
How to use and interpret activation patching

Stefan Heimersheim
stefan.heimersheim@gmail.com

Neel Nanda

Abstract

Activation patching is a popular mechanistic interpretability technique, but has
many subtleties regarding how it is applied and how one may interpret the results.
We provide a summary of advice and best practices, based on our experience using
this technique in practice. We include an overview of the different ways to apply
activation patching and a discussion on how to interpret the results. We focus on
what evidence patching experiments provide about circuits, and on the choice of
metric and associated pitfalls.

1 Introduction

1.1 What is activation patching?

Activation patching (also referred to as Interchange Intervention, Causal Tracing, Resample Ablation,
or Causal Mediation Analysis) is the technique of replacing internal activations of a neural net. It is
also known as Causal Tracing, Resample Ablation, Interchange Intervention or more generally as
Causal Mediation Analysis. Variants of this technique have been widely used in the literature (Vig
et al., 2020; Geiger et al., 2021a; Geiger, Richardson, and Potts, 2020; Soulos et al., 2019; Finlayson
et al., 2021; Geiger et al., 2021b; Meng et al., 2022; Wang et al., 2022; Chan et al., 2022; Hase et al.,
2023; Hanna, Liu, and Variengien, 2023; Conmy et al., 2023; Todd et al., 2023; Hendel, Geva, and
Globerson, 2023; Feng and Steinhardt, 2023; Lieberum et al., 2023; Cunningham et al., 2023; Stolfo,
Belinkov, and Sachan, 2023; Goldowsky-Dill et al., 2023; McDougall et al., 2023; Geva et al., 2023;
Huang et al., 2023; Merullo, Eickhoff, and Pavlick, 2023; Tigges et al., 2023). Here we focus on the
technique where we overwrite some activations during a model run with cached activations from a
previous run (on a different input), and observe how this affects the model’s output.

1.2 How is this related to ablation?

Ablation is the common technique of zeroing out activations. Activation patching is more targeted
and controlled: We replace activations with other activations rather than zeroing them out. This
allows us to make targeted manipulations to locate specific model behaviours and circuits.

1.3 An example

For example, let’s say we want to know which model internals are responsible for factual recall in
ROME (Meng et al., 2022). How does the model complete the prompt “The Colosseum is in” with
the answer “Rome”? To answer this question we want to manipulate the model’s activations. But the
model activations contain many bits of information: This is an English sentence; The landmark in
question is the Colosseum; This is a factual statement about a location.

Ablating some activations will affect the model if these activations are relevant for any of these bits.
But activation patching allows us to choose which bit to change and control for the others. Patching
with activations from “Il Colosseo è dentro” locates where the model stores the language of the
prompt but may use the same factual recall machinery. Patching with activations from “The Louvre is
in” locates which part of the model deals with the landmark and information recall. Patching between

ar
X

iv
:2

40
4.

15
25

5v
1 

 [
cs

.L
G

] 
 2

3 
A

pr
 2

02
4



“The Colosseum is in the city of” and “The Colosseum is in the country of” locates the part of the
model that determines which attributes of an entity are recalled.

A simple activation patching procedure typically looks like this:

1. Choose two similar prompts that differ in some key fact or otherwise elicit different model
behaviour:

E.g. “The Colosseum is in” and “The Louvre is in” to vary the landmark but control
for everything else.

2. Choose which model activations to patch

E.g. MLP outputs

3. Run the model with the first prompt—the source prompt—and save its internal activations

E.g. “The Louvre is in” (source)

4. Run the model with the second prompt—the destination prompt—but overwrite the selected
internal activations with the previously saved ones (patching)

E.g. “The Colosseum is in” (destination)

5. See how the model output has changed. The outputs of this patched run are typically
somewhere between what the model would output for the un-patched first prompt or second
prompt

E.g. observe change in the output logits for "Paris" and "Rome"

6. Repeat for all activations of interest

E.g. sweep to test all MLP layers

1.4 What is this document about

We want to communicate useful practical advice for activation patching, and warn of common pitfalls
to avoid. We focus on three areas in particular:

1. What kind of patching experiments provide which evidence? (Section 2)

2. How should you interpret activation patching results? (Section 3)

3. What metrics you can use, what are common pitfalls? (Section 4)

For a general introduction to mechanistic interpretability in general, and activation patching in
particular we refer to ARENA1 chapter 1 (in particular activation patching in chapter 1.3) as well as
the corresponding glossary entries on Neel Nanda’s website2.

2 What kind of patching experiments should you run?

2.1 Exploratory and confirmatory experiments

In practice we tend to find ourselves in one of two different modes of operation: In exploratory mode
we run experiments to find circuits and generate hypotheses. In confirmatory mode we want to verify
the circuit we found and check if our hypothesis about its function is correct.

In exploratory patching we typically patch components one at a time, often in a sweep over the
model (layers, positions, model components). We do this to get an idea of which parts of a model are
involved in the task in question, and may be part of the corresponding circuit.

In confirmatory patching we want to confirm a hypothesised circuit by verifying that it actually covers
all model components needed to perform the task in question. We typically do this by patching
many model components at once and checking whether the task performance behaves as expected. A
well-known example of patching for circuit verification is Causal Scrubbing (Chan et al., 2022).

