arXiv:2404.15260v1 [quant-ph] 23 Apr 2024

Distributed Architecture for FPGA-based
Superconducting Qubit Control

Neelay Fruitwala," Gang Huang,! Yilun Xu,' Abhi Rajagopala,’ Akel Hashim,!?> Ravi K. Naik, 1'? Kasra
Nowrouzi,!"? David I. Santiago,' and Irfan Siddigi®+?
'Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2University of California at Berkeley, Berkeley, CA 94720, USA

Abstract—Quantum circuits utilizing real time feedback tech-
niques (such as active reset and mid-circuit measurement) are a
powerful tool for NISQ-era quantum computing. Such techniques
are crucial for implementing error correction protocols, and can
reduce the resource requirements of certain quantum algorithms.
Realizing these capabilities requires flexible, low-latency classical
control. We have developed a custom FPGA-based processor
architecture for QubiC, an open source platform for supercon-
ducting qubit control. Our architecture is distributed in nature,
and consists of a bank of lightweight cores, each configured to
control a small (1-3) number of signal generator channels. Each
core is capable of executing parameterized control and readout
pulses, as well as performing arbitrary control flow based on mid-
circuit measurement results. We have also developed a modular
compiler stack and domain-specific intermediate representation
for programming the processor. Our representation allows users
to specify circuits using both gate and pulse-level abstractions,
and includes high-level control flow constructs (e.g. if-else blocks
and loops). The compiler stack is designed to integrate with quan-
tum software tools and programming languages, such as TrueQ,
pyGSTi, and OpenQASM3. In this work, we will detail the design
of both the processor and compiler stack, and demonstrate its
capabilities with a quantum state teleportation experiment using
transmon qubits at the LBNL Advanced Quantum Testbed.

I. INTRODUCTION

OOM temperature RF control systems have become a

critical part of the superconducting quantum computing
stack. With qubit counts in the 10s to 100s, general-purpose
RF measurement equipment, such as AWGs (arbitrary wave-
form generators) combined with discrete RF components, have
proven to be overly costly and inefficient for qubit control and
measurement. As a result, special-purpose instrumentation has
emerged, in both the commercial [1]], [2], [3]] and academic [4],
[S], [6], [7] realms. These systems integrate pulse sequencing,
digital pulse generation, and readout, and are typically built
around commercially available FPGAs or SoCs.

The ability to make real-time control decisions based on
mid-circuit measurements is becoming an increasingly impor-
tant part of quantum hardware systems; being a key part of
several proposed [8] and realized [9] quantum algorithms. For
superconducting qubits, with coherence times ~ 100 s, real-
time feedback requires a controller with latencies ~ 100 ns.
In practice, this means that the feedback control logic must
be tightly integrated with the pulse sequencing layer; using
an external controller or CPU would significantly increase
latency.

In this work, we present an FPGA-based distributed control
architecture which combines pulse sequencing with arbitrary
measurement-based control flow. Our design consists of a
bank of lightweight, configurable processor cores that are
designed to tightly integrate with the puslse generation and
signal processing gateware. We also provide a Python/JSON-
based intermediate representation for writing and compiling
dynamic quantum programs.

II. OVERALL APPROACH AND SYSTEM REQUIREMENTS

The scope of this work includes the pulse sequencing and
parameterization layer of the FPGA gateware — not the digital
pulse generator modules themselves. We designed this layer
to interface with the QubiC 2.0 [10] pulse generation and
readout modules; though we believe that our architecture can
be adapted to other qubit control systems that use digital pulse
synthesis methods.

We designed our system around the following principles/re-
quirements:

1) Pulse-centric design: the primary control primitives are
RF control/demodulation pulses; no intrinsic information
or assumptions about quantum (unitary) operations being
performed. This simplifies the processor core design
and instruction set, and makes it straightforward to
implement non-standard unitary operations (e.g. opti-
mal control based approaches and certain calibration
sequences[11]]).

