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Abstract

Tactile signals collected by wearable electronics are essential
in modeling and understanding human behavior. One of the
main applications of tactile signals is action classification, es-
pecially in healthcare and robotics. However, existing tactile
classification methods fail to capture the spatial and tempo-
ral features of tactile signals simultaneously, which results in
sub-optimal performances. In this paper, we design Spatio-
Temporal Aware tactility Transformer (STAT) to utilize con-
tinuous tactile signals for action classification. We propose
spatial and temporal embeddings along with a new tempo-
ral pretraining task in our model, which aims to enhance the
transformer in modeling the spatio-temporal features of tac-
tile signals. Specially, the designed temporal pretraining task
is to differentiate the time order of tubelet inputs to model the
temporal properties explicitly. Experimental results on a pub-
lic action classification dataset demonstrate that our model
outperforms state-of-the-art methods in all metrics.

Introduction
Similar to visual and acoustic signals, tactile signals are im-
portant for modeling and understanding humans. In recent
years, various wearable electronics have been designed to
collect tactile signals, which are widely used in multiple sce-
narios, especially in healthcare and robotics (Zhu et al. 2019;
Fan et al. 2020; Lou et al. 2020; Okunevich et al. 2021).

The collected tactile signals can be utilized for different
purposes, and one of their main applications is the action
classification task. Sundaram et al. (2019) propose to iden-
tify hand actions by tactile signals with sensors in gloves.
Luo et al. (2021) and Wicaksono et al. (2022) use wearable
electronic socks to collect tactile signals for feet action clas-
sification. Figure 1 is an example, where the continuous tac-
tile signals are collected by e-textile sensors in socks, and
then used to classify the action (e.g., walking, etc.).

Tactile signals are spatially and temporally sensitive,
hence utilizing their spatio-temporal features is important
for action classification. Firstly, tactile signals are spatially
sensitive as they are not translation invariant. The same sig-
nals in different positions (i.e., collected by various sensors)
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Figure 1: An overview of action classification based on tac-
tile signals collected by wearable electronic socks.

indicate distinct actions. For example, the same signals col-
lected by sensors located in different positions should be
classified as standing on toes or heels, respectively. Sec-
ondly, tactile signals are temporally sensitive as they are col-
lected regularly with high frequency, e.g., in 10HZ (10 data
points per second), and the time order of these signals is in-
formative. For example, if ignoring the order of collected
signals, two signal sequences collected by the same sensor
from distinct actions may be seen as identical actions (i.e.,
same elements with different orders), which becomes use-
less in classification.

Furthermore, we want to point out that jointly modeling
spatial and temporal features is essential for tactile signals
in action classifications. We conduct an empirical study on
a real-scenario dataset (Luo et al. 2021), and draw the spa-
tial and temporal features of different actions in Figure 2.
The heatmap of each action shows the averaged results of
all samples, which indicates spatial features. The temporal
change of a specific sensor shows the averaged sequence
data of all samples collected by this sensor, which indicates
temporal features. As shown in Figure 2(a), two actions,
stand on toes and lean left, have similar temporal features
but different spatial features. However, in Figure 2(b), two
actions, upstairs and walk fast, have similar spatial features
but different temporal features. These observations verify
tactile signals’ spatio-temporal features, and further indicate
that only using one of them is inadequate for classification.

However, existing tactile methods lack the ability to cap-
ture the mentioned temporal and spatial nature of tactile
signals simultaneously. On the one hand, most previous
tactile-related studies adopt CNN-based methods to model

ar
X

iv
:2

40
4.

15
27

9v
1 

 [
ee

ss
.S

P]
  2

1 
Ja

n 
20

24



Figure 2: Empirical study of actions in a tactile dataset. Heatmaps are the averaged results of all samples collected by sensors in
the left foot, and the tactile sensor of Figure 2(a) and 2(b) is located at positions (5,20) and (28,19) of the left foot, respectively.

the tactile signal frames and then combine them by con-
catenating or sequential models, which fail to jointly cap-
ture their translation variance and temporal properties (Luo
et al. 2021; Sundaram et al. 2019; Gao et al. 2020). On
the other hand, various transformer models have been de-
signed to handle different continuous signals. But most of
them (Zerveas et al. 2021; Tong et al. 2022; Amiridi, Dar-
nell, and Jewell 2022) focus on temporal features, which are
inadequate to model tactile signals’ spatial nature, especially
the translation variant property.

