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We present a quantum optical pattern recognition method for binary classification tasks. Without
direct image reconstruction, it classifies an object in terms of the rate of two-photon coincidences at
the output of a Hong-Ou-Mandel interferometer, where both the input and the classifier parameters
are encoded into single-photon states. Our method exhibits the same behaviour of a classical neuron
of unit depth. Once trained, it shows a constant O(1) complexity in the number of computational
operations and photons required by a single classification. This is a superexponential advantage
over a classical neuron (that is at least linear in the image resolution). We provide simulations and
analytical comparisons with analogous neural network architectures.
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I. INTRODUCTION

Image classification has been significantly affected by
the introduction of deep learning algorithms, providing
several architectures that can learn and extract image
features [1–4]. The large number of parameters involved
is motivating a consistent effort in reducing the cost of
these methods, e.g. by leveraging all-optical implemen-
tations that bypass hardware usage [5–11], or quantum
mechanical effects that can provide a significant speedup
in these computations [12–16]. Quantum optical neural
networks harness the best of both worlds, i.e. deep learn-
ing capabilities from quantum optics [17–21].

In this paper, we introduce a quantum optical setup to
classify objects without reconstructing their images. Our
approach relies on the Hong-Ou-Mandel effect, for which
the probability that two photons exit a beam splitter in
different modes, depends on their distinguishability [22].
In our implementation, an input object is targeted by a
single-photon source, and eventually followed by an arbi-
trary lens system. The single-photon state interferes with
another one, which encodes a set of trainable parameters,
e.g. through a spatial light modulator. Classification oc-
curs by measuring the rate of two-photon coincidences at
the Hong-Ou-Mandel output (see Fig. 1). The Hong-Ou-
Mandel effect has been successfully applied to quantum
kernel evaluation [23], which can compute distances be-
tween pairs of data points in the feature space. In this
case, each point is sent to one branch of the interferom-
eter, encoded in the temporal modes of a single-photon
state. In our method, the interferometer has only one
independent branch, which takes the spatial modes of a
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single-photon state reflected off the target object. The
other branch remains fixed after training, and contains
the layer of parameters. After the measurement, the re-
sponse function of our apparatus mathematically resem-
bles that of a classical neuron. For this reason, we refer
to our setup as quantum optical neuron. By analytically
comparing the resource cost of the classical and quantum
neurons, we show that our method requires constantO(1)
computational operations and injected photons, whereas
the classical methods are at least linear in the image res-
olution: a superexponential advantage.

II. METHOD

In this section, we discuss the apparatus of Fig. 1, with-
out explicitly modelling the probe. Two single-photon
states are fed into the left and top branches of a 50 : 50
beam splitter, acting as input and processing layers, re-
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FIG. 1. Quantum optical neuron implemented by the Hong-
Ou-Mandel interferometric setup. An object is targeted by a
single-photon source and classified through the rate of two-
photon coincidences at the interferometer output, without
reconstructing its full image. In the top branch, an addi-
tional thin lens can translate the classification problem to the
Fourier domain.
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spectively. In the left branch, the single-photon source
reflects off the object, and reaches the beam splitter after
a linear optical system. In the top branch, we consider
a generic single-photon state, which depends on a set of
trainable real parameters. We count the two-photon co-
incidences at the beam splitter output. We show how to
interpret the Hong-Ou-Mandel response as the one pro-
duced by a single-layer neural network-like operation on
the object image.

We call input and probe modes, i.e. a and b, those
fed into the left and top branches of the interferometer.
In the input branch, a single photon with spectrum ϕ is
generated at the longitudinal origin z = 0, followed by
an object with two-dimensional shape O. An imaging
system with transfer function Ld, e.g a pinhole or a lin-
ear optical apparatus, is placed after the object. Here,
zo and zi are the longitudinal positions of the object and
the image plane, respectively, and d = zi − zo their dis-
placement.

The output of the imaging optics reads (see Ap-
pendix A)

|ΨI⟩ =
∫

d2k Îω(k|O)a†ω(k) |0⟩ , (1)

with Îω(·|O) = [(ϕ̂ωĤzo) ∗ Ô]L̂d the total transfer func-
tion from the single-photon source to the image plane,
and a†ω(k) the creation operator of a photon in the input
mode, acting on the vacuum state |0⟩. The hat oper-
ator denotes the two-dimensional Fourier transform on
the transverse coordinates plane, ∗ the convolution op-
eration, Hzo the transfer function from the source to the
object plane, k = (kx, ky) the transverse momentum, and
ω the frequency conjugated to the temporal degree of
freedom of the electromagnetic potential.