1ARENA: https://arena3-chapter1-transformer-interp.streamlit.app/
2https://neelnanda.io/glossary

2

https://arena3-chapter1-transformer-interp.streamlit.app/
https://neelnanda.io/glossary


2.2 Which components should you patch

Patching can be done on different levels of granularity determining the components to patch. For
example, we may patch the residual stream at a certain layer and position, or the output of a certain
MLP [layer, position] or Attention Head [layer, head, position]. At even higher granularity we could
patch individual neurons or sparse autoencoder features.

An even more specific type of patching is path patching. Usually, patching any component will affect
all model components in later layers (“downstream”). In path patching instead we let each patch
affect only a single target component. We call this patching the “path” between two components. For
details on patch patching we refer to ARENA section 1.3.4.

Path Patching can be used to understand whether circuit components affect each other directly, or
via mediation by another component. For example if we want to distinguish between mediation
(component A affects output C via component B), and amplification/calibration (component A affects
output C directly, but component B reads from A and also affects output C by boosting or cancelling
the signal to amplify or calibrate component A). These two structures look identical in default
component patching, but different in path patching: a direct connection (composition) between A and
C exists only in the second case.

As a rule of thumb, you want to start with low-granularity patching (e.g. residual stream patching),
then increase granularity, and finally use path patching to test which components interact with each
other. Fast approximations to activation patching, such as attribution patching (see Nanda, 2023, and
also AtP*, atpstar) can help speed up this process in large models.

2.3 Noising and Denoising

There are multiple ways to do activation patching. The techniques differ in what the source (source of
activations / model run from which the activations are copied) and destination prompt (destination that
is overwritten / model run in which the activations will be inserted, this is called base in Interchange
Interventions language, Geiger et al., 2021b) are. The use of words “source” and “destination” is
unrelated to their meaning in Transformer attention.

The two main methods are Denoising and Noising (see the next section for other methods).

1. Denoising: We can patch activations from a clean first prompt into a corrupted second
prompt “clean → corrupt”. That is running the model on the clean prompt while saving its
activations, then running the model on the corrupted prompt while overwriting some of its
activations with previously saved clean-prompt activations. We observe which patch restores
the clean-prompt behaviour, i.e. patching which activations were sufficient to restore the
behaviour.

2. Noising: Or you can patch activations from a corrupted first prompt into a clean second
prompt “corrupt → clean”. That is running the model on the corrupted prompt while saving
its activations, then running the model on the clean prompt while overwriting some of
its activations with previously saved corrupt-prompt activations. We observe which patch
breaks the clean-prompt behaviour, i.e. patching which activations were necessary to
maintain for the behaviour.

An important and underrated point is that these two directions can be very different, and are not just
symmetric mirrors of each other. In some situations denoising is the right tool, and in others it’s
noising, and understanding the differences is a crucial step in using patching correctly.

Technique Source (saved) Source run input Destination / Base (over-
written)

Destination /
Base run input

Observation

Clean → corrupted (De-
noising, Causal Tracing2)

First run activa-
tions (clean)

Clean tokens Second run activations
(corrupted)

Corrupt tokens What restores
behaviour

Corrupted → clean (Nois-
ing, Resample Ablation)

First run activa-
tions (corrupted)

Corrupt tokens Second run activations
(clean)

Clean tokens What breaks
behaviour

For now we round patching effects to “if I patch these activations the model performance is / isn’t
affected”. We discuss metrics and measuring patching effects in the last section.

3



2.4 Example: AND gate vs OR gate

Consider a hypothetical circuit of three components A, B, and C that are connected with an AND
or an OR gate. They are embedded in a much larger network, and of the three just C is connected
to the output. We run an experiment where we patch all components using the denoising or noising
technique.

AND circuit: C = A AND B

• Denoising (clean → corrupt patching): Denoising either A or B has no effect on the output,
only denoising C restores the output. This is because denoising A still leaves B at the
corrupted (incorrect) baseline, and vice versa. Denoising found only one of the circuit
components.

• Noising (corrupt → clean patching): Noising either A or B has an effect, as well as noising
C.

Noising works better in this case, as it finds all circuit components in the first pass.

OR circuit: C = A OR B

• Denoising (clean → corrupt patching): Denoising either A or B has an effect, as well as
denoising C.

• Noising (corrupt → clean patching): Noising either A or B has no effect on the output, only
denoising C restores the output. This is because noising A still leaves B at the clean (correct)
baseline, and vice versa. Denoising found only one of the circuit components.

Denoising works better in this case, as it finds all circuit components in the first pass. These AND
and OR structures can appear in real-world transformers as serial-dependent components (e.g. a
later attention head depending on an earlier one) or parallel components (such as redundant backup
attention heads).

2.5 Comparison to ablations and other patching techniques

There are activation patching techniques based on a single prompt. The original Causal Tracing
(ROME, Meng et al., 2022) falls into this category, and also zero- and mean-ablation can be seen as
patching techniques.

1. Zero ablation: Overwrite (“ablate”) the targeted activations with zeros and observe ablating
which component breaks the model behaviour.

2. Mean ablation: Same as above but overwrite targeted activations with their dataset mean
value rather than zero. This is slightly more principled than zero ablating since there is no
special meaning to activations being zero.