In this paper, we design a Spatio-Temporal Aware tactil-
ity Transformer (STAT) to utilize tactile signals for action
classification, which utilizes their temporal and spatial fea-
tures simultaneously. We design spatial and temporal em-
beddings to explicitly model the translation variant and se-
quential features of tactile signals, respectively. Addition-
ally, we introduce a temporal pretraining task to enhance the
modeling of temporal features by distinguishing the time
order of signal tubelets. After pretraining the STAT trans-
former, the embedding of the [CLS] token is utilized for ac-
tion classification. Experimental results on tactile show that
our model outperforms all baseline methods in all metrics,
including state-of-the-art multivariate and video classifica-
tion models. Further analyses verify the effectiveness of the
proposed pretraining task and embeddings. To the best of our
knowledge, this is the first transformer model designed for
tactile signals by jointly modeling spatio-temporal features,
which can be applied to various tactile-related scenarios.

Related Work
Action Classification with Tactile Signals
In recent years, various wearable electronics have been
designed to model user actions based on tactile signals
in different scenarios. Luo et al. (2021) design wearable
electronic socks to classify user walking actions. Noh et
al. (2021) use tactile signals in healthcare scenarios, which
predict the fall risk of users. Robotic studies also point out
that modeling tactile signals are important in understanding
humans (Kragic et al. 2018; Negre et al. 2018).

Despite the importance of tactile signals in various sce-
narios, we find that previous tactile classification models are
unable to capture the spatial and temporal properties of tac-
tile signals simultaneously. Sundaram et al. (2019) use CNN

to capture the embedding of each frame and simply con-
catenate them for action classification. Recent studies en-
hance this method by adopting a GRU/LSTM model rather
than concatenation to model the sequential features (Luo
et al. 2021; Okunevich et al. 2021; Gao et al. 2020). Cao
et al. (2020) introduces temporal attention operation com-
bined with spatial features in separate phases. However, as
CNNs are designed to utilize the translation invariance fea-
tures, they fail to capture tactile signals’ translation variance.

Different from previous studies, we design a new trans-
former model to jointly capture the spatio-temporal features
of tactile signals for action classification.

Transformers for Continuous Signals
Transformer models (Vaswani et al. 2017) have achieved
great success in continuous signal classification tasks, e.g.,
videos and multivariate continuous signals (Tong et al. 2022;
Zerveas et al. 2021; Zhao et al. 2022). We briefly review re-
lated transformers here, especially video transformers, as the
input shape of videos is similar to tactile signals.

Existing transformer models fail to utilize the spatial and
temporal features of tactile signals simultaneously. On the
one hand, most video transformers use the visual trans-
former (Dosovitskiy et al. 2021) as a backbone model, and
further propose new masking or input strategies (Arnab et al.
2021a; Bertasius, Wang, and Torresani 2021; Yan et al.
2022a; Liu et al. 2022; Yan et al. 2022b). Recent models pro-
pose to capture the spatio-temporal features of videos, e.g.,
VideoMAE (Tong et al. 2022), SSTSA (Alfasly et al. 2022).
However, as video transformers aim to model the translation
invariant of videos, they only use position embeddings in
encoding, which fail to model the translation variant spatial
property of tactile signals. On the other hand, most trans-
former methods proposed for multivariate continuous sig-
nals focus on modeling their temporal features, while ignor-
ing the spatial relations among different signals (i.e., where
the signals are collected), such as TST (Zerveas et al. 2021)
and the transformer proposed by Hannan et al (2021). Fur-
thermore, most transformer models rely on the masking and
reconstruction pretraining task (Devlin et al. 2019; Bao et al.
2022; Tong et al. 2022), which cannot explicitly capture the
temporal/spatial features of continuous signals.

Although these transformers are not designed for tactile
signals, we will use them to verify the effectiveness of STAT.



Figure 3: An overview of STAT model. Spatial and temporal embeddings are designed to jointly capture both properties.

Approach
Problem Statement
Our goal is to utilize tactile signals to classify user actions,
where the data can be collected by various wearable elec-
tronics. The wearable devices often arrange sensors as a ma-
trix, so we define the data matrix collected in a specific time
point as a frame. Then, the task is defined as follows.