In the probe branch, a generic quantum state is pre-
pared, eventually followed by a linear optical system. At
the beam splitter plane, the probe state reads

|ΨU ⟩ =
∫

d2k Ûω(k|λ)b†ω(k) |0⟩ , (2)

with λ = {λi1...in} a collection of (trainable) parame-
ters, U the spatial spectrum of the probe, and b†ω(k) the
creation operator of a photon in the probe mode.

A photodetector is placed at the output of each branch.
After feeding both states into a 50:50 beam splitter, the
rate of two-photon coincidences reads

p(1a ∩ 1b|λ,O) =
1

2
[αλ(O)− fλ(O)] , (3)

with
αλ(O) = ||Iω(·|O)||2||Uω(·|λ)||2 ,

fλ(O) = |⟨Iω(·|O),Uω(·|λ)⟩|2 ,
(4)

where || · || and ⟨·, ·⟩ denote the L2-norm and inner prod-
uct, respectively. Here, αλ(O) depends on the normaliza-
tion of the input and probe states, which can be αλ < 1
in the presence of optical losses. Whenever the two spec-
tra are indistinguishable, i.e. when U perfectly matches

I, coincidences are not observed. On the other hand, the
more distinguishable the input and the probe states are,
the smaller ⟨I(·|O),U(·|λ)⟩ becomes and the rate of coin-
cidences increases. See Appendix B for a derivation, and
Appendix D, for a similar result in the Fourier domain.
At the image plane I, with transverse coordinates r =

(x, y), we have

fλ(O) =
∣∣∣∣∫

I

dr Iω(r|O)U∗
ω(r|λ)

∣∣∣∣2 . (5)

This integral measures the point-wise overlap between
the input image and the probe. We interpret it as the
prediction of our classification model, where fλ ∈ [0, 1]
represents the probability that I belongs to the class of
U . In particular, fλ → 0 (fλ → 1) when the class of I
is orthogonal to (is the same of) U . In the next section,
we show how to encode a generic class in U , by means of
the optimization of the set of parameters λ.

The output measurement introduces a non-linear oper-
ation after the beam splitter, represented by the squared
absolute value in the left-hand side of Eq. (5). We in-
crease the predictability of our model, by enhancing this
non-linearity through the following post-processing oper-
ations. Consider the sigmoid (logistic) function

σ(x) :=
1

1 + e−βx+γ
, (6)

where β, γ are hyperparameters, i.e. constants with re-
spect to the training process. We introduce an additional
trainable parameter b ∈ R, called bias, which, combined
with fλ and σ, yields

Fbλ(O) = σ(fλ(O) + b) , (7)

which determines the label predicted by the Hong-Ou-
Mandel apparatus. These modifications can improve the
performance of the neuron. The sigmoid increases the
non-linearity introduced by the squared absolute value,
and so the predictability of the model. In addition, the
bias is introduced on heuristic motivations: it compen-
sates the constraint given by the normalization in Eq. (3),
while enhancing the robustness of our protocol against
optical losses (which may affect the above-mentioned nor-
malizability, yielding αλ < 1).
We now discuss the training stage. Consider a train-

ing set, i.e. an ensemble of objects {Oj} with target
labels {yj ∈ {0, 1}}. We separately feed each object
into the input branch of the interferometer. Predicted
and target classes are compared in terms of their binary
cross-entropy, which is used as loss function of a gradi-
ent descent optimizer. The optimizer updates λ through
the derivative of the loss function, whose only model-
dependent contribution is

∂λf = 2Re [⟨Iω,Uω⟩⟨Iω, ∂λUω⟩∗] . (8)

Ideally, the training is complete after finding a set of pa-
rameters that minimizes the loss. Notice that our model
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FIG. 2. Mathematical relationship between the Hong-Ou-
Mandel apparatus of Fig. 1 and the classical neuron of Eq. (9).
Each operation is identified with the corresponding compo-
nent of the optical interferometer.

is resilient against the issue of gradient explosion [24],
since it depends on physical data and functions only (see
Appendix C for a discussion).

