ar
X

iv
:2

40
4.

15
24

9v
1

 [
m

at
h.

N
A

]
 2

3
A

pr
 2

02
4

A GPU-accelerated Cartesian grid method for PDEs

on irregular domain

Liwei Tan1†, Minsheng Huang1†, and Wenjun Ying2,*

1 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240,
P.R. China.
2 School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences,
Shanghai Jiao Tong University, Minhang, Shanghai 200240, P.R. China.

Abstract. The kernel-free boundary integral (KFBI) method has successfully solved
partial differential equations (PDEs) on irregular domains. Diverging from traditional
boundary integral methods, the computation of boundary integrals in KFBI is executed
through the resolution of equivalent simple interface problems on Cartesian grids,
utilizing fast algorithms. While existing implementations of KFBI methods predom-
inantly utilize CPU platforms, GPU architecture’s superior computational capabili-
ties and extensive memory bandwidth offer an efficient resolution to computational
bottlenecks. This paper delineates the algorithms adapted for both single-GPU and
multiple-GPU applications. On a single GPU, assigning individual threads can con-
trol correction, interpolation, and jump calculations. The algorithm is expanded to
multiple GPUs to enhance the processing of larger-scale problems. The arrowhead de-
composition method is employed in multiple-GPU settings, ensuring optimal compu-
tational efficiency and load balancing. Numerical examples show that the proposed al-
gorithm is second-order accurate and efficient. Single-GPU solver speeds 50-200 times
than traditional CPU while the eight GPUs distributed solver yields up to 60% parallel
efficiency.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: Arrowhead decomposition method, GPU-accelerated kernel-free boundary integral
method, Irregular domains

1 Introduction

Graphics Processing Units (GPU) are co-processors originally devoted to accelerate graph-
ics processing. In the last years, they are extensively used as massively parallel platforms
to run general-purpose programs. This practice is mostly known as General-Purpose

†These authors contributed equally to this work.
∗Corresponding author. Email addresses: wying@sjtu.edu.cn (W. Ying)

http://www.global-sci.com/ Global Science Preprint

http://arxiv.org/abs/2404.15249v1

2

computing on Graphics Processing Units (GPGPU). This growing trend is confirmed by
the number of computers in the top500 ranking that are provided of GPUs, which on
November 2023 was 186 [1].

One of the areas taking advantage of the capabilities of this kind of accelerators is sci-
entific computing. There are many recent publications describing works that successfully
port code from CPU to GPU, achieving important speedups [2, 3]. Elliptic type problems
are widely applied in the fields of electrochemistry [4, 5], electromagnetism [6], com-
putational fluid dynamics [7, 8], shape optimisation problems [9, 10] and other areas in
science [11, 12, 13, 14], Solving these problems often requires a substantial computational
cost [15].

An effective and accurate approach for solving elliptical equations is the Kernel-
Free Boundary Integral (KFBI) method [16, 17, 18], which originates from boundary
integral methods. Unlike traditional boundary integral approaches, the KFBI method
embeds complex domains into larger, regular computational areas (such as square re-
gions), which are subsequently partitioned using Cartesian grids. The KFBI method not
only benefits from the well-conditioning property of the boundary integral equation(BIE)
but also avoids explicitly calculating Green’s function directly, which is challenging in
complex domains [19, 17]. In recent years, the KFBI method has been extensively ap-
plied [19, 20, 21, 22, 23].

The substantial memory bandwidth and abundant cores in GPU architecture enable
the concurrent execution of thousands of computational tasks, leading to significant ac-
celeration. This renders it an efficient solution for addressing computing bottlenecks.
More importantly, the GPU architecture suits the Cartesian grid method since each thread
easily controls one grid node. Several related works have addressed the GPU accelera-
tion of Cartesian grid methods in the last ten years [24, 25, 26, 27]: the GPU-accelerated
VOF by Rajesh Reddy and R. Banerjee [24], the CUDA-Based IB method by S. K. Layton,
A. Krishnan and L. A. Barba [25], the TVD Runge–Kutta method on multiple GPUs by
Liang. S, Liu. W and Yuan. L [26], the multiple-GPU based lattice Boltzmann algorithm
by Huang. C, Shi. B, He. N and Chai. Z [27].

As a Cartesian grid method, the essential procedure of the KFBI method involves
the correction of irregular points and control points on the interface individually, mak-
ing it inherently well-suited for GPU-accelerated parallel processing. Furthermore, the
KFBI method utilizes an FFT-based solver, well-documented in literature for its suitabil-
ity with GPU or GPU clusters [28, 29, 30, 31, 32], to enhance the efficiency of interface
problem computations in iterative procedures. In fact, due to the simple grid topology on
Cartesian grids, building a highly parallel GPU-accelerated Cartesian grid solver based
on the KFBI method is straightforward. The implementation details of the KFBI solver
for a single-GPU version are concisely delineated in section 3, with the corresponding
numerical results presented in section 5.

A significant limitation in single-GPU computation is its available memory, which
leads to a bottleneck in the size of the computational mesh. In order to expand the calcula-
tion scale and improve efficiency, we also study the multiple-GPU architecture in a single

3

node (in one computer), which contains a two-level parallelization: the coarse-grained
level composed by GPUs across multiple CPUs at the cost of coordinating GPU-GPU
communication via MPI and the fine-grained level formed by CUDA cores on each GPU.
Based on the characteristics mentioned above, we have devised a distributed KFBI algo-
rithm that evenly distributes data to each GPU, maximizing the utilization of multiple-
GPU parallel capabilities, ensuring computational load balancing, and minimizing inter-
GPU communication overhead.

The remainder of the paper is organized as follows. We first introduce the boundary
integral method and the KFBI methods in section 2. Section 3 describes implementing
the KFBI method on a single GPU. The algorithm is then extended to multiple GPUs
and summarised in section 4. The numerical results are presented in section 5. The
advantages, limitations, and prospects for the GPU-based KFBI method are discussed in
the final section.

2 The kernel-free boundary intergral method

Suppose Ω is a bounded irregular and complex domain in R2 or R3 whose boundary
Γ = ∂Ω is at least twice continuously differentiable. Let u(x) be an unknown function of
x ∈ Rd(d = 2,or 3). Assuming gD(x) and f (x) are known function of x with sufficient
smoothness. ∂nu(x) denotes the normal derivative of u(x) on the boundary, where n de-
notes the unit outward normal on Γ. For simplicity of description, we introduce the KFBI
method for the modified Helmholtz equation subject to the Dirichlet boundary condition.