2) Low-latency: Superconducting qubits have coherence
times ~ 100 ps. This means that for conditional op-
erations based on mid-circuit measurements, we require
an end-to-end feedback latency ~ 100 ns.

3) Lightweight: Real-time pulse generation places high
demand on FPGA logic and memory resources, par-
ticularly on high-channel count devices such as the
Gen3 Xilinx RFSoC [12]. So, the pulse-sequencing layer
should be as lightweight as possible to accommodate a
large number of pulse generators on the same SoC/F-
PGA.

4) Flexible: Superconducting qubit systems have a wide
variety of architectures and qubit modalities, each with
differing control needs (e.g. readout multiplexing fac-
tor, qubit coupler control, and desired instantaneous
bandwidth). Our architecture needs to accommodate
this variety of pulse generator configurations, and be
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Fig. 1: Block diagram of the distributed architecture. In this
example, each processor core is responsible for control and
readout of a single qubit. Note that the measurement and state-
discrimination signal chain exists outside the core, with the
results fed directly into the function processor block.

straightforward to configure at the gateware and software
level.

III. ARCHITECTURE

Our architecture consists of a bank of soft processor cores
that is responsible for the realtime execution of quantum
programs, which involves pulse sequencing, parameterization,
and triggering. Each processor core is lightweight, and is
designed to interface with a small (~ 1 —5) number of digital
pulse generators that are used for qubit control and readout.
This design mirrors the parallelism inherent to quantum circuit
execution, which ensures scalability; having a bank of parallel
cores (and fixed number of output channels per core) avoids
bottlenecks/latency issues that can arise in single-threaded
designs as channel count grows. To enable mid-circuit feed-
forward operations, we also include an extensible “function
processor” module for aggregating and distributing (optionally
processed) measurement results to the processor cores.

A. Processor Core

Each processor core implements a custom instruction set
architecture (ISA) consisting of pulse commands for real-
time control of the associated signal generators, as well as
standard arithmetic and control flow instructions for on-the-fly
pulse parameterization and the execution of dynamic quantum
programs. The full instruction set is detailed in section [[V]

1) Signal Generator Interface: Each core is responsible for
controlling a small bank of signal generators in real time.
This involves both: 1) specifying pulse parameters, such as
frequency, phase, and modulation envelope; and 2) triggering
the pulse at the correct time.

QubiC 2.0 [10] uses DDS-based (direct digital synthesis)
pulse generation modules, which can synthesize a carrier tone

at the provided frequency, phase, and amplitude, and can apply
a complex modulation envelope given by a time series of
values. In the QubiC 2.0 core — signal generator interface, the
phase, amplitude, and pulse duration are provided directly via
a bus, while the envelope (stored as a series of time-domain
values) and frequency (stored as a series of phase offsets per
unit time) are pre-allocated in dedicated memory banks, which
are configured when uploading the quantum program to the
FPGA. It is then the address of the envelope/frequency within
these buffers that is specified by the processor core.

The processor core — signal generator interface consists of
the following components:

o Register for storing pulse parameters. Amplitude (16-bit),
phase (17-bit), and pulse duration (12-bit) are provided
directly, along with pointers to the locations of the
modulation envelope (12-bit address) and frequency (9-
bit address) in their respective buffers. A configuration
word (4-bit) is reserved for miscellaneous parameters.

o 1-bit active high pulse trigger (c_strobe)

The pulse register fields and trigger time are configured by
pulse instructions; see section [[V-A] for details.

2) Pulse Timing and Synchronization: All pulse triggers
are referenced to an internal counter, which is reset at the
beginning of the program. This reset is synchronized across
all cores. Additionally, QubiC 2.0 has mechanisms for clock
sychronization + synchronized reset across multiple FPGA
boards [?], ensuring that all pulse triggers and reference
clocks are synchronized even when cores are distributed across
hardware.