There is a formal relationship between the post-
processed output of the Hong-Ou-Mandel interferometer
of Eq. (7) and that of a classical neuron. Consider fλ(O)
discretized and vectorized in a mesh of N cells, either
in the spatial or in the Fourier domain. Then, Eq. (7)
corresponds to the composition of a real-valued neuron,
with N trainable weights, square absolute value activa-
tion function and no bias, and a second neuron, with
a scalar unit weight, sigmoid activation function and a
trainable bias. Namely

Gbw(x) = σ
(
|w · x|2 + b

)
, (9)

where x ∈ CN is the input, while w ∈ CN and b ∈ R
are the weights and bias, respectively. We can formally
identify Gbw(x) with Fbλ(O) under the substitution

(x,w)
∼←−

(
Iω(r|O),Uω(r|λ)

)
, (10)

where
∼←− is the discretization and vectorization to CN .

This analogy is represented in Fig. 2.

A classical neuron requires at least N photons and
N computational operations to classify an image com-
posed of N pixels. Our setup bypasses both costs, by
leveraging two essential features. On the one hand, it
is completely optical, avoiding the computational need
of processing the image. On the other hand, it classifies
patterns through the Hong-Ou-Mandel effect, reducing
the photon cost of imaging. In both ways, it provides a
superexponential speedup, from O(N) to O(1). Photon
losses due to absorption introduce a constant overhead
in both the classical and quantum strategies, which de-
pends on the total reflectivity of the object. We sum-
marize this discussion in Table I. See Appendix E for a
detailed derivation.

QON Classical

Computational
(# of operations)

O(1) N

Optical
(# of photons)

Imaging None Θ(ς−2⟨x⟩N)

Classification O(ε−2) Ω
(
ε−2⟨x⟩N

)
TABLE I. Computational and optical resources comparison
between the quantum optical neuron (QON) and its classical
counterparts, when reconstructing and classifying an image x
of N pixels. Here, ς and ⟨x⟩ are the standard deviation and
the average brightness of the image (which depend on the
reflectivity of the object), while ε is the uncertainty on the
classification outcome. Our method achieves a superexponen-
tial speedup over its classical counterpart: O(1) vs. O(N).

III. AMPLITUDE MODULATED PROBE

We specialize our discussion by replacing the generic
probe state U with a toy model of an amplitude spa-
tial light modulator (SLM), placed in the top branch of
the Hong-Ou-Mandel interferometer, e.g. a liquid crystal
(LC) grid with negligible losses [25]. Different approaches
can be investigated, such as phase-only SLM [26], which
may exhibit superior resiliency against losses.
Consider a pattern on a greyscale LC grid with N real

amplitudes {λµν}. Each pixel, labelled by (µ, ν), is repre-
sented by an L×L square with center rµν = (µ+1/2, ν+
1/2)L. Upon an overall parameter-independent normal-
ization, the probe can be approximated as a combination
of top-hat functions

Uω(r|λ) =
∑
µ,ν

u(r − rµν)
λµν

||λ||
, (11)

where ||λ||2 =
∑

µ,ν λ
2
µν and u(r) := θ(r + L/2) − θ(r −

L/2), with θ the two-dimensional Heaviside step func-
tion. Under this choice, Eq. (5) simplifies to

fλ(O) =

∣∣∣∣∣∑
µ,ν

(u ⋆ Iω)(rµν)
λµν

||λ||

∣∣∣∣∣
2

, (12)

where ⋆ is the cross-correlation operation. We introduce
a bias and a sigmoid activation function, so that the post-
processed output reads Fbλ(O) = σ(fλ(O) + b). Assum-
ing that I is real, Eq. (8) simplifies to

∂µνf ≃ 2

√
f

||λ||

[
(u ⋆ Iω)(rµν)−

√
f
λµν

||λ||

]
, (13)

with ∂µνf := ∂f/∂λµν . This expression can be evaluated
in an all-optical way, by taking the amplitude measure-
ment of I directly in the left branch of the interferometer,
before the beam splitter. This operation can be done off-
line, and once per training object. In the next section, we
present a simulation of these results, for different choices
of the dataset.
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FIG. 3. Comparison between the quantum optical neuron (QON), a single classical neuron and a convolutional network, all
trained with the same number of ∼ 1024 parameters, optimizer and learning rates. The quantum optical neuron is modelled
by an amplitude modulated probe with resolution of 32 × 32 pixels, both in the spatial and in the Fourier domains. The
optimization is performed with learning rates ηλ = 0.075 and ηb = 0.005. (a) Accuracy versus the number of training epochs
for the MNIST dataset. The models are trained to distinguish among images of zeros and ones, showing compatible results
in terms of trainability and accuracy, whose final value is above 99%. The inset is a history plot of the binary cross-entropy,
used as loss function in the gradient descent optimization. (b-c) Accuracy and binary cross-entropy plots versus the number of
training epochs for the CIFAR-10 dataset. The models are trained to classify images of cats and dogs. Our method reaches an
asymptotic accuracy above 58%, showing an advantage with respect to its classical counterparts.