3. Gaussian noise patching (also called Causal Tracing*): This is a clean → corrupt patching
variant that uses as its corrupt run input the embeddings of the clean prompt with added
Gaussian noise. The idea is to thereby automatically generate the corrupted “prompt”. It
was originally used in ROME (called Causal Tracing there) but has not been used much
recently, especially because the corruption can sometimes be ineffective.3

3The success of Gaussian noise corruption is highly sensitive to the noise level. Zhang and Nanda (2023)
that if the noise level is just slightly lower than used in ROME, the model can recover the correct completion
despite the corruption.

4



Technique Source (saved) Source run input Destination / Base (over-
written)

Destination /
Base run input

Observation

Clean → corrupted (De-
noising, Causal Tracing2)

First run activa-
tions (clean)

Clean tokens Second run activations
(corrupted)

Corrupt tokens What restores
behaviour

Corrupted → clean (Nois-
ing, Resample Ablation)

First run activa-
tions (corrupted)

Corrupt tokens Second run activations
(clean)

Clean tokens What breaks
behaviour

Zero ablation Zero activations N/A Clean run activations Clean tokens What breaks
behaviour

Mean ablation Dataset mean acti-
vations

N/A Clean run activations Clean tokens What breaks
behaviour

Gaussian Noise patching
(Causal Tracing2)

First run activa-
tions (clean)

Clean tokens Second run activations
(corrupted from modified
clean input)

Clean token em-
bedding + Gaus-
sian noise

What restores
behaviour

Generally we recommend corrupted-prompt-based techniques, noising and denoising. Their ad-
vantage is that one can run very precise experiments, editing some features while controlling for
others. They allow us to trace the difference between clean and corrupted prompt. To illustrate this
consider the prompts “Angela Merkel is the leader of” → “Germany” vs “Joe Biden is the leader of”
→ “America”. Patching will find components that deal with Angela Merkel vs Joe Biden, but not
components that would be indifferent to this change, such as the “answer is a country circuit” or the
“political leader circuit”. A secondary advantage of noising and denoising is that they tend to bring
the model less out-of-distribution than ablation techniques (as pointed out in Chan et al. (2022), as
well as in e.g. Hase, Xie, and Bansal, 2021)

2.6 Choosing corrupted prompts

Having a corrupted prompt is great because it can tell us what model components care about, but also
a possible pitfall if we don’t notice what our prompts trace and don’t trace. We give some examples
for the Indirect Object Identification (IOI, Wang et al., 2022) demo sentence “John and Mary went to
the store. John gave a bottle of milk to”. Different corruptions which highlight different properties
the model might care about include:

Corruption Example Property traced in model

None (Clean) John and Mary . . . John . . .
Replace the value of one or multiple names,
without changing the grammatical structure

John and Alice . . . John . . .
Alice and Mary . . . Alice . . .
Alice and Bob . . . Alice . . .

Where the model repre-
sents the name values

Change which name is direct and indirect object
without changing the names or positions

John and Mary . . . Mary . . . The value and position of
the indirect object

Change the position of the names without chang-
ing which one is subject and indirect object

Mary and John . . . Mary . . . The value, but not the po-
sition of the indirect ob-
ject (position is fixed)

Change a name to break the behaviour John and Mary . . . Alice . . .
Alice and Mary . . . John . . .

Specifics about IOI set-
ting (e.g. that a name is
duplicated at all)

Change all the names Alice and Bob . . . Charlie
. . .

Finding and confirming
all relevant components

What kind of prompt should you choose? No matter which you choose, keep in mind what properties
your prompt does and does not change, and take this into account when interpreting patching results.
As a rule of thumb you want to choose small (narrow) variations for exploratory patching, this will
help you narrow down what each component is tracking. Choosing a narrow prompt distribution also
helps increase the (typically low) sensitivity of denoising, and decrease the (typically high) sensitivity
of noising. For confirmatory patching you need to choose a wide distribution of prompts that varies
all variables of the hypothesised circuit. Then you can noise (corrupt → clean patch) all non-circuit
components, and check that the model still shows the behaviour in question.

2Causal Tracing has been used to describe ROME-style Gaussian noise patching in particular, but also to
describe clean → corrupted patching in general. We recommend avoiding the name to avoid confusion.

5



3 How do you interpret patching evidence?

In the previous section we said that denoising (clean → corrupt patching) tests whether the patched
activations are sufficient to restore model behaviour. And noising (corrupt → clean patching) tests
whether the patched activations are necessary to maintain model behaviour. These two are usually
not complements of each other, nor does one imply the other. In this section we will walk through a
made-up example experiment.

3.1 Walkthrough a stylized example

Consider the hypothetical “Nobel Peace Prize” circuit. The model correctly completes “Nobel Peace”
with “Prize”, using the following circuit:

• Attention head L0H0 is a “Previous Token Head” and copies the embedding of “Nobel” to
the position of “Peace”

• Neuron L1N42 maps the mix of Nobel and Peace embeddings to the Prize logit

• Everything else doesn’t matter (of course a real circuit is typically much messier)

Figure 1: Toy "Nobel Peace Price" circuit

Now let us run the standard patching examples, take a distribution of random English words for the
corrupted prompt. We would find

• Noising (corrupt → clean patching) suggests that the outputs of head L0H0, the output of
neuron L1N42, and the embeddings (Nobel & Peace) are all necessary components.

• Denoising (clean → corrupt patching) suggests that the output of neuron L1N42 is sufficient
to restore the circuit.

What happened here? Denoising finds only the neuron output L1N42, because the other two
components individually are not sufficient to restore the circuit behaviour! We’re dealing with an
AND circuit between the attention head output and the “Peace” embedding. Noising finds all three
components here.