3) Microarchitecture: The processor core microarchitecture
is outlined in figure [2] It is similar to a simple MIPS
architecture, with a general-purpose 16x 32-bit register bank,
32-bit ALU (arithmetic logic unit), and instruction pointer (or
program counter) for interfacing with program memory. For
simplicity, the ALU only implements comparison, arithmetic
(addition and subtraction), and identity operations. Instructions
are implemented using a simple multi-cycle state machine with
pipelined instruction fetching. The program memory, pulse
interface, and function processor interface are implemented
generically in SystemVerilog for portability. We chose an
instruction width of 128 bits to accommodate the full 71-bit
pulse register, along with the 32-bit pulse start time and other
instruction metadata.

B. Function Processor

Each processor core implements a “function processor”
interface for connecting to external computational resources.
This interface is primarily intended for requesting/receiv-
ing (optionally processed) measurement results, although any
data/computation with a compatible format can be requested.

The core can request data over this interface by specifying
an (implementation specific) 8-bit ID which encodes the type
of data to retrieve or computation to perform. Once the data
is ready, it is returned as a 32-bit word, along with a ready
signal. This request/receive pipeline is triggered by a special
instruction, which halts the execution of the core until the
resulting data is received. At that point, it can be stored in a
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Fig. 2: Processor core microarchitecture. Includes a register file, ALU, and instruction pointer for arithmetic and control flow
instructions. All pulse triggers are referenced to the time_ref block, which is a counter that is reset at the beginning of
program execution and can be incremented during runtime. All instructions are implemented as 128-bit words. Pulse fields are
written to the Pulse Register block, and can be provided by values from the register file and/or instruction immediates. The

pulse trigger is given by the c_strobe signal.

register, used as a pulse parameter, or used for a conditional
branching decision.

In the current implementation on QubiC 2.0, the function
processor interface simply accesses a memory bank containing
the most recent state discriminated measurement result from
each of the eight qubits driven by the respective FPGA
board. This allows any core to request a result from any
qubit (provided that it is driven by the same FPGA). Future
implementations may extend the function processor to include
results from different (synchronized) boards or application-
specific measurement decoders.

IV. INSTRUCTION SET ARCHITECTURE

Each processor core implements an instruction set consist-
ing of 1) pulse instructions, for parameterizing and triggering
pulses; 2) standard register arithmetic and control flow instruc-
tions; 3) special-purpose instructions for timing control and
interaction with the FPROC interface. In the following section
we provide a general overview of the different instruction
types; an exhaustive reference can be found in [14].

A. Pulse Instructions

In general, there are two different types of pulse instruc-
tions: pulse_write, which writes to the specified fields of
the pulse register, and pulse_write_trig, which has all
of the functionality of pulse_write, but also triggers the
pulse at the specified trigger time. The general format for both
of these instructions can be found in figure []

1) pulse_write: Pulse register fields can be written to
by either an immediate value or a native processor core register
(with the exception of a 4-bit configuration word, which must
be an immediate). But, only one processor register can be
accessed during any given write. So, the pulse_write in-
struction has two additional bits per field: i) write_enable,
which controls whether to write to that field, and ii) regis-
ter/immediate select, which controls (if write_enable is
high) whether the input value comes from the selected register,
or the instruction immediate.

2) pulse_write_trig: The pulse_write_trig
instruction adds a 32-bit start_time field, which activates
the pulse trigger at the provided value, which is in units of
FPGA clock cycles since program start and is referenced to an
internal counter (figure [2). Processor core execution is halted
until the pulse is triggered.

B. Timing Control

There are certain situations (for example, when looping over
a pulse sequence or waiting for a measurement) where the
timing-related behavior of a program must be altered. We
provide two instructions for this: the inc_gclk instruction,
which will increment the time reference by a signed immediate
or register value, and the idle instruction, which halts
execution of the core until the provided timestamp.

C. Arithmetic and Logical Operations

Register-based arithmetic and boolean operations are per-
formed using reg_alu instructions. Supported operations



include boolean comparisons (<, >, =), identities, addition,
and subtraction, all on 32-bit signed values. Both register-
based and instruction immediates are supported. Results are
always stored in a register.