A. Simulations

We present a simulation of the model introduced
above, comparing its performance against those of
classical neural network-based techniques, for different
datasets. All the simulations are run in Python and Ten-
sorFlow [27], and summarized in Fig. 3.

We tested our model using two widely recognized
datasets: the MNIST, which contains 28 × 28 images of
handwritten digits from 0 to 9, and the CIFAR-10, com-
prised of 32×32 color images, distributed across 10 differ-
ent classes. We guaranteed a fair comparison by increas-
ing the MNIST resolution to 32 × 32 pixels (separately
padding each image of the dataset), while converting the
CIFAR-10 to greyscale. We represent each element of the
dataset as (xj , yj), where yj ∈ {0, 1} is the true class la-
bel, and xj is the input vector, obtained by discretizing
and vectorizing either the amplitudes I or their Fourier
spectrum Î, thus bypassing the simulation of the imag-
ing optics. We adopt the binary cross-entropy as loss
function, combined with the standard (non-stochastic)
gradient descent optimizer. We use the accuracy, i.e. the
proportion of correct predictions over the total ones, as
figure of merit of our results.

Our model demonstrates significative performances in
both datasets (see Fig. 3). In the MNIST, it achieves
accuracy rates exceeding 99%, when discerning between
zeros and ones. In the CIFAR-10, it reaches accuracy
above 58%, when distinguishing between cats and dogs.
This difference reflects the complexity of the two classi-
fication tasks.

We compared our model against conventional neural

network designs with a similar number of parameters.
Specifically, we considered a single neuron and a convo-
lutional neural network, commonly employed in pattern
recognition tasks [2, 28, 29]. Adopting the TensorFlow
notation, the convolutional structure is: Conv2D (10,
3 × 3) → Conv2D (4, 2 × 2) → MaxPooling2D (2 × 2).
Roughly, all the architectures have ∼ 103 trainable pa-
rameters. All the models equally perform in the MNIST
dataset, both in terms of trainability and final accuracy.
When applied to the CIFAR-10 dataset, our classifier
outperforms the conventional ones, showing superior ef-
ficiency under a strongly-constrained parameters count.
All the findings emphasize the competitive accuracy of
our method, and also its comparative advantage in pat-
tern recognition tasks with a limited number of parame-
ters.

IV. CONCLUSIONS

In summary, we introduced an interferometric setup of
a quantum optical classifier, with the Hong-Ou-Mandel
effect as cornerstone of our classification method. We
demonstrated the mathematical relation between our
model and a classical neuron, constrained to unit depth,
showing their similarity in terms of structure and re-
sponse function. Our design is completely optical and
single-photon based: it provides a superexponential
speedup with respect to its classical counterpart, in terms
of number of photons and computational resources. After
modelling the classifier in terms of a spatial light modula-
tor, we numerically compared our performances against
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those of standard neural network architectures, showing
compatible to superior capabilities in terms of accuracy
and training convergence, under the same number of pa-
rameters and depending on the pattern complexity.
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APPENDIX A: SINGLE-PHOTON ENCODING

In this section, we consider the single-photon state obtained at the output of the left branch of the Hong-Ou-Mandel
apparatus, providing a detailed discussion of Eq. (1). We adopt units in which c = 1.

Consider a generic single-photon state, generated by a monochromatic source with longitudinal position z

|Ψ⟩ =
∫

d3k Φ̂(k)a†(k) |0⟩ , (A1)

with momentum spectrum Φ and k = (kx, ky, kz). We neglect the polarization of the photon and consider the single-
frequency-mode assumption [31], i.e. we assume that the wavefront propagates along definite-sign z-directions only.
Then, k = (kx, ky) represents the only independent degrees of freedom of the single-photon state, which reads

|Ψ⟩ =
∫

d2k ϕ̂ω(k)a
†
ω(k) |0⟩ , (A2)

=

∫
S

d2r ϕω(r)a
†
ω(r) |0⟩ , (A3)

where ϕ̂ω(k) = Φ̂
(
kx, ky,

√
ω2 − k2x − k2y

)
and r = (rx, ry) labels the transverse coordinates on the source plane S.