Given a tactile signal tensor X ∈ RC×T×H×W , where C
represents the number of wearable devices, T represents the
length of signal sequences (i.e., T frames), H and W mean
the number of sensors in each column/row (i.e., the shape of
frames), respectively. An example of tactile signals is shown
in Figure 4(a). Xci,tj ,hk,wl

represents the value collected by
the sensor of device ci in position (hk, wl) at time tj . Each
tactile segment X has an activity label y, and the total num-
ber of activity types is M . Our target is to accurately classify
the given tactile signal X to its label y.

Overview
We propose a spatio-temporal aware tactility transformer for
the action classification task based on tactile signals, which
is named STAT. A new pretraining task and two extra em-
beddings are designed to capture the temporal and spatial
features of tactile signals jointly in STAT.

Firstly, the designed spatio-temporal aware transformer
encoder is introduced. We convert the tactile signal tensor
to a tubelet sequence. Besides the widely used tubelet and
position embeddings, we propose to add spatial and tempo-
ral embeddings to capture each tubelet’s temporal and spa-
tial features, respectively. Then, multi-layer transformer en-
coders are adopted to calculate the representations of tac-
tile signals. Then, the adopted pretraining tasks are defined.
Aside from the common masking and reconstruction loss,
we designed a temporal pretraining task to explicitly dis-
criminate the time order of tubelet pairs. Finally, we show
how to adopt our model for action classifications.

Spatio-Temporal Aware Transformer Encoder
We will introduce the designed spatio-temporal aware trans-
former encoder shown in Figure 3. To simplify the notations,
we only show the process for handling tactile tensor col-
lected from one wearable device (i.e., X ∈ RT×H×W ), as
we can easily expand our model to C-channel transformers
to utilize signals collected by C devices.

Tubelet Inputs As the spatial and temporal dimensions
of the tactile signals can be redundant, directly adopting
the whole data in classification may result in reduced effi-
ciency. Motivated by previous video transformer models that
convert the video clip into tubelets to alleviate the spatio-
temporal redundancy, we follow these studies by transfer-
ring the tactile signals into a tubelet sequence (Arnab et al.
2021b; Liu et al. 2021; Fan et al. 2021; Tu et al. 2022).
We define a tubelet as Q ∈ RL×P×P , where L repre-
sents its sequence length (i.e., the number of frames) and
P represents the patch size (i.e., height and width). Fig-
ure 4(b) shows some examples of the converted tubelets, and
the total number of tubelets for a tactile signal tensor X is
Ntube = THW/(LP 2).

Figure 4: (a) Visualization of tactile signal X ∈ RT×H×W .
(b) Tubelet inputs, where each tubelet Q ∈ RL×P×P .



Spatio-Temporal Enhanced Tubelet Embeddings Most
video transformer models adopt the tubelet embeddings
and position embeddings as the input of transformer en-
coders (Dosovitskiy et al. 2021; Tong et al. 2022). However,
due to the fact that tactile signals do not have the transla-
tion invariance property as images/videos, simply adopting
these settings cannot capture the spatial features of tactile
signals. Additionally, jointly modeling spatial and temporal
features are also essential in distinguishing actions, as shown
in Figure 2. Thus, we propose to add spatial embeddings and
temporal embeddings for each tubelet to capture the spatio-
temporal features of tactile signals jointly.
Spatial Embeddings. Each tubelet is collected from a patch
of sensors, and the sensors are located in certain positions.
We use a spatial embedding espatialk to represent where the
tubelet signal is collected from, so that the spatial features
will be encoded to explicitly model the translation variance.
Tubelets collected by the same batch of sensors will get the
same spatial embeddings, and the number of spatial embed-
ding types is Nspace = HW/P 2.