D. Control Flow

Any ALU-based boolean comparison can be used to control
a jump instruction, which will set the instruction pointer to
an arbitrary location in the program memory. Destination ad-
dresses must be instruction immediates. Unconditional jumps
are also supported.

E. Function Processor

Function processor instructions are used to request/receive
data over the FPROC interface. These instructions extend ordi-
nary ALU and control flow instructions, but replace one of the
fields with the FPROC result. For example, the jump_fproc
instruction replaces the RHS input of the jump condition with
the FPROC result.

V. ASSEMBLY LANGUAGE

We provide a human-readable assembly language that is
approximately a one-to-one mapping to the processor core
instruction set. The language is formatted as a list of JSON
[15] strings, with the assembler and associated infrastructure
written in the Python programming language.

The assembly language instruction fields match those of the
instruction set with the following exceptions:

o Pulse parameters: all pulse parameters (frequency, am-
plitude, phase) are provided as floating point values.
Frequency and phase are given in SI units, while ampli-
tude is normalized to the DAC full scale. Envelopes are
provided as parameterized functions or complex NumPy
arrays. Pulse output channels are named, and resolved to
gateware/hardware indices during assembly.

« Register names: for readablity, register names are pro-
vided as strings, and are resolved into indices during
assembly.

o Register types: for straightforward pulse parameteri-
zation, registers are typed as amp, phase, or int.
All operations on amp and phase type registers are
provided in their respective units (£loat in range [0, 1]
for amp and radians for phase), and are converted to
the corresponding pulse-field word during assembly. No
conversion is performed with int type registers.

« FPROC ID: function IDs can optionally be specified
according to named output channel attributes in the
provided channel configuration file. For example, in the
program in figure [5] the function ID is provided by the
core_id parameter of the Q1 .rdlo channel.

The assembler takes as input a separate list of instructions
for each core, and generates the following outputs: 1) per
core program binaries; 2) corresponding set of envelope and
frequency buffers. These binaries are stored in a Python
dictionary, where they can be loaded by the low-level QubiC

driver software into the FPGA BRAM (block-RAM). The
assembler is configured using the following:

e ElementConfig implementation: ElementConfig
is a generic Python class that is implemented separately
for each type of firmware signal generator block. It
is responsible for converting the provided pulse phases
and amplitudes into the correctly formatted words, and
computing the frequency and envelope buffers.

o Channel configuration file: this file maps named output
channels to firmware channel indices. It may also option-
ally parameterize the implemented ElementConfig
class.

VI. COMPILER TOOLS AND INTERMEDIATE
REPRESENTATION

In order to provide users with a high-level format for writing
QubiC programs, and to interface with higher-level tools such
as TrueQ [16], OpenQASM [17]], and PyGSTi [[18] we provide
a custom intermediate representation (QubiC-IR), along with
a set of compiler tools for lowering QubiC-IR to distributed
processor assembly.

We designed QubiC-IR to have the following general at-
tributes:

1) Multi-level: In order to provide users with a variety
of interfacing options (e.g. native-gate level vs pulse
level), QubiC-IR operates at multiple abstraction layers.
Only a subset of instructions is directly compilable into
distributed processor assembly.

2) Program flow is single-threaded; the scheduling and
compilation tools will parallelize control operations and
determine which core(s) need to be targeted by each
instruction.

3) As with the assembly language, QubiC-IR is primarily
represented as JSON; IR lowering and compilation is
performed using a Python API

The bulk of the compilation is performed in a series of
passes that transform the IR. Once the IR has been sufficiently
lowered, a final pass will convert it to distributed processor
assembly. The compiler flow is customizable; users can both
configure individual passes and specify the set of passes to
run.

In the following sections, we give an overview of IR instruc-
tion types and associated compiler flows. A full reference can
be found at [19]].

A. Control Operations: Gates and Pulses

QubiC-IR supports a Pulse instruction that is largely
identical to that of the assembly language. We also support
a Gate instruction that allows the program to be written at
the native quantum gate level, which can then be resolved
into pulses by specifying a calibration file containing the pulse
parameters associated with each gate.