Consider the modified Helmholtz equation

∆u(x)−κu(x) = f (x), in Ω, (2.1)

subject to Dirichlet boundary condition

u(x) = gD(x), on Γ. (2.2)

Here, κ is assumed to be a positive constant for the modified Helmholtz equation in
this paper by default.

2.1 Boundary integral equation

As shown in Fig. 1, to solve the boundary value problem above by the KFBI method, we
first embed the irregular domain Ω into a larger rectangle domain B = Ω∪Ωc.

According to the standard BIM [33, 34], let G(x,y) be Green’s function on the rectangle
B associated with the elliptic PDE (2.1), which satisfies for y ∈ B,

△G(x,y)−κG(x,y) = δ(x−y), x ∈ B, (2.3)

G(x,y) = 0 x ∈ ∂B, (2.4)

4

Figure 1: KFBI computation domain

where δ(x−y) is the Dirac delta function. Let ny be the unit outward normal vector at
point y ∈ Γ, and ϕ be the density function. We first define the double layer boundary
integral and volume integral by

(Wϕ)(x) :=
∫

Γ

∂G(y,x)

∂ny
ϕ(y)dsy, for x ∈ Ω∪Ωc, (2.5)

(Y f)(x) :=
∫

Ω
G(y,x) f (y)dy, for x ∈ R2. (2.6)

Thanks to the symbols and properties of the involved potential and volume integral,
the Dirichlet BVP (2.1)-(2.2) can be reformulated as a Fredholm boundary integral equa-
tion of the second kind [35, 36] by Green’s third identity.

1

2
ϕ(x)+(Wϕ)(x)+(Y f)(x) = gD(x), x on Γ. (2.7)

The solution u(x) to the Dirichlet BVP (2.1)-(2.2) is given by

u(x) = (Wϕ)(x)+(Y f)(x), x ∈ Ω. (2.8)

Let M > 2 be an integer and
{

xj

}M

j=0
be a set of quasi-uniformly spaced points on the

domain boundary Γ so that each curve segment x̃ixi+1(i = 0,1,··· ,M−1) has nearly equal

5

length. Numerically, the boundary integral equation (2.7) can be solved by the Richard-
son iteration: given an initial guess ϕ0(xm), for k ∈ {0,1,2,3,···},m ∈ {0,1,2,··· ,M}, do
as follows

u+
k (xm) =

1

2
ϕk(xm)+(Wϕk)(xm), xm ∈ Γ, (2.9)

ϕk+1(xm) = ϕk(xm)+γ[ĝD(xm)−u+
k (xm)]. xm ∈ Γ. (2.10)

Here ĝD(xm) = gD(xm)−(Y f)(xm), which only need to calculate once before Richard-
son iteration. xm is a control node located on the boundary Γ. It can be shown that the
Richardson iteration is convergent when γ ∈ (0,1]. The superscript “+” in the BIE means
one-sided limit from the domain Ω. More specifically, let w(x) be an arbitrary piecewise
smooth function with discontinuities only existing at the interface Γ. We denote

w+(x) = lim
z−→x,z∈Ω

w(z). (2.11)

similarly, the restriction of w(x) in Ω̄c = Rd\Ω̄, w−(x) is defined as

w−(x) = lim
z−→x,z∈Ω̄c

w(z). (2.12)

Once the unknown density function ϕ(x) is obtained when the iteration (2.10) con-
verges. The unknown function u(x) can be calculated according to the formula (2.8).

2.2 Indirect evaluation of integrals

In the traditional BIM method, the expression of Green’s function must be explicitly
known. However, the exact form of Green’s function varies with the PDE, boundary
condition and the domain. Although Green’s function can be replaced with a neural
network [37] and has good numerical results in solving Laplace’s and Helmholtz’s equa-
tions, this method currently cannot solve the problem with variable coefficients. Within
the framework of the KFBI method, there is no need to know Green’s function. The inte-
grals in (2.5)-(2.6) are indirectly evaluated by the equivalent interface problems. In detail,
the double layer boundary integral (Wϕk)(x) and volume integral (Y f)(x) can be written
into the same form:

∆v(x)−κv(x) = F(x), x in Ω∪Ωc,
[v(x)] = Φ(x), x on Γ,
[∂nv(x)] = 0, x on Γ,
v(x) = 0, x on ∂B.

(2.13)

Here, [v(x)] and [∂nv(x)] represent the jumps of unknown [v(x)] = v+(x)−v−(x)
and its normal derivatives [∂nv(x)] = ∂nv+(x)−∂nv−(x) respectively, f̃ (x) is the zero
extension of given function f (x).

6

Integral F Φ

Wϕ F = 0 Φ = ϕ

Y f F = f̃ (x) =

{

f (x) in Ω

0 in Ωc
Φ = 0

During the discretization of the interface problem, the discrete linear system of the
interface problem (2.13) has to be corrected at the irregular nodes due to the presence of
the interface Γ. The correction process needs to calculate jumps, such as [v], [vx], [vy],
[vxx], [vxy], [vyy] for second-order discretization, as well as modifying function values, as
described in section 3.1.

The jumps calculated above not only requires a correction for the discrete system in
(2.13), but also interpolation of the grid-based solution vh on the boundary. In summary,
the second-order finite-difference method for solving interface is described in Algorithm
1:

Algorithm 1 Second-order finite difference method for interface problem (2.13)

1: Initialize the Cartesian grid of bounded box B.
2: Partition the interface Γ by quasi-uniformly control points.
3: Discretize the interface problem (2.13) with second-order finite difference method.
4: Compute jumps and correct the f̃ (x) at the irregular nodes.
5: Solve the linear system by FFT-based or geometric multigrid fast solvers.
6: Interpolate the solution to get one-sided boundary value.

The first step is to partition box B into Cartesian grid and divide the Cartesian grid
nodes into regular and irregular nodes according to the boundary location. As shown in
Fig.2(b), we define the irregular points if some of their adjacent grid nodes go cross the
boundary. Black squares denote the interior irregular nodes while blue triangles denote
exterior. Others are regular nodes.