Following the traditional calculation of position embed-
dings (Vaswani et al. 2017), we utilize the sinusoidal po-
sitional encoding table to calculate the spatial embedding
espatialk , where k represents the spatial position and k ∈
{1, 2, .., Nspace}. The calculation is defined in Equation (1):

espatial(k,2d) = sin(
k

10000
2d
D

)

espatial(k,2d+1) = cos(
k

10000
2d
D

)

(1)

Where D represents the embedding dimensions, and
espatial(k,d) refers to the d-th dimension of espatialk (d ∈
{0, 1, 2, 3..., D}). Through this encoding process, the spa-
tial embeddings can provide the transformer encoder with
spatial knowledge of the tactile signals, which contributes to
modeling the translation variant features.
Temporal Embeddings. For tactile signal tubelets, their
temporal features are important in distinguishing various ac-
tions. We propose temporal embeddings to represent the lo-
cation of the tubelet in the time sequence, which refers to
when the tubelet is collected.

Similar to the spatial embeddings, we use the sinusoidal
positional encoding Equation (1) to generate the tempo-
ral embedding etemporal

k . The number of temporal embed-
ding types is Ntemp = T/L, and tubelets collected in
the same frames have the same etemporal

k , where k ∈
{1, 2, ..., Ntemp}.

These new embeddings are used to enhance the model
with additional information about the spatial and tempo-
ral properties of tactile signals jointly, and Figure 3 shows
an example. Then, we aggregated the proposed two embed-
dings with tubelet and position embeddings to calculate the
input matrix Einput of transformer encoders by Equation (2).
Ultimately, the aggregation of embeddings allows for the si-
multaneous embedding of spatial and temporal properties.

Einput = Etubelet +Eposition +Espatial +Etemporal (2)

As shown in Figure 3, we append a [CLS] token at
the beginning of the tubelet sequence, which is often
used to represent the whole embedding sequence in trans-
former models. The tubelet, position, temporal, and spa-
tial embeddings of this token are randomly initialized
and optimized during training. Hence, we have Einput =

[Einput
[CLS],E

input
Q1

, ...,Einput
QNtube

] ∈ R(Ntube+1)×D.

Transformer Encoders We utilize the classical trans-
former encoder (Vaswani et al. 2017) as the backbone net-
work, whose effectiveness has been verified in various do-
mains and tasks (Devlin et al. 2019; Arnab et al. 2021b;
Dosovitskiy et al. 2021).

Our transformer encoder takes in Einput defined in the
previous subsection. As the transformer encoder often con-
sists of K transformer layers, we note the primary in-
put Einput as E(0), and E(k) = Transformerk(E

(k−1)),
where k ∈ {1, 2, ...,K}. The output of the final layer
TransformerK is the encoded representation of input to-
kens, and E

(K)
[CLS] is the final embedding of tactile signals.

Pretraining Tasks
Pretraining has been verified to be an effective technique
to enhance transformer models in various scenarios, e.g.,
BERT for text (Devlin et al. 2019), BEIT for image (Bao
et al. 2022), and VideoMAE for video (Tong et al. 2022).
To achieve better classification performances, we choose to
pretrain our STAT model before applying it to action clas-
sifications. We propose to use two pretraining tasks here, as
shown in Figure 5. The first one is the masked tubelet recon-
struction (MTR) task, which aims to reconstruct the masked
input tubelets, which is also used in previous video trans-
formers (Tong et al. 2022). The other one is our designed
temporal pretraining task to explicitly model the temporal
features of tactile signal tubelets. Although temporal embed-
dings are helpful in capturing temporal properties, we prefer
to add a specific pretraining task due to the importance of
temporal features in distinguishing different actions.

Figure 5: Illustrations of the adopted two pretraining tasks.



Masked Tubelet Reconstruction As shown in Fig-
ure 5(a), we use a masked auto-encoder to reconstruct the in-
put signals, which is the MTR task in previous studies (Tong
et al. 2022; Arnab et al. 2021a). MTR randomly masks
tubelets from videos and reconstructs them in pretraining,
and its loss function is defined as follows:

LMTR =
1

|M|
∑
t∈M

|Vt − V̂t|2 (3)

Where M is the set of masked tubelets’ indexes, V is the
input video, and V̂ is the reconstructed one. Specially, we
adopt spatial-based random masking instead of randomly
masking all tubelets. In this strategy, we randomly select
sensor groups from the Nspace types for masking. All sig-
nals collected by the chosen masking sensors (i.e., tubelets
with the same spatial embeddings) will be masked. The mo-
tivation is that this masking strategy will contribute to better
utilizing the spatial features among sensors. For the mask
ratio, we leave it as a hyper-parameter study.