B. Classical Variables and Arithmetic

QubiC-IR supports the declaration and manipulation of
variables to perform classical computations. Variables are



127:124 | 123 | 122:120 119:88

87:84

83:68 67:52 51:0

opcode | (/i) | ALU op | ALU input 0 (r/i)

ALU input 1

FPROC ID | 52’b0

dest reg or jump addr

Fig. 3: General format for arithmetic and control flow instructions. The instruction type is given by the opcode. Bit 123 (1/i) is
used to specify whether ALU input O is an instruction immediate or register value from the provided address. The inc_qgclk
instruction also follows this format, with only the opcode fields (127:120) and ALU input O provided.

127:120 | 119:116 | 115:114 | 113:90 89:88 87:71

70:69

68:60 59:58 57:42 41 40:37 36:5 4:0

opcode | reg addr | env ctrl | env word | phase ctrl | phase word

freq ctrl

freq word | amp ctrl | amp word | cfg en | cfg word | start time | O

Fig. 4: General format for pulse_write and pulse_write_trig instructions. Each pulse field (env, phase, amp, and
freq) has two control bits; one for write enable and another to select register (from address in 119:116) or instruction immediate.
In our implementation, the phase and amplitude are specified directly as scaled values, the frequency is provided as an address,
and the envelope word specifies both the start address and envelope length. A 4-bit config word is provided for miscellaneous
configuration parameters; this must be provided as an instruction immediate. The idle instruction also follows this format,
but the only provided fields are the instruction opcode and the start time, which provides the timestamp after which to

resume core execution.

a generalization of assembly language registers; supported
operations and allowed datatypes (int, phase, amp) are the
same.

However, unlike registers, a variable can be scoped to
multiple processor cores, indicating that the variable declara-
tion itself and any manipulations should be duplicated across
the relevant cores as register operations. The scope of any
variable is specified by the list of hardware output channels
it influences (through either control flow operations or direct
pulse parameterization).

C. Virtual-Z Instructions and Phase Tracking

In general, virtual-Z gates are implemented by applying a
phase offset to any subsequent control pulses at the specified
qubit frequency. QubiC-IR supports a VirtualZ instruction
for this purpose, with two arguments: 1) qubit frequency, and
2) rotation angle (in radians). The qubit frequency can be
named (having been previously declared in the program, or
defined in the gate calibration file), or anonymous (specified
directly using its numerical value).

By default VirtualZ instructions are resolved in software;
the provided phases are applied directly to the relevant control
pulses during compilation. However, hardware (i.e. on-FPGA)
resolution is also supported; a BindPhase directive can be
used to bind the phase of all control pulses at a particular
frequency to a declared variable. For example, the snippet:

{’name’: ’"declare’, ’'var’: ’'gO_phase’,
'dtype’: ’'phase’},

{’name’ : ’"bind_phase’, ’'var’: ’'g0_phase’,
"freq’: "Q0.freq’}

will result in all control pulses with frequency Q0. freqg to
have their phase parameter given by the variable g0_phase.
Hardware phase parameterization is required for certain dy-
namic circuit operations, such as conditional/repeated appli-
cation of Z-gates.

D. Control Flow

QubiC-IR supports both high-level and low-level (assembly-
like) control flow. At the high-level, there are two instructions:

BranchVar and and Loop. The BranchVar instruction
functions as a conditional execution (if/else) statement; the
instruction contains an ALU conditional operation to evalu-
ate, and true and false code blocks which conditionally
execute depending on the result of the conditional. The true
and false blocks can contain any valid IR code, including
nested control flow. The Loop instruction consists of an ALU
condition, along with body code that executes repeatedly
while the condition evaluates to True.

High-level control flow instructions are resolved into lower
level Jump and JumpCond instructions. These are identical to
their assembly-level counterparts, except, like ALU arithmetic
instructions, they can be scoped (hence duplicated) across
multiple processor cores.