For procedure of implementing steps 2-6 in Algorithm 1 on the CPU, we recommend
reading reference [16] for detail. In following section, we will focus on explaining how to
execute algorithms 3-6 on single GPU in section 3 and multiple GPUs in section 4.

3 Single GPU algorithm

3.1 Correction

The KFBI method involves making corrections to each irregular node [16]. Therefore, on a
single GPU, each thread block is comprised of 1,024 threads, and each thread corresponds
to precisely one irregular node for correction.

Suppose that the rectangle domain B is partitioned into a uniform Cartesian grid with
nodes

{

pi,j :=
(

xi,yj

)

: 0 ≤ i ≤ I,0 ≤ j ≤ J
}

. For simplicity, assume the grid has the same

7

spacing in the horizontal and vertical directions and denote by h > 0 the spacing param-
eter, i.e., h = xi+1−xi = yj+1−yj. Let vi,j = vh(pi,j) be the finite difference approximation
of v(x) at the grid node pi,j. One can describe the GPU version of the correction method
as the following Algorithm 2 and schematic plot in Fig. 2.

Algorithm 2 Correction Procedure

Input: intersection nodes, irregular nodes, Φ,F .
Output: corrected right hand side f̃i,j on each irregular nodes.

1: Locate index of irregular nodes by index←− blockIdx.x × blockDim.x + blockIdx.x
2: For irregular nodes pi,j, find the corresponding intersection nodes set Q =
{qi1 ,qi2 ,···}

3: for each qik
in Q do

4: Interpolate Φ and calculate jumps of derivatives at of qik
.

5: Evaluate and modify correction value f̃i,j by the discrete scheme on irregular
nodes pi,j.

6: end for

(a) Intersection nodes (b) Irregular nodes

Figure 2: A graphical scheme for intersection nodes 2(a) and irregular nodes 2(b). In the left, pink triangles
denote intersection nodes with x direction while blue squares refer to intersection nodes with y direction. In the
right, each irregular node is controlled by one thread. Blue triangle denotes exterior irregular node while black
denotes inner node.

3.2 Interpolation

Fig.3 shows the six-point stencil of interpolated point zk located in the shadow region of
a grid cell. The stencil consists of 6 points and can be obtained by rotation or reflection
transformation if zk in another grid cell. As shown in Fig.3, pi,j are the grid points for
extracting value at a point zk ∈ Γ. The corresponding algorithm can be described in
Algorithm 3:

8

Figure 3: Interpolation schematic diagram. The evaluation of the control node zk depends on neighbor grid
value pI,J, I = {i−1,i,i+1}, J = {j−1, j, j+1}. For parallelization, every control node is controlled by one
thread.

Algorithm 3 Interpolation Procedure

Input: intersection nodes, irregular nodes, Φ,F .
Output: the value and its derivatives at control node zk.

1: Locate index of control nodes by index←− blockIdx.x × blockDim.x + blockIdx.x.
2: for control node zk ∈ Γ: do

3: Compute corresponding jumps of value and its derivatives respectively.
4: Find interpolate stencil and formulate interpolate linear system.
5: Solve linear system and extract the boundary data on zk.
6: end for

9

3.3 GMRES iteration with FFT-based solver

• FFT-based solver The most important feature of the KFBI method is the conversion of
a volumn or boundary integral into an interface problem. The solution to the interface
problem consists of two steps. The first step is to make corrections to ensure accuracy,
and the second is to solve it using a fast algorithm, such as FFT-based solver [38]. The
discrete linear system can be solved using the FFT-based solver on GPU by implementing
CUDA programming and invoking cusparse [39] and cufft libraries [40]. The algorithm
can be described as Algorithm 4:

Algorithm 4 FFT-based solver of modified Helmholtz equation in GPU

Input: corrected value f̃i,j.
Output: the solution of interface problem: vi,j.

1: Take the FFT transform on the f̃i,j on y-dimension and get transformed ˆ̃fi,j.

2: Solve tridiagonal linear system with right hand side term ˆ̃fi,j, and get solution v̂i,j.
3: Take the inverse FFT transform on v̂i,j on y-dimension, and get final solution vi,j.

In Algorithm 4, it should be pointed out that FFT transforms depend on the boundary
condition on ∂B. If ∂B is the periodic, Dirichlet or Neumann, one needs to do periodic,
Fast Sine Transform(FST), or Fast Cosine Transform(FCT), respectively. There is no dif-
ference in the influence of the results in the three scenarios. However, in this paper, we
perform FFT on one dimension and solve the tridiagonal resulting system on another,
which is the fastest and most efficient.
• GMRES iteration GMRES is an iterative method for solving nonsymmetric linear sys-
tems. The method aims to approximate the solution by the vector in a Krylov subspace
with minimal residual. The condition number of BIE (2.7) is relatively small, allowing for
fast convergence of GMRES iteration [41].

From (2.9), we denote :

KD(ϕ)(x) := (
1

2
I+W)(ϕ)(x), x ∈ Γ (3.1)

The main points of the GMRES method with restarts are presented in Algorithm 5.
It is worth noting that the matrix-vector product in GMRES is replaced by the KFBI
method(line 2 and 6). As for computing vector norm(line 3, 11, and 17), inner prod-
uct(line 8), scalar-vector operation(line 4 and 12), and some axpy operation(line 9), they
are implemented by the cuda kernel functions. Since the calculated ϕ need to be reinte-
grated into the next iteration, the GPU information needs to be transferred back to the
CPU after each GMRES iteration to obtain updated Mm−1 to Mm(line 14). Therefore, the
calculations for the least squares method are also performed on the CPU(line 15).

10

Algorithm 5 GMRES with restarts in GPU

Input: corrected value f̃i,j.
Output: the solution of BIE(2.7): ϕm.