For simplicity, we assume that the source is placed at the longitudinal origin z = 0. Consider an object with
two dimensional shape O, placed at longitudinal position zo. After free-space propagation occurs, the single-photon
spectrum undergoes spatial amplitude modulation [32], that is ΨO(r) = O(r)Ψ(r)→, with Ψ(r)→ the spatial input
wavefront on the object plane O. Namely

|ΨO⟩ =
∫
O

d2r [ϕω ∗ Hzo ](r)O(r)a†ω(r) |0⟩ , (A4)

where Hzo denotes the free-space transfer function between the S and O planes. Using twice the convolution theorem,
it follows that

|ΨO⟩ =
∫

d2k [(ϕ̂ωHzo) ∗ Ô](k)a†ω(k) |0⟩ . (A5)

Consider a linear optical system with transfer function L, with image plane at longitudinal position zi. By applying
again the convolution theorem to Iω(·|O) = ((ϕω ∗ Hzo)O) ∗ Lzo−z, we obtain

|ΨI⟩ =
∫

d2k Îω(k|O)a†ω(k) |0⟩ , (A6)

with Îω(k|O) = [(ϕ̂ωHzo) ∗ Ô]L̂d. Notice that Iω(r|O) describes the image formed on a screen placed at distance d
from the object.
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APPENDIX B: HONG-OU-MANDEL COINCIDENCES

In this section, we compute the rate of coincidences at the output of the Hong-Ou-Mandel interferometer of Fig. 1,
with left and top branch states given by Eqs. (1) and (2), respectively. We write the input-probe bipartite state as

|ΨI⟩ ⊗ |ΨU ⟩ =
∫

d2k1 d
2k2 Ψ̂(k1, k2)a

†(k1)b
†(k2) |0⟩ , (B1)

with Ψ̂(k1, k2) = Î(k1|O)Û(k2|λ), where we dropped the ω subscript for simplicity. The 50 : 50 beam splitter acts as
the unitary operation [33] {

a† → 1√
2

(
a† + b†

)
b† → 1√

2

(
a† − b†

) , (B2)

yielding

|ΨI⟩ ⊗ |ΨU ⟩ → |Φ⟩ =
1

2

∫
d2k1 d

2k2 Ψ̂(k1, k2)
[
a†(k1) + b†(k1)

] [
a†(k2)− b†(k2)

]
|0⟩ . (B3)

Detection of mode m ∈ {a, b} is described by the projector Πm =
∫
d2k m†(k) |0⟩⟨0|m(k). The rate of coincidences,

i.e. the probability that one and only one photon is detected in each mode, reads

p(1a ∩ 1b) = Tr[|Φ⟩⟨Φ|Πa ⊗Πb] , (B4)

with Πa ⊗Πb =

∫
d2k3 d

2k4 a†(k3)b
†(k4) |0⟩⟨0| a(k3)b(k4) . (B5)

By substitution of Eq. (B3), we get

p(1a ∩ 1b) =
1

4

∫ 6∏
i=1

d2ki Ψ̂(k1, k2)Ψ̂
∗(k5, k6)W1(k1, k2, k3, k4)W2(k3, k4, k5, k6) , (B6)

where

W1(k1, k2, k3, k4) = ⟨0| a(k3)b(k4)
[
a†(k1)a

†(k2)− a†(k1)b
†(k2) + b†(k1)a

†(k2)− b†(k1)b
†(k2)

]
|0⟩

= δ(k2 − k3)δ(k1 − k4)− δ(k1 − k3)δ(k2 − k4) ,
(B7)

W2(k3, k4, k5, k6) = ⟨0| [a(k6)a(k5)− b(k6)a(k5) + a(k6)b(k5)− b(k6)b(k5)] a
†(k3)b

†(k4) |0⟩
= δ(k3 − k6)δ(k4 − k5)− δ(k3 − k5)δ(k4 − k6) .