After all control flow is lowered to assembly-like control
flow, another pass will divide the program into basic blocks,
along with the associated control-flow graph (CFG). The CFG
is then used by subsequent passes, such as virtual-Z phase
resolution and scheduling, to track changes in program state
across the full program flow.

E. Function Processor

Special instructions are used to request/receive data over
the FPROC interface. As with the assembly language, these
instructions extend the normal arithmetic and control flow
instructions, replacing the RHS ALU input with the function
processor data.

The QubiC-IR infrastructure can resolve channel names into
an assembly-compatible format, and add the appropriate delays
to ensure that the processor core has enough time to receive
and process the measurement results. This is done using
an FPROCChannelConfig object and associated compiler
pass, which contains a mapping of named FPROC channels
to an associated measurement delay and channel ID.

F. Scheduling

QubiC-IR provides two instructions for specifying timing
relationships between gates/pulses — Delay and Barrier.
The Delay instruction delays all subsequent pulses on the



{('Ql.gdrv’, ’"Ql.rdrv’, ’'Ql.rdlo’): [
{’op’: ’'"phase_reset’},
# readout drive pulse
{’op’: ’'pulse’, "freq’: 6.5578e9, ’'phase’: 0.0,
famp’: 0.041,
fenv’: {
"env_func’: ’'cos_edge_square’,
"paradict’ : {
'ramp_fraction’: 0.1,
"twidth’: 1.6e-06}},
’start_time’: 5, ’'dest’: 'Ql.rdrv’},
# readout demodulation pulse
{’op’: 'pulse’, "freq’: 6.5578e9, ’'phase’: 0.0,
famp’: 1.0,
"env’ : {

"env_func’: ’square’,
"paradict’ : {

"phase’: 0.0, ’"amplitude’: 1.0,

’twidth’: 1.59e-061}},
"start_time’: 325, ’'dest’: ’'Ql.rdlo’},
# idle to wait for measurement
{’op’: ’idle’, ’end_time’: 1184},
# jump instruction; jump to ’‘true_1’
# 1f measured state is 1
{’op’: ’Jjump_fproc’,
’in0’: 1,
"alu_op’: ’'eq’,
’Jump_label’: "true_1',
" func_1id’: ('Ql.rdlo’, ’core_ind’)},
# 1f state is O,
{’op’:
{’op’:

jump to end
"Jump_label’, ’'dest_label’: ’false_1'"},
"HJump_1i’, ’Jjump_label’: ’"end_1"},

# 1if state is 1, play pulse

{’op’: ’Jjump_label’, ’'dest_label’: ’'true_1’},
{’op’: ’'pulse’,
"freq’: 4.67035e9, ’'phase’: 0, ’"amp’: 0.5,
fenv’: {
"env_func’: "DRAG’,
"paradict’: {
"alpha’: 0,
"sigmas’: 3,
"delta’: -260.157e3,
"twidth’: 3e-081}},
’start_time’: 1195, ’'dest’: ’'Ql.qgdrv’},
# program end
{’op’: ’Jjump_label’, ’dest_label’: 'end_1'},
{’op’: "done_stb’}],

# Since we have conditional z-gates,
# we need to parameterize the phase of
# all Q0 drive pulses with a variable

{’name’ : ’"declare’, ’'var’: ’"gO_phase’,
"scope’: ['Q0"], ’'dtype’: ’'phase’},

{’name’ : ’"bind_phase’, ’'var’: ’'g0O_phase’,
"qubit’: "Q0'},

# Wait 500 microseconds for qubits to decay
{"name’: ’"delay’, ’'t’: 500.e-61}

{'name’ : ’"read’, 'qubit’: [’Q1l']},

# Measurement-based conditional branching
# operation. Condition being evaluated

# is: ‘Ql.meas == 1'. Function ID and

# associated measurement delays are

# resolved by the compiler.

{’name’ : ’"branch_fproc’, ’‘cond_lhs’: 1,
"alu_cond’: 'eq’, "func_id’: ’"Ql.meas’,
"true’: [