1: convergence = false
2: while convergence == false do

3: r0 = ĝD−KD ϕ
4: β = ||r0||2
5: µ1 = r0

β

6: for j = 1 to m do

7: wj = KDµj

8: for i = 1 to j do
9: hi,j = (wj,µi)

10: wj = wj−hi,jµi

11: end for

12: hj+1,j = ||wj||2
13: µj+1 =

wj

hj+1,j

14: end for

15: Set Mm = [µ1,··· ,µm], and Ĥm = (hi,j) is upper Hessenberg matrix of order (m+
1)×m

16: Solve a least-square problem: miny∈R2 ||βe1−Ĥmy||2
17: ϕm = ϕ0+Mmym

18: if ||ĝD−Kϕm||2 < ǫ then

19: convergence = true
20: end if

21: ϕ0 = ϕm

22: end while

4 Multi-GPUs algorithm

4.1 Domain decomposition

While a single GPU has demonstrated commendable performance in numerous applica-
tions, the computational demands entailed in simulating extensive more large-scale prob-
lems surpass the capabilities of a single GPU. It is necessary to explore the development
of parallelization techniques using multiple GPUs to address this issue. For descriptive
convenience, our multiple-GPU algorithm is presented using a two-dimensional grid as
a paradigm, with the situation for three-dimensional grids being analogous.

Our study employs the domain decomposition method to partition a 2D grid with
Nx×Ny dimensions into m parts along the x−coordinate direction. Each part repre-
sents a sub-domain; the total number of sub-domains is denoted as m,m equals the to-
tal number of GPUs in use. Each sub-domain is assigned to a corresponding process

11

equipped with a GPU for computation. Throughout the simulation, the variables of each
sub-domain persistently reside in the global memory of the assigned GPU.

Figure 4: Partition the Cartesian grid into four subdomains along the y-axis, with each subdomain assigned to
a dedicated process equipped with a GPU for computation.

In the interface problem-solving process, each process stores the relevant information
of curve points within its allocated region. Initially, all the data points on the boundary
are gathered to calculate the solutions at these specific curve points. Subsequently, the
computed results are distributed back to the respective processes.

Before set up the iteration in Section 3.3, the CPU’s grid data and boundary data
are distributed to their respective processes based on regions. Subsequently, this data is
efficiently copied to the device. Throughout the iterative solving process, each process is
responsible for processing the pertinent information related to grid points, control points,
and intersection nodes within its designated region, and all computations are carried out
on the GPU. Upon completion of the iteration, the processed data is then returned to the
host system. This approach ensures a standardized and optimized procedure for utilizing
CUDA-enabled devices to expedite the solving process.

4.2 Data communication

In order to facilitate efficient data exchange, MPI is utilized on the CPU to transfer data
from two layers of internal units adjacent to subdomain boundaries. We allocate mem-
ory spaces on both the host and the device to store secondary boundary data. Once
the boundary of a specific subdomain is computed, each device uploads the necessary
boundary data to the virtual region, which is then downloaded by neighbouring devices
to prepare for the subsequent computational steps. This approach optimizes data ex-
change while minimizing data redundancy between the CPU and GPU.

Given that there are fewer control points than grid points, the time and computational
cost associated with collecting and disseminating potential values, denoted as φ and ψ,

12

Figure 5: Each process is accompanied by a peripheral layer of a virtual subdomain, situated at the boundaries
of their respective regions, which serves the purpose of receiving boundary data transmitted by neighboring
processes.

across various boundary regions is relatively low. During the process of solving the inter-
face problem (2.13), each process is tasked with obtaining potential function information
for all control points. To streamline this procedure, MPI is employed to consolidate the
potential function information before the interface problem calculation begins. Upon
completion of the calculation, MPI is once again used to distribute the results back to
their respective processes.

4.3 Poisson solver

For the FFT-based solver of the Poisson equation, we still follow the process Algorithm
4. Unlike single GPU, we solve tridiagonal linear equations using the distributed arrow-
head decomposition method(ADM) [42]. The ADM is an efficient algorithm, and the
resulting system is suited for designing distributed algorithms for each sub-domain on
the corresponding GPU.

4.3.1 Arrowhead decomposition method

The linear equation system to be solved is denoted as : Au = f . Fig.6 depicts the con-
cept of ADM. A similarity transformation transforms the initial block-tridiagonal linear
system(4.1) into an equivalent block matrix form. This reorganization is particularly ad-
vantageous for region decomposition and the design of distributed algorithms, as each
block matrix’s linear system exhibits a degree of independence. The reordering is carried
out by exchanging block rows and block columns, which, in turn, affects the elements of
the unknown vector and the right-hand side vector. The resulting matrix structure can
be represented as a 2×2 block matrix.

(

S WR

WL H

)(

s
h

)

=

(

Fs

Fh

)

(4.1)

13

(a) Intial linear system (b) Rearranged linear system (c) Notation of the rearranged
system

Figure 6: A graphical scheme for rearrangement of the initial block-tridiagonal linear system into the equivalent
form, coming from [42]. Left: the initial matrix A with blocks. Center: after rearrangement, the initial matrix
becomes "arrowhead" matrix. Right: the denotation of the "arrowhead" matrix.

In this context, the unknown solution vector h corresponds to the movable component
of the complete solution, as illustrated in Figure 6. The square super-block S comprises
new independent tridiagonal blocks Sk, with k = 1,.. .,M, positioned along the diago-
nal. The matrix elements H form the lower-right coupled super-block, representing the
coupling of unknowns at the interface. Additionally, the other horizontal super-blocks
WR and WL are supplementary components within the matrix, signifying the internal
unknowns of the coupling processors at the interface. The following relationships deter-
mine the solution of the system(4.1).

{

s = S−1Fs−S−1WRh

h =
(

H−WLS−1WR

)−1(
Fh−WLS−1Fs

) (4.2)

These relationships involve matrix products and inversions, which can be parallelized
to a certain extent. The independence of blocks Sk allows for distributed parallel compu-
tation of the products S−1Fs. In practice, rather than computing inversions, we efficiently
solve the distributed linear systems Sx = Fs due to the special properties of Sk. The
sparse structure of WL and WR significantly reduces the number of matrix operations
in(4.2). Once a portion of the total solution X = (s,h)T is obtained from the second rela-

tionship in(4.2), i.e., h =
(

h1,. . .,hM−1
)T

, the remaining parts can be computed in parallel
over GPU k using the provided formula.

sk = zk−Zkhk−1−Zkhk (4.3)

where formally zk =
(

Sk
)−1

Fs,Z
k =

(

Sk
)−1

Wk
R, and h0 = hM = 0.

The distributed algorithm for solving tridiagonal matrices can be outlined as follows:

14

Algorithm 6 Distributed solver for arrowhead decomposition method

Input: corrected value f̃i,j and known matrix A.
Output: the solution of Au = f .

1: Decompose the coefficient matrix A and the right-hand side vector f into m subre-
gions, where m equals the number of processes.