(B8)

By integrating out the Dirac deltas in Eq. (B6), we obtain

p(1a ∩ 1b) =
1

2

∫
d2k1 d

2k2 d
2k5 d

2k6 Ψ̂(k1, k2)Ψ̂
∗(k5, k6) [δ(k1 − k5)δ(k2 − k6)− δ(k1 − k6)δ(k2 − k5)] . (B9)

Finally, the rate of coincidences reads

p(1a ∩ 1b|λ,O) =
1

2

∫
d2k1 |Î(k1|O)|2

∫
d2k2 |Û(k2|λ)|2 −

1

2

∣∣∣∣∫ d2k Î(k|O)Û∗(k|λ)
∣∣∣∣2 . (B10)

More compactly,

p(1a ∩ 1b|λ,O) =
1

2

[
||Iω(·|O)||2||Uω(·|λ)||2 − |⟨Iω(·|O),Uω(·|λ)⟩|2

]
, (B11)

with || · || and ⟨·, ·⟩ denoting the L2-norm and inner product, which is precisely the results of Eq. (3).
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APPENDIX C: TRAINING

In this section, we discuss how to train the Hong-Ou-Mandel interferometer as a binary classifier. We separately
feed each element of the training set (an ensemble of objects with known labels) into the input branch of Fig. 1,
comparing the predicted classes with the target ones. We optimize the probe parameters λ by means of the gradient
descent algorithm, and using the binary cross-entropy as loss function.

Consider a training set made of M objects {Oj}, each associated to a binary target label yj ∈ {0, 1}, with

0 ≤ j ≤ M − 1. We denote f
(j)
λ = fλ(Oj) our model prediction. After feeding Oj into the input branch of the

interferometer

f
(j)
λ = C − 2p(1a ∩ 1b|λ,Oj) , (C1)

F
(j)
bλ = σ(f

(j)
λ + b) , (C2)

where p ∈ [0, 1/2]. For simplicity, we assumed that the losses are independent on both the input and the probe, that
is C := αλ(Oj) ∀λ, j.
Given a sample object, the binary cross-entropy between the target label and the predicted one reads

H
(
yj , F

(j)
bλ

)
= −yj log

(
F

(j)
bλ

)
− (1− yj) log

(
1− F

(j)
bλ

)
. (C3)

We optimize the probe parameters by means of the gradient descent algorithm, where the binary cross-entropy,
averaged on the training set, is used as loss function. Namely

λ→ λ− ηλ
M

M−1∑
j=0

∂λH
(
yj , F

(j)
bλ

)
, (C4)

b→ b− ηb
M

M−1∑
j=0

∂bH
(
yj , F

(j)
bλ

)
, (C5)

with ηλ, ηb the learning rates of the probe and bias parameters, respectively. The derivatives with respect to the
parameters and the bias yield

∂λH = (∂FH) (∂ξσ) ∂λf , (C6)

∂bH = (∂FH) ∂ξσ , (C7)

with ξbλ = fλ + b. Then,

∂FH =
F − y

F (1− F )
, (C8)

∂ξσ = βF (1− F ) , (C9)

with β the hyperparameter of Eq. (6). For any complex function of real variable h : R→ C, it follows that ∂λ |h(λ)| =
Re [h(λ)(∂λh(λ))

∗] / |h(λ)|. Hence,

∂λf = 2Re [⟨Iω,Uω⟩⟨Iω, ∂λUω⟩∗] . (C10)

Neglecting the phase of ⟨I,U⟩,

∂λf ≃ 2
√

f Re [⟨Iω, ∂λUω⟩] . (C11)

This assumption, which we verified in our simulations under a self-consistency test, simplifies the computation of the
first factor of Eq. (C10), which is directly determined at the output of the Hong-Ou-Mandel interferometer.

APPENDIX D: CLASSIFICATION IN THE FOURIER DOMAIN

In this section, we discuss the effect of adding a single lens in the probe branch of the Hong-Ou-Mandel interfer-
ometer, as shown in Fig. 1. We summarize the main calculations, which closely follow that of Section II.
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A thin lens is placed at one focal length ℓ from both the probe image plane and the beam splitter. In the near-field
limit, the lens performs a Fourier transform of the probe state [31], yielding |ΨU ⟩ → |ΨU ′⟩, where

U ′
ω(r|λ) = −i

ω

ℓ
e2iωf Ûω

(ω
ℓ
r
∣∣λ) . (D1)

After the beam splitter, the rate of coincidences is

p(1a ∩ 1b|λ,O) =
1

2

[
αω(O)− f̃λ(O)