{’name’ : "X90’, ’qubit’: ['Q0']},
{’name’: ’X90’, ’'qubit’: [’Q0’]}
I
" false’ : [
{’name’: ’'virtual_z’, ’'phase’: np.pi,
fqubit’: "Q0"}
:| 4
"scope’: ["Q0"],},

# scheduling barrier, then final readout

{’name’ : ’"barrier’, ’'qubit’:[’Q0’, 'Q1’']},
{’name’ : ’'read’, ’‘qubit’: ['Q0"]},
{'name’ : ’"read’, 'qubit’: ['Q1l’]}

Fig. 5: Example assembly code for single-qubit reset. This
program initiates a readout on Q1, then conditionally plays
a drive pulse depending on the measurement outcome. The
assembly program is formatted as a Python/JSON dictionary,
with the program for each processor core keyed by a tuple of
channels controlled by that core. In this example, we are only
using the qubit Q1, which is controlled by the (’ Q1 .gdrv’,
"Ql.rdrv’, ’"Ql.rdlo’) core.

Fig. 6: Example program with measurement-based control
flow. QI is measured, and depending on the outcome of a
measurement, either a phase flip or a bit flip is applied to QO.

specified channels by the provided amount. The Barrier
instruction is similar to an OpenQASM barrier; it aligns
the start times of the following pulses to be played on the
indicated channels.

The QubiC compiler has a scheduling pass, which assigns
trigger timestamps to all Pulse instructions. Timestamps
are determined by taking into account timing constraints (i.e.
delays and barriers), pulse length, and instruction execution
time.

Running the scheduler is optional; users are free to directly
provide each pulse with a timestamp. In this case, a linter
pass is provided to ensure that the pulse schedule satisfies the
execution constraints of the processor core(s) (for example,
a pulse cannot be triggered during an ALU or branching
operation).

VII. FPGA IMPLEMENTATION

The processor cores, function processor, and associated
interfaces are implemented in Verilog and SystemVerilog.
The current implementation is integrated with QubiC 2.0
on the ZCU216 RFSoC platform. Our design is modular;
SystemVerilog interfaces are used to connect the processor
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\ LUT FF DSP  BRAM
processor core | 387 (0.091 %) 401 (0.047 %) 0 2 (0.19 %)
FPROC 24 (0.006 %) 56 (0.007 %) 0 0

Fig. 8: Resource utilization table for a single processor core
and full function processor module. Utilization is given as
both the absolute number of blocks used and fraction of
total utilization for each resource type. The BRAM (block
RAM) used by the processor core corresponds to the program
memory. Reported values are for the Xilinx ZU49DR FPGA,
and were generated using Xilinx Vivado.

cores to the QubiC signal generator, memory banks, and
measurement modules.

A variety of QubiC 2.0 implementations exist, ranging from
4x-16x DAC drive channels, and a variety of signal generator
and readout multiplexing configurations [[10]. In the following
sections, we describe a distributed architecture + QubiC 2.0
implementation designed for the AQT Trailblazer QPU (quan-
tum processing unit), which is an 8-qubit superconducting
transmon system, with fixed qubit frequency, fixed coupling,
and 8x multiplexed readout [20].

This implementation has eight distributed processor cores;
i.e. one for each qubit. Each core controls three signal gen-
erator channels (figure [7), one for qubit drive (which goes to
a dedicated DAC), another for readout drive (which goes to a
common multiplexed readout DAC), and another for readout
demodulation (which mixes with the readout resonator re-
sponse tone from the multiplexed readout ADC). All processor
cores, signal generator blocks, and readout demodulation are
on the same 500 MHz clock domain. All drive and readout
DAC:s are configured to operate at 8 GSPS (gigasamples per
second), and the ADCs at 2 GSPS.