2: Precompute the Schur complement matrices (H−WLS−1WR)
−1, S−1WR indepen-

dently.
3: Compute S−1

k Fs, k = {1,2,··· ,m} and exchange data by passing the first row of xk

from the (k+1)th processes to the auxiliary boundary of the kth process to compute
(

Fh−WLS−1Fs

)

.

4: Compute hk,k = {1,··· ,m−1} by (4.1) and h0,hm are set to 0.
5: Evaluate sk,k = {1,··· ,m} by formula (4.3), where the vector hk−1 is passed from

(k−1)th process to the auxiliary boundary of the process k.

In step 1, each process is assigned the task of handling storage and computations for
variables within its respective subregion. This approach ensures a standardized and opti-
mized procedure for distributing the workload across multiple processes. In step 2, com-
puting these matrices avoid redundant calculation during the iterations. For the vector
update operations in both step 1 and 2, each vector is divided into some segments accord-
ing to the number of devices. Each segment pair forms a subtask in a device and these
subtasks are computed simultaneously. For the dot product in point, the vectors ~x and ~y
are cut into segments and computes on the devices in parallel firstly, then the local sum
was calculated using the API reduce in the thrust library. The MPI is used to solve the final
global sum, the vector norm can easily be calculated when the dot product is acquired.
In our program, an original vector is partitioned sequentially. Any vector is stored as a
one-dimensional array. A set of vectors are managed through a two-dimensional array.
For the matrix-vectors product, here is actually the solution to the interface problem.

4.4 Algorthm summary

The structure of the GPU-accelerated distributed KFBI algorithm can be found here-
inafter. The individual steps are interleaved by communication calls, as visualized by
printing the communication in italic.

• Procedure 1: Initialize the Cartesian grid

1. Use quasi-uniformly spaced points zi to discretize the interface Γ;

2. Partition B into a uniform Cartesian grid Th;

3. Identify the regular and irregular nodes of the Cartesian grid;

4. Find intersecting points located between Γ and Cartesian grid line.

15

• Procedure 2: Evaluate boundary data on control nodes

1. The boundary point data is scattered to the corresponding process according
to the region;

2. Compute jumps of partial derivatives at control nodes;

3. Solve interface problems by section 4.3;

4. Exchange grid data between adjacent processes;

5. Extract boundary data u+(x) or ∂nu(x) for Dirichlet or Neumann BVP respec-
tively;

6. Collect boundary point data and calculate errors.

• Procedure 3: The GMRES iteration

1. Choose an initial guess ϕ0 or ψ0 and distribute it to different GPUs to start the
GMRES iteration for the Dirichlet BVP or Neumann BVP respectively;

2. Perform the GMRES iteration according to 3.3;

3. Repeat the previous steps 2 until the discrete residual of the boundary integral
equation is sufficiently small in some norm.

5 Numerical Results

To study the numerical accuracy and efficiency of the methods above, in this section, we
present the numerical results for the Laplace equations, the reaction-diffusion equations,
and the Stokes equations in an irregular domain. The bounding box B embedding the
domain Ω for solving the interface problem is specified as a square(cube), whose size as
well as the curve(surface) parameters are given respectively in the description of each
numerical example.

The following examples give the convergent error of the numerical discretization
scheme. Taking two dimensions as an example, the error is defined as eij with eij =
(uh)ij−(u

∗)ij, where N is the number of interior grid nodes, u∗ is the exact solution, uh

is the numerical solution with step size h. Denote by ‖eh‖∞ and ‖eh‖2 the discrete maxi-
mum norm and the scaled discrete l2-norm of eij respectively, i.e.,

‖eh‖∞ = max
(xi ,yj)∈Ω

∣

∣eij

∣

∣

‖eh‖2 =

√

√

√

√

1

N ∑
(xi ,yj)∈Ω

∣

∣eij

∣

∣

2

To check the algorithm’s accuracy, we verify the numerical error in each case with the
grid refinement. The GMRES iteration stops when the iterated residual in the discrete

16

ℓ2-norm relative to that of the initial residual is less than a prescribed tolerance and is
fixed to be 10−8. The corresponding table for each case lists the step size, the number of
grid points, the CPU times, the GPU times, and the speedup ratios. Numerical results on
the Cartesian grid to the problem are also displayed in the plots for each fixed time.

In addition, we perform numerical experiments on eight NVIDIA GeForce RTX 3090
graphics cards, which contain 10496 cores organized in 84 streaming multiprocessors
(MPs). Moreover, it provides 24GB of device memory with a memory bandwidth of
936GB/s, accessible by all its cores and the CPU through the Intel(R) Xeon(R) Gold 6330
CPU with 28 cores.

Poisson grid size 5122 10242 20482 40962

FFT GPU time 0.19 s 0.27 s 0.66 s 1.65 s

Multigrid GPU time 0.25 s 0.61 s 2.08 s 8.66 s

Table 1: Comparison of different Poisson solvers on DBVP of the Laplace equation.

Iteration grid size 5122 10242 20482 40962

Richardson CPU time 5.62 s 23.11 s 92.05 s 380.12 s
GPU time 0.19 s 0.27 s 0.66 s 1.65 s

GMRES CPU time 1.38 s 5.81 s 25.92 s 110.21 s
GPU time 0.13 s 0.16 s 0.18 s 0.25 s

BiCGSTAB CPU time 1.99 s 8.01 s 34.47 s 147.49 s
GPU time 0.45 s 0.45 s 0.63 s 1.01 s

Table 2: Comparison of various iterative methods for solving the Dirichlet boundary value problem (DBVP)
associated with the Laplace equation, with a fixed tolerance level of 1e−08 for the Richardson, GMRES, and
BiCGSTAB methods.

5.1 Single GPU results

Example 1. The results presented in Tab. 1 clearly demonstrate that, within the specified
range of simulation scales, the FFT+tridiagonal Poisson solver outperforms the geomet-
ric multigrid solver in terms of efficiency. This observation is consistent with the findings
reported in [43]. Analyzing the results from Tab. 2, it is evident that the GMRES method
achieves the lowest iteration number, resulting in reduced CPU and GPU time consump-
tion. As a result, for subsequent numerical experiments, this study adopts the parallel
FFT+tridiagonal Poisson solver in combination with the GMRES method for computa-
tional purposes.