Temporal Pretraining Our self-supervised temporal pre-
training task enhances transformer encoders by training to
distinguish the time order of two randomly selected tubelets,
so that the temporal features can be maintained in the model,
as shown in Figure 5(b).

Firstly, two tubelets Qi and Qj are randomly selected
from the whole set. Note that we should make sure Qi and
Qj are collected at different times, so the temporal embed-
dings of them are different (i.e., etemporal

Qi
̸= etemporal

Qj
).

Then, we use the encoded embeddings E
(K)
Qi

and E
(K)
Qj

of
tubelet Qi and Qj to identify the time order of them. If
tubelet Qi is collected earlier than Qj , the identification re-
sult should be ytemp

i,j = 1, otherwise 0.
We choose a simple but effective way to optimize this

task. We concatenate the two embeddings E
(K)
Qi

and E
(K)
Qj

,
and use a linear layer with a sigmoid activation function to
predict the time order ŷtemp

i,j . A binary cross-entropy loss
is utilized to optimize this pretraining task. Moreover, for
each tactile signal tensor, only randomly selecting one pair
of tubelets for pretraining is not enough. So Ncomp tubelet
pairs are randomly selected and used in pretraining, i.e.,
(Qi1 ,Qj1 ), ..., (QiNcomp

, QjNcomp
). Finally, the loss func-

tion is formally defined in Equation (4).

ŷtemp
in,jn

=σ(Wframe(E
(K)
Qin

⊕E
(K)
Qjn

)⊤

Ltemp =− (ytemp
in,jn

log(ŷtemp
in,jn

)

+ (1− ytemp
in,jn

) log(1− ŷtemp
in,jn

))

(4)

Where ⊕ means vector concatenation, σ is a sigmoid activa-
tion function, n ∈ {1, 2, ..., Ncomp} and Wframe ∈ R1×2D.

To simultaneously utilize these two tasks in pretraining,
we add an extra setting that only randomly selects unmasked
tubelets, so we can optimize them together. Specifically, we
aggregate the MTR loss with our temporal loss through a
weight coefficient β, which is a hyper-parameter. The final
pretraining loss is defined as follows:

Lpretrain = LMTR + βLtemp (5)

Actions #Samples Actions #Samples

Downstairs 4,942 Stand toes 3,978
Jump 3,090 Upstairs 5,025
Lean left 5,047 Walk 6,078
Lean right 5,011 Walk fast 5,360
Stand 5,024

Table 1: Statistics of each type of action.

With the spatial-based random mask strategy in the MTR
task and the designed temporal pretraining task, we enhance
the representation ability of transformer encoders to better
capture the spatial and temporal properties of tactile signals
jointly. Similar to the pretraining of video transformers, we
only use the training set of tactile signals for pretraining, as
there lacks large scale open tactile datasets.

Fine-Tuning for Action Classification
After introducing our STAT model and pretraining tasks, we
will show how to train STAT for action classification.

We follow the approach of other transformer models by
using the embedding of [CLS] token to represent the entire
signal sequence. Firstly, we take the embedding of [CLS]
token from the last transformer layer block (i.e., E(K)

[CLS]),
which represents the whole input signal. Then, we add a lin-
ear layer on the top of this embedding to classify it into ac-
tion types (shown in Figure 1). The loss function is:

ŷi =δ(Wc(E
(K)
[CLS])

⊤ + bc)

L =CrossEntropy(ŷi,yi)
(6)

Where δ is the softmax activation function, Wc ∈ RM×2D

and bc ∈ R1×M , and yi is a one-hot vector where only the
index of the true label is 1.

Experiments
Experimental Settings
Dataset As tactile action classification is a promising new
application scenario that is under development, there is only
one large-scale open dataset by far. So our experiments are
conducted on the public tactile signal dataset1, which is col-
lected by individuals with two wearable electronic socks
to perform specific actions. The dataset consists of tactile
signals with 9 labeled actions, namely walking, leaning on
the left foot, leaning on the right foot, climbing downstairs,
climbing upstairs, jumping, standing on toes, fast walking,
and standing upright. The statistics are shown in Table 1. T ,
H , and W are set to 45, 32, and 32, respectively.