Nonetheless denoising L1N42 alone restored the model behaviour. This is a crucial intuition to keep
in mind about denoising: If you patch component A in layer N, it has seen clean versions of every
component in layers 0 to N-1. If there’s an important component B in layer N-1 that is mediated by
component A, the model can be restored without denoising B.

Patching experiments are sensitive to what precisely are the changes between the corrupt and clean
prompt. If we created two additional corrupt distributions where we replace only either “Nobel” or
“Peace” with a random word (i.e. distributions “X Peace” and “Nobel Y”) we could narrow down
which component depends on which input.

6



Alternatively we could use path patching to confirm the precise interactions. Say we want to test
whether the Peace embedding is necessary as an input to L0H0, as an input to L1N42, or both. For
this we could patch only the corresponding paths, and find that denoising (1) “Nobel → L0H0” and
(2) “Peace → L1N42” paths is sufficient. Alternatively we might find that noising every path except
for (1) “Nobel → L0H0”, (2) “L0 → L1N42”, and (3) “Peace → L1N42” does not break performance.
Note again that denoising only required restoring two paths (restoring a cross-section of the circuit)
while noising required leaving 3 paths clean (the full circuit).4

3.2 Concepts & gotchas

The walkthrough above presents a typical circuit discovery workflow. We want to highlight a couple
of additional concepts and common issues.

Sensitivity & prompt choice: A positive patching result implies you have found activations dealing
with the difference between the clean and corrupt prompt. Make sure to consider all degrees of
freedom in a task, and consider multiple sets of corrupted prompts if necessary.

Scope of activation patching: More generally, activation patching is always based on prompt
distributions, and does not make statements for model behaviour outside these specific distributions.
For more discussion on the limitations of patching, and the specificity of prompt-based interpretability
in general, see Neel Nanda’s writing on What Can(’t) Activation Patching Teach Us.

No minimality: Here, and in many parts of the literature, a circuit is treated as a collection of model
components that are responsible for a particular model behaviour. We typically make no claims
that we have found the smallest such collection of components, we only test that this collection is
sufficient.

Backup behaviour & OR-gates: In some cases researchers have discovered “Backup heads”,
components that are not normally doing the task but jump into action of other components are
disrupted (Hydra effect, McGrath et al., 2023). For example, in IOI when one ablates a name mover
head (a key component of the circuit) a backup name mover head will activate and then do the task
instead (Wang et al., 2022).

It can be helpful to think of these as OR-gates where either component is sufficient for the model to
work. This does not fit well into our attempts of defining a circuit, nor plays well with the circuit
finding methods above. Despite the name mover heads being important, if we ablate them then, due
to backup heads compensating, the name movers look less important. Fortunately, backup behaviour
seems to be lossy, i.e. if the original component boosted the logits by +X, the backup compensates
for this by boosting less than X (the Hydra effect paper found 0.7*X). Thus these backup component
weaken the visibility of the original component, but it is usually still visible since even 0.3*X is a
relatively large effect.

Negative components: Some work in this area (e.g. Wang et al., 2022; Heimersheim and Janiak,
2023) noticed attention heads that consistently negatively affected performance, and noising them
would increase performance. This is problematic, because it makes it hard to judge the quality of a
circuit analysis: it may look like we’ve fully recovered (or more than fully recovered!) performance,
by finding half the positive components but excluding all negative ones. This is an unsolved problem.
Conmy et al. (2023) propose using Kullback Leibler (KL) divergence as a metric to address this,
which penalises any deviation (positive or negative), at the cost of also tracking lots of variation we
may not care about.

4This method doesn’t yet confirm which information is carried in the different paths. We can go a step further
and noise (corrupt → clean patch) even some of the important circuit connections, namely “Nobel → L0H0 →
L1N42” path from the “Nobel Y” distribution, and the “Peace → L1N42” path from the “X Peace” distribution.
Doing that is essentially Causal Scrubbing (Chan et al., 2022).

7

https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#what-cant-activation-patching-teach-us=


4 Metrics and common pitfalls

So far we talked about “preserving” and “restoring” performance, but in practice, model performance
is not binary but a scale. Typically we find some components matter a lot, while others provide a
small increase in performance. For the best interpretability we might look for a circuit restoring e.g.
90% of the model’s performance, rather than reaching exactly 100% (for examples see Chan et al.,
2022). A useful framing is the “pareto frontier” of circuit size vs. performance recovered - recovering
80% of performance with 1% of the components is more impressive than 90% of the performance
with 10% of the components, but there will always be a minimum circuit size to recover a given level
of performance.

It’s easy to treat metrics as an after-thought, but we believe that the right or wrong choice of a metric
can significantly change the interpretation of patching results. Especially for exploratory patching,
the wrong metric can be misleading. The choice of metric matters less for confirmatory patching,
where you expect a binary-ish answer (“have I found the circuit or not”) and all metrics should agree.
We’ll go through a couple of metric choices in this section:

Based on Example

Logit difference (= Logprob difference) Logit(Mary) - Logit(John)
Logarithmic probability (logsoftmax) Logprob(Mary)
Probability (softmax) Prob(Mary)
Accuracy / Rank of correct answer Rank(Mary)==0

An honourable mention goes to the KL divergence. Unlike the previous metrics, this metric aims
to compare the full model output, rather than focusing on a specific task. KL divergence is a good
metric in such cases.