This example solves the boundary value problem of the Laplace equation on the cir-
cle domain(the parameters ra = 1.0, rb = 1.0) and the rotated star-shaped domain(the
parameters m = 4.0,6.0,8.0, r = 1.0, c = 0.2), with the Dirichlet boundary condition. The
boundary conditions are chosen so that the exact solution reads

u(x,y) = exp(x)cos(y)+exp(y)sin(x)

17

The bounding box B for the interface problem is set to be B = (−1.2,1.2)×(−1.2,1.2).
Numerical results are plotted in Fig. 7.

Figure 7: The numerical solutions on the circle and star-shaped domain on the 2048×2048 grid.(a)Circle domain.
The radius r = 1.0. (b)The star-shaped domain. The fold number m = 4.0, radius r = 1.0, c = 0.2. (c)The
star-shaped domain. The fold number m = 6.0, radius r = 1.0, c = 0.2. (d)The star-shaped domain. The fold
number m = 8.0, radius r = 1.0, c = 0.2.

Example 2. This example solves the boundary value problem of the Stokes equation
on the heart-shaped domain, with the Dirichlet boundary condition. A Cartesian grid-
based MAC Scheme is applied to solve the Stokes equation. This approach places the
pressure p at the cell center, the x−component velocity u(1) and the y−component veloc-
ity u(2) at the midpoints of the vertical and horizontal edges of each cell, respectively. The
method is detailed in [44]. The boundary conditions are chosen so that the exact solution
reads

u(1)(x,y) = x(x2−3y2)+1.5(1−(x2+y2))x

u(2)(x,y) = −1.5(1−(x2+y2)2)y

p(x,y) = 6(y2−x2)

(5.1)

The bounding box B for the interface problem is set to be B = (−1.2,1.2)×(−1.2,1.2).
The execution time on the CPU and GPU are summarized in Tab. 3. Numerical results
are plotted in Fig. 8.

18

Boundary grid size 642 1282 2562 5122

Dirichlet CPU time 6.95 s 31.27 s 135.26 s 551.24 s
GPU time 1.36 s 1.85 s 3.25 s 5.51 s
Speedup 5.11 16.90 41.61 100.04

Table 3: BVP of the Stokes equation on the heart-shaped domain.

(a) The velocity field u(1) (b) The velocity field u(2) (c) The pressure field p

Figure 8: The numerical solutions for example 2 on the 512×512 grid.

Example 3. This example solves the Gray-Scott model which consists of two singu-
larly perturbed reaction-diffusion equations given by

ut = ǫ1∆u+
1

ǫ0

[

γ(1−u)−uv2
]

vt = ǫ2∆v+
1

ǫ0

[

uv2−(γ+κ)v
]

Here, u = u(x,y,t) and v = v(x,y,t) are two unknown smooth functions, describing
the concentration of some chemical substances in a bounded domain Ω for t > 0;γ and
κ are respectively the feed and removal rate; ǫ0,ǫ1 and ǫ2 are small reactive or diffusive
coefficients. In this example, the model is assumed to satisfy the homogeneous Neu-
mann boundary condition that ∂nu = ∂nv = 0 on ∂Ω, initial condition and the involved
parameters are specified as follows

v(x,y,0) =

{

1
4 sin2(4πx)sin2(4πy), −0.25 6 x,y 6 0.25

0, others.

u(x,y,0) = 1−2v(x,y,0)

γ = 0.024,κ = 0.06,ǫ0 = 0.01,ǫ1 = 0.008,ǫ2 = 0.004

The bounding box B for the interface problem is set to be B = (−2.0,2.0)×(−2.0,2.0)
and the tolerance is 10−8. Time direction is discretized by the second-order Strang split-
ting method [45]. The numerical results when T = 1,2,7,11,17,21,25,50 are plotted in

19

Fig. 9. Tab. 4 we present the execution time on the CPU and GPU of the parallel algo-
rithm for different computing scales, In order to verify the computational efficiency and
stability, the GPU acceleration ratio and numerical accuracy are also shown in the ta-
ble. It is calculated selecting four different problem sizes: 128×128, 256×256, 512×512,
1024×1024, the time step is increasing with the increase of the grid size. From the table
we can see that the GPU acceleration ratio increases with increasing of the computation
scale, It can be seen that a better performance is obtained when large problems are con-
sidered, which means our parallel method scales well.

boundary condition grid size 128×128 256×256 512×512 1024×1024
Time steps 8 16 32 64

Neumann CPU time 1.21 s 8.98 s 74.97 s 633.78 s
GPU time 0.40 s 1.04 s 3.29 s 12.07 s
Speedup 3.0250 8.6346 22.7872 52.5086

Table 4: Simulation time of CPU-based and GPU-based KFBI method, as well as the speedup achieved by
GPU-based solver over the CPU-based solver.

Figure 9: the radius r = 1.8, T = 1,2,7,11,17,21,25,50 on the 128×128 grid.The bounding box B is set to be
B = (−2.0,2.0)×(−2.0,2.0) .

Example 4. This example solves the Dirichlet BVP of the Stokes equation on an sphere
Ω which is given by

Ω =

{

(x,y,z) ∈ R
3 :

x2

a2
+

y2

b2
+

z2

c2
< 1

}

(5.2)

with a = 1.0,b = 0.8,c = 0.6. The bounding box B for the interface problem is B =
[−1.2,1.2]×[−1.2,1.2]×[−1.2,1.2]. The Dirichlet BC is chosen so that the exact solution

20

reads

u(1)(x,y,z) = exp(cosy)+exp(sinz)−4
(

1−x2−y2
)

xy−4x2z2+
(

x2+3z2−2
)(

z2−x2
)

u(2)(x,y,z) = exp(sinx)−4x2y2+
(

3x2+y2−2
)(

x2−y2
)

u(3)(x,y,z) = exp(cos(x))−4
(

1−x2−z2
)

xz

p(x,y,z) = exp(cosx+siny)+exp(cosz+sinx)+8(3x2−y2)y+8x(3z2−x2)

(5.3)

The error orders and execution times on the CPU and GPU are encapsulated in Table
5, derived from four distinct problem sizes: 323, 643, 1283, 2563, and 5123. The table
reveals an increasing GPU acceleration ratio with the escalation of computational scale.
It is observed that enhanced performance is achieved for larger problems, indicating the
scalability of the parallel method.