As the sampling frequency is 15HZ, each piece of data
is collected in 3 seconds. Following the providers’ settings,
500 and 1,000 samples of each action are used in validation
and testing, respectively, and the other samples are used in
training (each action type will be sampled to 4,000 samples).
Only the training set will be adopted for model pretraining
to avoid data leakage.

1http://senstextile.csail.mit.edu/



Models ACC@1 ACC@3 Macro-F1

CNN&GRU (Luo et al. 2021) 0.8794±0.0280 0.9497±0.0183 0.8743±0.0319

TST (Zerveas et al. 2021) 0.8701±0.0252 0.9637±0.0147 0.8660±0.0272

VideoMAE (Tong et al. 2022) 0.7705±0.0906 0.9287±0.0177 0.7521±0.1027

STAT w/o pretraining 0.8050±0.0549 0.9528±0.0225 0.7946±0.0652

STAT 0.9033±0.0098 0.9830±0.0081 0.9015±0.0104

Table 2: Overall performances of all models.
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Figure 6: Confusion Matrices of all models.

Hyper-parameters Values

#Comparison Pairs Ncomp 10, 20, 30, 40, 50
Loss Weight β 0.5, 0.75, 1, 1.5, 2, 2.5
Masking Ratio 0.1 - 0.9 with step length 0.1
Adam Learning Rate 1e-3, 5e-3, 1e-2
Transformer Layer K 3, 6, 9, 12

Table 3: Summarization of tuned hyper-parameters.

Metrics We use accuracy and macro-F1 as evaluation met-
rics. As there are multiple classes, we report both Top-1 &
Top-3 accuracy as in previous studies (Luo et al. 2021). Be-
sides, we add Macro-F1 to show the comprehensive perfor-
mance on the imbalanced dataset of all models.

Baselines To demonstrate the effectiveness of our model,
we use several state-of-the-art baselines:
• CNN&GRU (Luo et al. 2021): This method adopts con-

volution and recurrent networks for action classification
with tactile signals;

• TST (Zerveas et al. 2021): TST is a state-of-the-art
transformer-based model for continuous multivariate sig-
nal classification with pretraining;

• VideoMAE (Tong et al. 2022): This is a state-of-the-art
video classification model with masked auto-encoders.

Implementation Details We tune hyper-parameters as
shown in Table 3. In addition, the tubelet parameters L and
P are set to 5 and 4, while the pretraining and fine-tuning
epoch is set to 60. The embedding dimension D is set to
768, in which batch size is 64 and weight decay is 1e-4. For

baselines, we employ their public implementations and tune
them with hyperparameters suggested by their authors.

All experiments are implemented by Pytorch 1.7 and
executed on 4 Tesla V100 or GeForce RTX 3090 GPUs.
Note that only the training data is used for the pretrain-
ing of TST, VideoMAE, and STAT to avoid data leak-
age. Experiments are repeated 5 times with different ran-
dom seeds. Besides, the total training time of STAT is
similar to VideoMAE (10 hours). The code is available at
https://github.com/Aressfull/sock classification.

Overall Performances
Experimental results of our STAT and baselines are reported
in Table 2. TST, VideoMAE, and STAT models are pre-
trained with the training set, and STAT w/o pretraining is
directly trained for the classification task.

Firstly, our pretrained STAT outperforms all baseline
models in all metrics, showing that jointly modeling spa-
tial and temporal features contributes to better action clas-
sification results. STAT achieves 2.7%, 2.0%, and 3.1% im-
provements than the best baseline in ACC@1, ACC@3, and
Macro-F1, respectively. Secondly, STAT without pretraining
performs worse than most baselines, showing that our pre-
training provides significant improvements for STAT in the
action classification task. Thirdly, for the baseline models,
the widely used tactile CNN&GRU model achieves compa-
rable results as TST, showing that modeling spatial features
and temporal features are both important in action classifica-
tion. However, VideoMAE model performs the worst, which
indicates that simply reusing the video transformer will get
worse performance. The reason should be videoMAE cannot



# TE SE TPT ACC@1 ACC@3 Macro-F1
1 ✓ 0.8764 0.9678 0.8715
2 ✓ 0.8417 0.9506 0.8337
3 ✓ ✓ 0.8947 0.9854 0.8957
4 ✓ 0.8299 0.9507 0.8247
5 ✓ ✓ ✓ 0.9033 0.9830 0.9015

Table 4: Experimental results of various ablation strategies.
TE: Temporal Embeddings, SE: Spatial Embeddings, and
TPT: Temporal Pretraining Task.

capture the translation variant of tactile signals, and tactile
signals are more dense than videos (VideoMAE only uses 8
frames but uses 45 frames here).