In addition to these output based metrics, in some cases it makes sense to consider some model
internals as metrics themselves. For example, one might use the attention paid by the name mover
head to the indirect object as a metric to identify the subcircuit controlling this head, or the activation
of a key neuron or SAE feature, or the projection onto a probe (Nanda et al., 2023).

In our experience, it’s worth implementing many metrics and briefly analysing all of them. Computing
a metric is cheap (compared to the cost of the forward pass), and they all have different strengths and
weaknesses, and can illuminate different parts of the big picture. And if they all agree that’s stronger
evidence than any metric on its own. Where they disagree, we personally trust logit difference (or
equivalently logprob difference) the most.

4.1 The logit difference

Logit difference measures to what extent the model knows the correct answer, and it allows us to
be specific: We can control for things we don’t want to measure (e.g. components that boost both,
Mary and John, in the IOI example) by choosing the right logits to compare (e.g. Mary vs John, or
multiple-choice answers). The metric also is a mostly linear function of the residual stream (unlike
probability-based metrics) which makes it easy to directly attribute logit difference to individual
components (“direct logit attribution”, “logit lens”). It’s also a “softer” metric, allowing us to see
partial effects on the model even if they don’t change the rank of the output tokens (unlike e.g.
accuracy), which is crucial for exploratory patching. We discuss problems with this and other metrics
in the next section.

Intuition for why logits and logit differences (LDs) are a natural unit for transformers: The residual
stream and output of a transformer is a sum of components. Every component added to the residual
stream corresponds to an addition to the LD (as the LD corresponds to a residual stream direction, up
to layer norm). A model component can easily change the LD by some absolute amount (e.g. +1 LD).
It cannot easily change the LD by a relative amount (LD *= 1.5), or change the probabilities by a
specific amount (prob += 0.20). For example consider a model component that always outputs -1 logit
to duplicated names (assume “John and Mary . . . John . . . ”). This component then always writes
+1 LD in favour of Mary, and gets a score of 1 in terms of LD. Other metrics (such as probability)
judge this component differently, depending on what the baseline was (e.g. due to other patches). We
would argue that logits and logit differences are closer to the mechanistic process happening in the

8



transformer, and thus feel like a more natural unit. This is of course not a requirement, and also does
not hold in all places (e.g. if a component’s output depends on the input LD), but it seems to work
well in practice.

4.2 Flaws & advantages of different metrics

It is essential to be aware of what a metric measures and is sensitive to. A key thing to track is whether
the metric is discrete vs continuous, and whether it’s exponential vs linear (in the logits) - continuous,
linear metrics are usually more accurate, which is crucial when doing exploratory patching and
assigning “partial credit” to model components. Here we list common pitfalls of popular metrics.

Figure 2: Illustration of different metrics for an example patching experiment with GPT-2 medium.

• Logit difference / logprob difference: The difference between the logit of the correct answer,
and the incorrect answer(s). This metric specifically measures the difference between the
selected logits, and is not sensitive to components which affect all of them. For example, in
IOI it measures the model’s confidence in Mary vs John which encapsulates the IOI-circuit
well without being sensitive to the “is the next token a name?”-circuit.

• Potential false-positive: Because the metric is a difference it may be driven by either getting
better at the correct answer or worse at the incorrect answer. Thus it is worth checking the
logits or logprobs of individual answers to confirm.
This is particularly concerning because the corrupted model likely puts a high probability
on the incorrect answer. This means that any patch that indiscriminately damages the model
and gets it closer to uniform will damage the incorrect answer logprob and so boost the logit
diff.

• Logprobs: This metric measures the logprob of the correct answer. It is sensitive to absolute
change in logarithmic probabilities (i.e. relative change in probabilities) and captures our
intuition for what good model performance means. We broadly think it is a good metric. It’s
main flaws are

– Saturation: Once the correct answer becomes the model’s top guess, the logprob stops
increasing meaningfully, even though the confidence can increase much more.
We can see this in Figure 2, where the green line saturates after layer 17.

– Unspecificity: We lose the ability to control for other properties, e.g. in IOI we
cannot distinguish between components that increase both P(John) and P(Mary) from
components that only increase P(Mary). This can be intended, or unintended, it’s just
important to keep in mind.

– Inhibition: To increase the logprob on John, the model can either increase the John
logit, or decrease other top logits, and it is hard to distinguish which is happening. This

9



may be desirable or not because the two operations likely have different mechanisms
and may be better tracked separately.

• Probabilities: This metric measures the probability of the right answer, or the difference in
probabilities of different answers. The main issue with such metrics is

– Probabilities are non-linear, in the sense that they track the logits exponentially. For
example, a model component adding +2 to a given logit can create a 1 or 40 percentage
point probability increase, just depending on what the baseline was.
As an example of the non-linearity consider the orange line in the figure above: A
modest increase in logit difference around layer 17 converts to a jump in probability.

– Probabilities also inherit the problems of the logprob metric, namely saturation and
unspecificity.
The figure shows the saturation effect for the orange line at layer >18.

• Binary and discrete metrics (Accuracy / top-k performance / rank / etc): These metrics round
off each input to a discrete metric (and then tend to average over a bunch of inputs).