Boundary grid size 323 643 1283 2563

CPU time 44.85 s 272.39 s 1948.24 s 13521.36 s
Dirichlet GPU time 1.34 s 2.82 s 4.98 s 38.62 s

Speedup 33.47 96.59 391.21 350.11

Table 5: BVP of the Stokes equation on the bounding box B = (−1.2,1.2)×(−1.2,1.2)×(−1.2,1.2) with
GMRES iterition method.

The velocity field u(1) The velocity field u(2) The velocity field u(3)

5.2 Multiple-GPU results

To augment computational precision, refinement is applied to the computational grid.
Example 6 uses the same numerical test cases as examples 1, 3, and 4. Table 6 displays the
computation times for solving the 2D Laplace, reaction-diffusion, and 3D Stokes equa-
tion. These computations were executed using 1, 2, 4, and 8 GPUs.

21

In the Fig. 10, we can conclude that multi-GPUs parallel computing achieves linear
speedup, despite a slight decrease in single-GPU performance when more GPUs are em-
ployed, as shown in Tab. 6. The linear growth of parallel efficiency hindrance can be at-
tributed to inter-GPU communication, involving tasks such as the distribution of bound-
ary data(point 1 of procedure 2), exchange of ghost cell data(points 3 and 4 of procedure
2), and collection of boundary data(the point 6 of procedure 2) in 4.4.

equation 2D Laplace 2D reaction-diffusion 3D Stokes

grid size 40962 81922 163842 40962 81922 163842 1283 2563 5123

1GPU 0.25 s 1.02 s 26.87 s 106.51 s 4.98 s 38.62 s
2GPUs 0.15 s 0.51 s 13.74 s 53.87 s 2.72 s 19.56 s
4GPUs 0.09 s 0.28 s 1.01 s 9.05 s 27.12 s 123.78 s 2.16 s 11.8 s
8GPUs 0.06 s 0.18 s 0.62 s 7.58 s 20.38 s 74.93 s 2.05 s 9.16 s 66.21 s

Table 6: Multi-GPUs execution time vs. single GPU.

(a) 2D Laplace (b) 2D reaction-diffusion (c) 3D Stokes

Figure 10: Comparison of parallel efficiency with different numbers of GPUs

6 Discussion

This paper presents a second-order, single, and multiple-GPU accelerated efficient KFBI
method for elliptic boundary value problems. The equations are first transformed into a
BIE, and then the unknown density in the equation is solved by GMRES iteration. Bound-
ary and volume integral can be evaluated by equivalent interface problems to obtain the
approximate solution. The procedure for solving the interface problem consists of four
steps: discretization, correction, fast solving, and interpolation.

In the single GPU algorithm, since the KFBI method itself mainly focuses on the con-
trol points on the boundary and the irregular nodes near the boundary. We only need
to assign threads to them and design a fast algorithm on the GPU to solve the interface
problem efficiently. In the multiple-GPU algorithm, the system of linear equations in the
interface problem must be solved by the ADM method, which involves the interaction of
information between the host and the device handled by MPI.

22

The accuracy and efficiency of the algorithm are verified from numerical examples.
The method is especially suited for GPU acceleration in large-scale computations, and
the multiple-GPU distributed solver scales well. Numerical examples show that single-
GPU solver speeds 50-200 times than traditional CPU while the eight GPUs distributed
solver yields up to 60% parallel efficiency.

The single/multiple-GPU accelerated KFBI method can be extended for other PDEs,
such as the Maxwell and elasticity equations. Furthermore, combined with the deep
learning method, the KFBI method may exhibit potential applicability in solving equa-
tions within non-smooth domains on the GPU platform.

Acknowledgments

This work is financially supported by the Strategic Priority Research Program of Chinese
Academy of Sciences(Grant No. XDA25010405). It is also partially supported by the Na-
tional Key R&D Program of China, Project Number 2020YFA0712000, the National Nat-
ural Science Foundation of China (Grant No. DMS-11771290) and the Science Challenge
Project of China (Grant No. TZ2016002). Additionally, it is supported by the Fundamen-
tal Research Funds for the Central Universities.

References

[1] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. Top500, November 2023.
[2] C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu. A survey on parallel computing and its

applications in data-parallel problems using gpu architectures. Communications in Computa-
tional Physics, 15(2):285–329, 2014.

[3] W. Hwu. GPU computing gems. Waltham, MA : Morgan Kaufmann, Waltham, MA, jade ed..
edition, 2012.

[4] Y. Qian, C. Wang, and S. Zhou. A positive and energy stable numerical scheme for the pois-
son–nernst–planck–cahn–hilliard equations with steric interactions. Journal of Computational
Physics, 426:109908, 2021.

[5] J. Ding, Z. Wang, and S. Zhou. Positivity preserving finite difference methods for pois-
son–nernst–planck equations with steric interactions: Application to slit-shaped nanopore
conductance. Journal of Computational Physics, 397:108864, 2019.

[6] Y. Chai, K. Huang, S. Wang, Z. Xiang, and G. Zhang. The extrinsic enriched finite element
method with appropriate enrichment functions for the helmholtz equation. Mathematics,
11:1664, 03 2023.

[7] L. Greengard and M. C. Kropinski. An integral equation approach to the incompressible
navier-stokes equations in two dimensions. SIAM Journal on Scientific Computing, 20(1):318
– 336, 1998. Cited by: 37; All Open Access, Green Open Access.

[8] L. Quartapelle. Numerical solution of the incompressible navier-stokes equations. In Inter-
national series of numerical mathematics, volume 113, 1993.

[9] S. Zhu, Q. Wu, and C. Liu. Shape and topology optimization for elliptic boundary value
problems using a piecewise constant level set method. Applied Numerical Mathematics,
61(6):752–767, 2011.

23

[10] W. Gong, J. Li, and S. Zhu. Improved discrete boundary type shape gradients for pde-
constrained shape optimization. SIAM Journal on Scientific Computing, 44(4):A2464–A2505,
2022.

[11] R. Chapko and R. Kress. Rothe’s method for the heat equation and boundary integral equa-
tions. Journal of Integral Equations and Applications, 9(1):47 – 69, 1997. Cited by: 43; All Open
Access, Bronze Open Access.