To further analyze the performances of different models in
various classes, we show the confusion matrices of all mod-
els on the test set in Figure 6. From the figures, we have the
following observations: Firstly, CNN&GRU performs worse
in temporal and spatial sensitive classes, i.e., upstairs and
lean left, showing the weaknesses of current tactile classifi-
cation models. Specifically, CNN&GRU classifies many up-
stairs samples as walk fast due to their similar spatial fea-
tures (as shown in Figure 2(b)), while our STAT can dis-
tinguish these actions more accurately due to the modeling
of temporal features. Secondly, TST performs even worse
than CNN&GRU in many actions, indicating that focusing
on modeling temporal features is not enough for tactile sig-
nals. For example, TST mistakes a number of lean left sam-
ples as stand on toes because they have similar temporal fea-
tures (as shown in Figure 2(a)). Our STAT rarely makes mis-
takes on these actions as they are distinct in spatial features.
Thirdly, our STAT model performs the best in most classes,
as we jointly capture both the spatial and temporal properties
of tactile signals. Meanwhile, due to the translation variant
property of tactile signals, VideoMAE, which is designed for
video classifications, is unsuitable for this task.

Analyses
Ablation Study To verify the effectiveness of the de-
signed pretraining task and embeddings, we conduct abla-
tion studies. Table 4 shows our ablation strategies and their
performances. Note that the MTR pretraining task, position,
and tubelet embeddings are used in all experiments, as we
focus on analyzing the newly designed models here.

We have the following observations from the results:
Firstly, all designed modules contribute to the classification
task, as STAT (Strategy 5) achieves the best performance
with all modules in ACC@1 & Macro-F1, and comparable
results in ACC@3. Secondly, by comparing Strategies 1,2,3
in pairs, we find that removing any one of the two designed
embeddings will result in a large drop in performance. Be-
sides, temporal embeddings are more important than spatial
embeddings, as Strategy 1 performs better. Thirdly, STAT
with both embeddings (Strategy 3) outperforms STAT with
only the temporal task (Strategy 4) in all metrics. This indi-
cates that only adopting the proposed pretraining task cannot
make full use of its ability.

10 20 30 40 50
Number of comparison pairs: Ncomp

0.75

0.80

0.85

0.90

0.95

Va
lu

e

ACC@1
ACC@3
Macro F1

Figure 7: Effect of the number of comparison pairs.
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Figure 8: Effect of the weight of temporal pretraining loss.

Hyper-parameter Analyses Due to the space limit, we
only show two conducted hyper-parameter experiments.

Effect of the Number of Comparison Pairs Ncomp. To
verify the effect of Ncomp in the temporal pretraining task,
we conduct analyses experiments and summarize the re-
sults in Figure 7. The best performance is achieved when
Ncomp = 30. Fewer comparison pairs perform worse may
be caused by insufficient training, while more pairs will not
contribute to better results either.

Effect of the Loss Weight β. We adjust the weight β for
our temporal pretraining task in Equation (5) in different val-
ues, and the results are shown in Figure 8. It indicates that a
too-low or too-high value of β will hurt the performance of
our STAT model, and β = 1 performs the best.

Conclusions

Tactile signals are essential in modeling and understanding
user behavior in various scenarios. However, neither previ-
ous tactile classification models nor transformer models for
other continuous signals fail to simultaneously capture the
spatial and temporal features of tactile signals. In this study,
we propose a spatio-temporal aware tactility transformer to
jointly model both spatial and temporal properties of tactile
signals for action classification tasks. Spatial and temporal
embeddings are designed to capture the translation variance
and sequential features, respectively. Additionally, the pro-
posed temporal pretraining task explicitly models the time
order features. Experimental results show that our model
outperforms all baseline models in all metrics.

Our model shows promising performance and can con-
tribute to better utilizing tactile signals in other scenarios.
In the future, we plan to introduce side information about
tactile signals to achieve better performance.
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