– The problem with these is that generally many components contribute to a model’s
performance, with no single decisive contributor. Discrete metrics may suggest that
some significant contributors are unimportant, because they aren’t enough to cross a
threshold. Alternatively, these metrics may suggest that one contributor among many
is all that matters because it happens to be the one that pushes the model over the
threshold. We generally recommend using continuous metrics instead.
As an example consider the Figure above: The rank-based metric (red line) jumps
around layer 15 when the corresponding logit passes the rank 1 and 0 thresholds, while
it is not sensitive to any of the other changes.

– Discrete metrics can be a good fit for confirmatory patching rather than exploratory
patching, as in some sense accuracy is the metric we care about - can the model get the
question right or not?

• Logits: We could just take the answer logit as a metric. This is somewhat unprincipled
because logits have an arbitrary baseline (adding +1 to all logits would not affect the output)
but tend to work in practice. Logit(John) often matches Logprob(John) without being
affected by the downsides of the logprob metric.
This metric can incorrectly pick up on components that just contribute to many logits.
Ensuring that the residual stream and logits have mean zero (default in TransformerLens)
can help address this.

10



5 Summary

In most situations, use activation patching instead of ablations. Different corrupted prompts give you
different information, be careful about what you choose and try to test a range of prompts.

There are two different directions you can patch in: denoising and noising. These are not symmetric.
Be aware of what a patching result implies!

• Denoising (a clean → corrupt patch) shows whether the patched activations were sufficient
to restore the model behaviour. This implies the components make up a cross-section of the
circuit.

• Noising (a corrupt → clean patch) shows whether the patched activations were necessary to
maintain the model behaviour. This implies the components are part of the circuit.

Be careful when using metrics that are (i) discrete, (ii) overly sharp, or (iii) sensitive to unintended
information. Ideally use a range of metrics, and try to have at least one metric that is continuous and
roughly linear in logits such as logit difference or logprob. We recommend representing patching
results in a big dataframe with a column per metric and row per patching experiment, and making a
bunch of plots from this.

• Model top-k accuracy is discrete and can overrepresent changes at thresholds and shows no
change for large effects that don’t cross thresholds.

• Most effects from patching are linear and additive in logit space. Probability is exponential
in logit space, so it overemphasises effects near a threshold and suppresses effects elsewhere,
creating overly sharp patching plots

• Logprob can saturate, and cannot control for a patch that boosts both the correct and incorrect
answer(s)

Acknowledgements

Thanks to Arthur Conmy, Chris Mathwin, James Lucassen, and Fred Zhang for comments on a draft
of this manuscript.

References
Chan, Lawrence, Adria Garriga-Alonso, Nix Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-

skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas (2022). Causal scrubbing: A
method for rigorously testing interpretability hypotheses. Alignment Forum. URL: https://www.
alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-
rigorously-testing.

Conmy, Arthur, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso (Apr. 2023). “Towards Automated Circuit Discovery for Mechanistic Interpretability”.
In: arXiv e-prints, arXiv:2304.14997, arXiv:2304.14997. DOI: 10.48550/arXiv.2304.14997.
arXiv: 2304.14997 [cs.LG].

Cunningham, Hoagy, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey (Sept. 2023).
“Sparse Autoencoders Find Highly Interpretable Features in Language Models”. In: arXiv e-prints,
arXiv:2309.08600, arXiv:2309.08600. DOI: 10.48550/arXiv.2309.08600. arXiv: 2309.08600
[cs.LG].

Feng, Jiahai and Jacob Steinhardt (Oct. 2023). “How do Language Models Bind Entities in Context?”
In: arXiv e-prints, arXiv:2310.17191, arXiv:2310.17191. DOI: 10.48550/arXiv.2310.17191.
arXiv: 2310.17191 [cs.LG].

Finlayson, Matthew, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov (June 2021). “Causal Analysis of Syntactic Agreement Mechanisms in Neural Language
Models”. In: arXiv e-prints, arXiv:2106.06087, arXiv:2106.06087. DOI: 10.48550/arXiv.2106.
06087. arXiv: 2106.06087 [cs.CL].

Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts (June 2021a). “Causal Abstractions
of Neural Networks”. In: arXiv e-prints, arXiv:2106.02997, arXiv:2106.02997. DOI: 10.48550/
arXiv.2106.02997. arXiv: 2106.02997 [cs.AI].

11

https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://doi.org/10.48550/arXiv.2304.14997
https://arxiv.org/abs/2304.14997
https://doi.org/10.48550/arXiv.2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://doi.org/10.48550/arXiv.2310.17191
https://arxiv.org/abs/2310.17191
https://doi.org/10.48550/arXiv.2106.06087
https://doi.org/10.48550/arXiv.2106.06087
https://arxiv.org/abs/2106.06087
https://doi.org/10.48550/arXiv.2106.02997
https://doi.org/10.48550/arXiv.2106.02997
https://arxiv.org/abs/2106.02997


Geiger, Atticus, Kyle Richardson, and Christopher Potts (Apr. 2020). “Neural Natural Language
Inference Models Partially Embed Theories of Lexical Entailment and Negation”. In: arXiv e-prints,
arXiv:2004.14623, arXiv:2004.14623. DOI: 10.48550/arXiv.2004.14623. arXiv: 2004.14623
[cs.CL].

Geiger, Atticus, Zhengxuan Wu, Hanson Lu, Josh Rozner, Elisa Kreiss, Thomas Icard, Noah D.
Goodman, and Christopher Potts (Dec. 2021b). “Inducing Causal Structure for Interpretable Neural
Networks”. In: arXiv e-prints, arXiv:2112.00826, arXiv:2112.00826. DOI: 10.48550/arXiv.
2112.00826. arXiv: 2112.00826 [cs.LG].