A. Resource Utilization

The FPGA resource requirements for our implementation
are reported in figure [§| and can be visualized on the floorplan
(figure [9). The logic resource requirements (CLB and DSP)
of each processor core are minimal in comparison to the
resources required by the corresponding signal processing
blocks (i.e. control/readout signal generation and readout de-
modulation for a single qubit), ensuring that our architecture is
unlikely to present a significant scaling bottleneck. The BRAM
(block RAM) utilization is largely arbitrary, and depends on

Fig. 9: FPGA floorplan of the 8-qubit QubiC 2.0 implemen-
tation. Teal-colored cells mark all area utilized by the design
(i.e. logic/DSP/memory cells). The highlighted yellow cells
mark logic regions used by a single distributed processor core,
while green cells mark regions used by the corresponding
single-qubit drive and demodulation signal chain. The orange
cells highlight block RAM (BRAM) used for processor core
program memory. The pink cells mark regions used by the
function processor. This floorplan is for the Xilinx ZU49DR
FPGA, and was generated using Xilinx Vivado.



Fig. 10: Quantum teleportation circuit. This circuit teleports
an arbitrary state encoded on qubit QO (prepared by the
arbitrary single-qubit rotation U) to qubit Q2. Two mid-circuit
measurement-based conditional gates are utilized (the final X
and Z gates on Q2).

the desired circuit depth/program size. In our implementation,
single-core BRAM utilization is minimal at 0.2 %, correspond-
ing to a program memory capable of storing 2048 128-bit
instruction words.

VIII. EXPERIMENTAL DEMONSTRATION: QUANTUM
TELEPORTATION

In order to demonstrate the mid-circuit measurement and
feedforward capabilities of our architecture, we performed
a quantum state teleportation experiment [21]. For this ex-
periment, we used the AQT (Advanced Quantum Testbed)
Trailblazer QPU, which has 8 fixed-frequency transmon qubits
with linear connectivity [20]. Our teleportation circuit is given
in figure[I0} we used the BQSKit compiler [22]] to translate this
circuit into the AQT Trailblazer’s native gate set (comprised
of Xgo, CZ, and virtual-Z(0) gates).

We performed the teleportation experiment for four different
initial states on qubit QO: |0), |+), |—) and |1). The corre-
sponding Z-basis measurement results for qubit Q2 are shown
in figure [11] for the |0) and |1) initial QO states. For the |+)
and |—) states, we also performed measurements in the X and
Y bases to determine the position of the state vector in the
X-Y plane of the Bloch sphere (figure [I2)).

A table of measured expectation values for the destination
qubit Q2 is given in figure For the |0), |+), and |1)
states, the measured expectation values show good agreement
with theoretical predictions, indicating successful teleportation
of the quantum state from QO to Q2. For the |—) state,
the measured expectation values show partial agreement,
with significant deviation in the Y-basis. This discrepancy is
likely due to a combination of dephasing and readout-induced
crosstalk, which are known issues when implementing mid-
circuit feedforward operations [23], [24], [25].

IX. CONCLUSION

We have developed an open source FPGA-based archi-
tecture for superconducting qubit control and measurement.
Our architecture supports the execution of dynamic circuits,

|0) 1)
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I s
1 0
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Fig. 11: State teleportation measurement results showing Z-
basis measurements of the destination qubit (Q2 from figure
for initial states |0) and |1) prepared on QO. 10,000 shots
were collected for each measurement.

1

including mid-circuit measurement and feedforward, and real-
time parameter updates. We also provide a modular compiler
stack and intermediate representation that supports a variety
of abstraction levels and can integrate with standard quantum
programming tools.

Our architecture is deployed on the QubiC 2.0 [10] system,
which currently uses the Xilinx ZCU216 RFSoC evaluation
board, and has been used to control the 8-qubit Trailblazer
QPU at the LBNL AQT. In addition to the state teleporta-
tion demonstration presented in this paper, our system has
enabled the demonstration of novel scientific results, including
randomized compiling for mid-circuit measurement [26], and
measurement-based entanglement generation [23].

Our design and compiler stack is fully open source,
and can be found on Gitlab: https://gitlab.com/LBL-QubiC/
distributed_processor.
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