]
, (D2)

f̃λ(O) =
∣∣∣⟨Iω(·|O), Ûω(·|λ)⟩∣∣∣2 , (D3)

yielding

F̃bλ(O) = σ(f̃λ(O) + b) , (D4)

f̃λ(O) =
∣∣∣∣∫

I

dr dr′ Iω(r|O)U∗
ω(r

′|λ)eir·r
′
∣∣∣∣2 , (D5)

with σ and b the sigmoid activation function and bias, already introduced in Eq. (7). In contrast to Eq. (5), f̃λ(O) is
not a point-wise evaluation: it combines the image spatial modes with the momentum spectrum of the probe state.
Using the duality of the Fourier transform, it follows that

f̃λ(O) =
∣∣∣⟨Îω(·|O),Uω(·|λ)⟩∣∣∣2 , (D6)

which corresponds to the output of the same scheme of Fig. 1, but with the thin lens placed in the left branch, before
the beam splitter. Equivalently, this takes the Fourier transform of the image, instead of that of the probe. In the
next section, we leverage this symmetry to simplify both the training process and the numerical simulations.
The training of the model follows the same procedure of Appendix C. By placing the lens on the top branch of the

interferometer, while using the duality of the Fourier transform, we get

∂λf̃ ≃ 2

√
f̃ Re

[
⟨Îω, ∂λUω⟩

]
. (D7)

Under the same conditions of Section III and Appendix C, the last two equations become

f̃λ(O) =

∣∣∣∣∣∑
µ,ν

(u ⋆ Î∗ω)(rµν)
λµν

||λ||

∣∣∣∣∣
2

, (D8)

∂µν f̃ ≃ 2

√
f̃

||λ||
Re

[
(u ⋆ Î∗ω)(rµν)−

√
f̃
λµν

||λ||

]
, (D9)

where in the last step we neglected the phase of ⟨Î,U⟩. Similarly to Eq. (13), Eq. (D9) can be evaluated in an

all-optical way through the characterization of the real part of Î, namely, by performing an amplitude and phase
measurement at the output of a thin lens, placed in the left branch, before the beam splitter. In Fig. 3, we compare
the predictability of the neuron in the spatial and Fourier domains.

APPENDIX E: OPTICAL AND COMPUTATIONAL ADVANTAGE

In this section, we discuss the optical and computational advantage as the number of photons and operations
required by a single image classification. Assuming that all the parameters have been previously trained with optimal
accuracy, we show that our protocol requires a constant number of resources, i.e. O(1) complexity, independently of
the input image resolution: it provides a superexponential speedup over its classical counterpart.

We first discuss the computational advantage when substituting a classical neuron with a quantum optical one.
From now on, we denote Ω, Θ and O, respectively the lower, tight and upper bounds on the number of resources
needed by a certain (optical or computational) operation. Consider a digital image x of N pixels, fed into a neuron

Gbw(x) = σ(w · x+ b) , (E1)
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where x,w ∈ RN , b ∈ R and σ is the sigmoid activation of Eq. (6), with hyperparameters β = 1 and γ = 0.
Eq. (E1) costs N operations to compute w · x. The Hong-Ou-Mandel interferometer performs the same operation in
an all-optical way, leaving the computational cost of the activation function and bias only, which is O(1).

We now discuss the optical advantage when using coincidences to classify single-photon states instead of a classical
neuron on fully reconstructed images. After targeting an object with light, a digital image x is an ensemble of grey
levels obtained by counting the number of photons collected by different pixels on a sensor grid, e.g. a charge-coupled
device [34]. Let np be the average number of photons in the input state, and µi the average number of photons
collected by the i-th pixel of the grid, with i ∈ {0, . . . , N}. Assuming perfect quantum efficiency and sufficiently low
exposure times to neglect the saturation of the sensor, the grey values at each pixel read

xi =
µiL

µw
, (E2)

with L the number of grey levels, i.e. the depth of the image, and µw = maxi µi the maximum number of photons
collected in a single pixel. Indeed, xi ∈ {0, 1, . . . , L−1} with 0 and L labelling the black and white colors, respectively.
Each pixel has variance ς2i = ∆µ2

iL
2/µ2

w, with ∆µ2
i the variance on the number of collected photons. For coherent

light, the photo-detection process undergoes the standard quantum limit (SQL) [35, 36], with Poissonian fluctuations
that satisfy ∆µ2

i ≃ µi. The average uncertainty reads

ς2 :=
1

N

N∑
i=0

ς2i
SQL
≃ ⟨x⟩2Nn−1

p , (E3)

with ⟨x⟩ = N−1
∑

i xi ∈ [0, L] the average brightness of the image, which we assume to be independent of its resolution.
Hence, the number of photons np required by a full image reconstruction with average variance ς2 is Θ(ς−2⟨x⟩N).
This is the cost of image reconstruction only. We now take into account the information propagation through the
neuron of Eq. (E1).