Geva, Mor, Jasmijn Bastings, Katja Filippova, and Amir Globerson (Apr. 2023). “Dissecting Recall of
Factual Associations in Auto-Regressive Language Models”. In: arXiv e-prints, arXiv:2304.14767,
arXiv:2304.14767. DOI: 10.48550/arXiv.2304.14767. arXiv: 2304.14767 [cs.CL].

Goldowsky-Dill, Nicholas, Chris MacLeod, Lucas Sato, and Aryaman Arora (Apr. 2023). “Localizing
Model Behavior with Path Patching”. In: arXiv e-prints, arXiv:2304.05969, arXiv:2304.05969.
DOI: 10.48550/arXiv.2304.05969. arXiv: 2304.05969 [cs.LG].

Hanna, Michael, Ollie Liu, and Alexandre Variengien (Apr. 2023). “How does GPT-2 compute
greater-than?: Interpreting mathematical abilities in a pre-trained language model”. In: arXiv
e-prints, arXiv:2305.00586, arXiv:2305.00586. DOI: 10.48550/arXiv.2305.00586. arXiv:
2305.00586 [cs.CL].

Hase, Peter, Mohit Bansal, Been Kim, and Asma Ghandeharioun (Jan. 2023). “Does Localization
Inform Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in
Language Models”. In: arXiv e-prints, arXiv:2301.04213, arXiv:2301.04213. DOI: 10.48550/
arXiv.2301.04213. arXiv: 2301.04213 [cs.LG].

Hase, Peter, Harry Xie, and Mohit Bansal (June 2021). “The Out-of-Distribution Problem in
Explainability and Search Methods for Feature Importance Explanations”. In: arXiv e-prints,
arXiv:2106.00786, arXiv:2106.00786. DOI: 10.48550/arXiv.2106.00786. arXiv: 2106.00786
[cs.LG].

Heimersheim, Stefan and Jett Janiak (2023). A circuit for Python docstrings in a 4-layer attention-only
transformer. URL: https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-
circuit-for-python-docstrings-in-a-4-layer-attention-only.

Hendel, Roee, Mor Geva, and Amir Globerson (Oct. 2023). “In-Context Learning Creates Task
Vectors”. In: arXiv e-prints, arXiv:2310.15916, arXiv:2310.15916. DOI: 10.48550/arXiv.2310.
15916. arXiv: 2310.15916 [cs.CL].

Huang, Jing, Atticus Geiger, Karel D’Oosterlinck, Zhengxuan Wu, and Christopher Potts (Sept.
2023). “Rigorously Assessing Natural Language Explanations of Neurons”. In: arXiv e-prints,
arXiv:2309.10312, arXiv:2309.10312. DOI: 10.48550/arXiv.2309.10312. arXiv: 2309.10312
[cs.CL].

Lieberum, Tom, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and
Vladimir Mikulik (July 2023). “Does Circuit Analysis Interpretability Scale? Evidence from Multi-
ple Choice Capabilities in Chinchilla”. In: arXiv e-prints, arXiv:2307.09458, arXiv:2307.09458.
DOI: 10.48550/arXiv.2307.09458. arXiv: 2307.09458 [cs.LG].

McDougall, Callum, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda (Oct. 2023).
“Copy Suppression: Comprehensively Understanding an Attention Head”. In: arXiv e-prints,
arXiv:2310.04625, arXiv:2310.04625. DOI: 10.48550/arXiv.2310.04625. arXiv: 2310.04625
[cs.LG].

McGrath, Thomas, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg (July 2023).
“The Hydra Effect: Emergent Self-repair in Language Model Computations”. In: arXiv e-prints,
arXiv:2307.15771, arXiv:2307.15771. DOI: 10.48550/arXiv.2307.15771. arXiv: 2307.15771
[cs.LG].

Meng, Kevin, David Bau, Alex Andonian, and Yonatan Belinkov (Feb. 2022). “Locating and Editing
Factual Associations in GPT”. In: arXiv e-prints, arXiv:2202.05262, arXiv:2202.05262. DOI:
10.48550/arXiv.2202.05262. arXiv: 2202.05262 [cs.CL].

Merullo, Jack, Carsten Eickhoff, and Ellie Pavlick (Oct. 2023). “Circuit Component Reuse Across
Tasks in Transformer Language Models”. In: arXiv e-prints, arXiv:2310.08744, arXiv:2310.08744.
DOI: 10.48550/arXiv.2310.08744. arXiv: 2310.08744 [cs.CL].

Nanda, Neel (2023). Attribution Patching: Activation Patching At Industrial Scale. Blogpost. Section
“How to Think About Activation Patching”. URL: https://www.neelnanda.io/mechanistic-
interpretability/attribution-patching.

Nanda, Neel, SenR, János Kramár, and Rohin Shah (2023). Fact Finding: Attempting to Reverse-
Engineer Factual Recall on the Neuron Level (Post 1). Alignment Forum. URL: https://www.