[12] Y. C. Zhou, S. Zhao, M. Feig, and G. W. We. High order matched interface and boundary
method for elliptic equations with discontinuous coefficients and singular sources. Journal
of Computational Physics, 213(1):1–30, 2006.

[13] H. Cheng, J. Huang, and T. J. Leiterman. An adaptive fast solver for the modified helmholtz
equation in two dimensions. Journal of Computational Physics, 211(2):616–637, 2006.

[14] H. Sun and D. L. Darmofal. An adaptive simplex cut-cell method for high-order discon-
tinuous galerkin discretizations of elliptic interface problems and conjugate heat transfer
problems. Journal of Computational Physics, 278:445–468, 2014.

[15] P. García-Risueño, J. Alberdi-Rodriguez, M. J. T. Oliveira, X. Andrade, M. Pippig,
J. Muguerza, A. Arruabarrena, and A. Rubio. A survey of the parallel performance and
accuracy of poisson solvers for electronic structure calculations. Journal of Computational
Chemistry, 35(6):427–444, 2014.

[16] W. Ying and C. S. Henriquez. A kernel-free boundary integral method for elliptic boundary
value problems. Journal of computational physics, 227(2):1046–1074, 2007.

[17] W. Ying and W. Wang. A kernel-free boundary integral method for implicitly defined sur-
faces. Journal of Computational Physics, 252:606–624, 2013.

[18] W. Ying and W. Wang. A kernel-free boundary integral method for variable coefficients
elliptic pdes. Communications in Computational Physics, 15(4):1108–1140, 2014.

[19] Y. Xie and W. Ying. A fourth-order kernel-free boundary integral method for the modified
helmholtz equation. Journal of Scientific Computing, 78(3):1632–1658, 2019.

[20] Y. Xie, Z. Huang, and W. Ying. A cartesian grid based tailored finite point method for
reaction-diffusion equation on complex domains. Computers & Mathematics with Applications,
97:298–313, 2021.

[21] Z. Zhao, H. Dong, and W. Ying. Kernel free boundary integral method for 3d incompress-
ible flow and linear elasticity equations on irregular domains. Computer Methods in Applied
Mechanics and Engineering, 414:116163, 2023.

[22] H. Dong, S. Li, W. Ying, and Z. Zhao. Kernel-free boundary integral method for two-phase
stokes equations with discontinuous viscosity on staggered grids, 2023.

[23] H. Zhou, M. Huang, and W. Ying. Adi schemes for heat equations with irregular boundaries
and interfaces in 3d with applications, 2023.

[24] R. Reddy and R. Banerjee. Gpu accelerated vof based multiphase flow solver and its appli-
cation to sprays. Computers & Fluids, 117:287–303, 2015.

[25] S. K. Layton, A. Krishnan, and L. A. Barba. cuibm – A gpu-accelerated immersed boundary
method. CoRR, abs/1109.3524, 2011.

[26] S. Liang, W. Liu, and L. Yuan. Solving seven-equation model for compressible two-phase
flow using multiple gpus. Computers & Fluids, 99:156–171, 2014.

[27] C. Huang, B. Shi, N. He, and Z. Chai. Implementation of multi-gpu based lattice boltzmann
method for flow through porous media. Advances in Applied Mathematics and Mechanics,
7(1):1–12, 2015.

[28] V. Volkov and B. Kazian. Fitting fft onto the g80 architecture. Methodology, January 2011.
[29] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High perfor-

24

mance discrete fourier transforms on graphics processors. In SC ’08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, pages 1–12, 2008.

[30] N. Nandapalan, J. Jaros, A. P. Rendell, and B. Treeby. Implementation of 3d ffts across mul-
tiple gpus in shared memory environments. In 2012 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies, pages 167–172, 2012.

[31] Y. Chen, X. Cui, and H. Mei. Large-scale fft on gpu clusters. In Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10, page 315–324, New York, NY, USA, 2010.
Association for Computing Machinery.

[32] A. Nukada, K. Sato, and S. Matsuoka. Scalable multi-gpu 3-d fft for tsubame 2.0 supercom-
puter. In SC ’12: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–10, 2012.

[33] M. H. Aliabadi and P. H. Wen. Boundary element methods in engineering and sciences, volume 4.
World Scientific, 2011.

[34] D. Yu. Natural boundary integral method and its applications, volume 539. Springer Science &
Business Media, 2002.

[35] R. Kress, V. Maz’ya, and V. Kozlov. Linear integral equations, volume 82. Springer, 1989.
[36] G. C. Hsiao and W. L. Wendland. Boundary integral equations. Springer, 2008.
[37] G. Lin, F. Chen, P. Hu, X. Chen, J. Chen, J. Wang, and Z. Shi. Bi-greennet: Learning green’s

functions by boundary integral network, 2022.
[38] J. Wu and J. JaJa. High performance fft based poisson solver on a cpu-gpu heterogeneous

platform. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing,
pages 115–125, 2013.

[39] M. Naumov, L. S. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. In GPU Technol-
ogy Conference, 2010.

[40] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli. High perfor-
mance discrete fourier transforms on graphics processors. In SC’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–12. Ieee, 2008.

[41] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[42] P. A. Belov, E. R. Nugumanov, and S. L. Yakovlev. The arrowhead decomposition method

for a block-tridiagonal system of linear equations. Journal of Physics: Conference Series,
929:012035, 11 2017.

[43] A. Gholami, D. Malhotra, H. Sundar, and G. Biros. Fft, fmm, or multigrid? a comparative
study of state-of-the-art poisson solvers for uniform and nonuniform grids in the unit cube.
SIAM Journal on Scientific Computing, 38(3):C280–C306, 2016.

[44] H. Dong, S. Li, W. Ying, and Z. Zhao. Second order convergence of a modified mac scheme
for stokes interface problems, 2023.

[45] S. MacNamara and G. Strang. Operator Splitting, pages 95–114. Springer International Pub-
lishing, Cham, 2016.

	Introduction
	The kernel-free boundary intergral method
	Boundary integral equation
	Indirect evaluation of integrals

	Single GPU algorithm
	Correction
	Interpolation
	GMRES iteration with FFT-based solver

	Multi-GPUs algorithm
	Domain decomposition
	Data communication
	Poisson solver
	Arrowhead decomposition method

	Algorthm summary

	Numerical Results
	Single GPU results
	Multiple-GPU results

	Discussion