Proposition 1. Consider a neuron with sigmoid activation function. Suppose that there exists a sequence of param-
eters {(wN , bN ) ∈ RN+1}N≫1 that optimally solve the N -pixel image classification task, with bN and the ℓ1-norm
||wN ||1 asymptotically bounded for N → ∞. Then, the number of photons np required to classify an image x with
uncertainty ε, is Ω

(
ε−2⟨x⟩N

)
.

Proof. Consider the output of the neuron Gbw(x) = σ(wN ·x+bN ), and its derivative ∂G(x) = Gbw(x)(1−Gbw(x)). By
neglecting the spatial neighbourhood correlations, which may introduce at most a constant overhead in our estimation,
we propagate the uncertainty of x as

ε2 = ⟨x⟩(∂G)2(x)

N−1∑
i=0

(wN )2ixiNñ−1
p , (E4)

where ñp = nrnp, with nr is the number of independent image acquisition and classification. Since black pixels do
not contribute to this summation, we get

N−1∑
i=0

(wN )2ixi ≥
∑
i/∈B

(wN )2i = ||wN ||2 −
∑
i∈B

(wN )2i , (E5)

with B = {i ∈ N | xi = 0 for 0 ≤ i ≤ N − 1} the set of black pixels labels. However, ||wN ||2 ≫
∑

i∈B(wN )2i .

Otherwise, ||wN ||2 ≃
∑

i∈B(wN )2i would imply either that the image is mostly black, independently of its resolution,
or that (wN )i ≃ 0 for all non-black pixels, which are both conditions that prevent the learnability of the neuron. By
substitution into Eq. (E4) we get

ñp ≥ ε−2⟨x⟩(∂G)2(x)||wN ||2N . (E6)

Since wN is a sequence of non-trivial solutions of the classification problem, the ℓ2-norm ||wN ||2 cannot go to zero for
N →∞. Finally, we show that (∂G(x))2 does not converge to 0 for N →∞. Consider

(∂G)2(x) =
e−2(wN ·x+bN )

[1 + e−(wN ·x+bN )]4
. (E7)
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If bN is asymptotically limited, (∂G)2 converges to zero if and only if wN · x→ ±∞. By splitting this scalar product
into positive and negative contributions wN · x =

∑
(wN )i>0(wN )ixi −

∑
(wN )i<0 |(wN )i|xi, it follows that

wN · x ≤
∑

(wN )i>0

(wN )ixi ≤ L||wN ||1 , (E8)

wN · x ≥ −
∑

(wN )i<0

|(wN )i|xi ≥ −L||wN ||1 , (E9)

namely that |wN ·x| ≤ L||wN ||1. Since the ℓ1-norm is limited, (∂G)2 admits strictly positive lower bound for N →∞.
Finally, this imply that ñp = Ω

(
ε−2⟨x⟩N

)
.

In the previous discussion, two conditions lead to the above lower bound. On the one hand, that ||wN ||2 ̸→ 0 for
N → ∞, which is essential to guarantee that the neuron is trainable at any resolution. On the other hand, that
||wN ||1 is bounded for N →∞, which is compatible with LASSO and Tikhonov’s regularization techniques [37, 38].
We show that our protocol exponentially reduces this cost, requiring only the estimation of the rate of coincidences

of the Hong-Ou-Mandel interferometer of Fig. 1. Let ñp = 2np be the number input photons, and p̃ ∈ [0, 1/2] the
empirical rate of coincidences. Under the normal approximation, with the 95% confidence level [39], the estimation
uncertainty reads

ε = 2

√
p̃(1− p̃)

ñp
. (E10)

Since 4p̃(1 − p̃) ≤ 1, the total number of photons is O(ε−2), which is constant with respect to the resolution of the
image.

In conclusion, the quantum optical neuron provides a superexponential advantage over its classical counterpart,
both in the number of operations and photons saved to classify a single image. We summarize these results in Table I.
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