12

https://doi.org/10.48550/arXiv.2004.14623
https://arxiv.org/abs/2004.14623
https://arxiv.org/abs/2004.14623
https://doi.org/10.48550/arXiv.2112.00826
https://doi.org/10.48550/arXiv.2112.00826
https://arxiv.org/abs/2112.00826
https://doi.org/10.48550/arXiv.2304.14767
https://arxiv.org/abs/2304.14767
https://doi.org/10.48550/arXiv.2304.05969
https://arxiv.org/abs/2304.05969
https://doi.org/10.48550/arXiv.2305.00586
https://arxiv.org/abs/2305.00586
https://doi.org/10.48550/arXiv.2301.04213
https://doi.org/10.48550/arXiv.2301.04213
https://arxiv.org/abs/2301.04213
https://doi.org/10.48550/arXiv.2106.00786
https://arxiv.org/abs/2106.00786
https://arxiv.org/abs/2106.00786
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://doi.org/10.48550/arXiv.2310.15916
https://doi.org/10.48550/arXiv.2310.15916
https://arxiv.org/abs/2310.15916
https://doi.org/10.48550/arXiv.2309.10312
https://arxiv.org/abs/2309.10312
https://arxiv.org/abs/2309.10312
https://doi.org/10.48550/arXiv.2307.09458
https://arxiv.org/abs/2307.09458
https://doi.org/10.48550/arXiv.2310.04625
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2310.04625
https://doi.org/10.48550/arXiv.2307.15771
https://arxiv.org/abs/2307.15771
https://arxiv.org/abs/2307.15771
https://doi.org/10.48550/arXiv.2202.05262
https://arxiv.org/abs/2202.05262
https://doi.org/10.48550/arXiv.2310.08744
https://arxiv.org/abs/2310.08744
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall


alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact- finding- attempting- to-
reverse-engineer-factual-recall.

Soulos, Paul, Tom McCoy, Tal Linzen, and Paul Smolensky (Oct. 2019). “Discovering the Compo-
sitional Structure of Vector Representations with Role Learning Networks”. In: arXiv e-prints,
arXiv:1910.09113, arXiv:1910.09113. DOI: 10.48550/arXiv.1910.09113. arXiv: 1910.09113
[cs.LG].

Stolfo, Alessandro, Yonatan Belinkov, and Mrinmaya Sachan (May 2023). “A Mechanistic Interpre-
tation of Arithmetic Reasoning in Language Models using Causal Mediation Analysis”. In: arXiv
e-prints, arXiv:2305.15054, arXiv:2305.15054. DOI: 10.48550/arXiv.2305.15054. arXiv:
2305.15054 [cs.CL].

Tigges, Curt, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda (Oct. 2023). “Linear Rep-
resentations of Sentiment in Large Language Models”. In: arXiv e-prints, arXiv:2310.15154,
arXiv:2310.15154. DOI: 10.48550/arXiv.2310.15154. arXiv: 2310.15154 [cs.LG].

Todd, Eric, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau
(Oct. 2023). “Function Vectors in Large Language Models”. In: arXiv e-prints, arXiv:2310.15213,
arXiv:2310.15213. DOI: 10.48550/arXiv.2310.15213. arXiv: 2310.15213 [cs.CL].

Vig, Jesse, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber (Apr. 2020). “Causal Mediation Analysis for Interpreting
Neural NLP: The Case of Gender Bias”. In: arXiv e-prints, arXiv:2004.12265, arXiv:2004.12265.
DOI: 10.48550/arXiv.2004.12265. arXiv: 2004.12265 [cs.CL].

Wang, Kevin, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt (Nov.
2022). “Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small”.
In: arXiv e-prints, arXiv:2211.00593, arXiv:2211.00593. DOI: 10.48550/arXiv.2211.00593.
arXiv: 2211.00593 [cs.LG].

Zhang, Fred and Neel Nanda (Sept. 2023). “Towards Best Practices of Activation Patching in
Language Models: Metrics and Methods”. In: arXiv e-prints, arXiv:2309.16042, arXiv:2309.16042.
DOI: 10.48550/arXiv.2309.16042. arXiv: 2309.16042 [cs.LG].

13

https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://www.alignmentforum.org/posts/iGuwZTHWb6DFY3sKB/fact-finding-attempting-to-reverse-engineer-factual-recall
https://doi.org/10.48550/arXiv.1910.09113
https://arxiv.org/abs/1910.09113
https://arxiv.org/abs/1910.09113
https://doi.org/10.48550/arXiv.2305.15054
https://arxiv.org/abs/2305.15054
https://doi.org/10.48550/arXiv.2310.15154
https://arxiv.org/abs/2310.15154
https://doi.org/10.48550/arXiv.2310.15213
https://arxiv.org/abs/2310.15213
https://doi.org/10.48550/arXiv.2004.12265
https://arxiv.org/abs/2004.12265
https://doi.org/10.48550/arXiv.2211.00593
https://arxiv.org/abs/2211.00593
https://doi.org/10.48550/arXiv.2309.16042
https://arxiv.org/abs/2309.16042

	Introduction
	What is activation patching?
	How is this related to ablation?
	An example
	What is this document about

	What kind of patching experiments should you run?
	Exploratory and confirmatory experiments
	Which components should you patch
	Noising and Denoising
	Example: AND gate vs OR gate
	Comparison to ablations and other patching techniques
	Choosing corrupted prompts

	How do you interpret patching evidence?
	Walkthrough a stylized example
	Concepts & gotchas

	Metrics and common pitfalls
	The logit difference
	Flaws & advantages of different metrics

	Summary

