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I. Abstract 

This paper introduces in detail the effective method of comprehensive target judgment by using 

radar RA map and point cloud map. Different output of radar can effectively judge the road boundary 

of target and the relative coordinates of target, avoid the error of output caused by excessive 

processing information, and greatly improve the processing efficiency of DBSCAN of the measured 

target. 

II. Introduction 

Recently, millimeter-wave (mmWave) radar with lower price and better performance has been 

widely applied to mobile robots such as the wheeled robot, unmanned aerial vehicle (UAV), and 

unmanned surface vehicle (USV) [1]. Typically, automotive radar plays an important role in 

advanced driver-assistance (ADAS) systems for adaptive cruise control, collision avoidance, blind 

spot detection, lane change assistance, parking assistance, etc [2]. mmWave radar has the potential 

to replace LiDAR in robotic applications with the robustness to different lighting and weather 

conditions. Usually, the signal processing techniques of traditional radar detects the signal peaks 

from the radar echo data, decomposing the radar images into sparse point clouds. Since the point 

cloud obtained by mmWave radar is sparse, noisy and lacks intuitive information, point cloud 

processing such as segmentations and recognitions are researched to extract the target characteristics. 

Target recognition and classification of mmWave can be achieved using deep learning method. 

PointNets is used in literature [3] for bounding box estimation of the vehicles by distinguishing 

signals from clutter and vehicles. However, the direct usage of PointNets is not a good choice cause 

the design intention of PointNets is to learn the 3D spatial features of objects in LiDAR detection 

but the point cloud using mmWave radar detection is usually sparser with less information. 

In this paper, a self-developed high-precision 4D mmWave radar system is introduced firstly. 

Based on the requirements of point cloud resolution and imaging quality, we have finished the 

overall design and optimized the system by analyzing the real-time detection performance, which 

enables the mmWave radar to achieve certain detection range and high-quality point clouds 

acquirement. Secondly, we propose a modified dynamic DBSCAN method to cluster the processed 

point cloud of targets, using the radar emitting equation and the target distribution features, which 

achieves better separation and recognition performance than the original point cloud. Finally, a 



neural network (NN) structure based on PointNet, using the range-azimuth map (RAM) for target 

segmentation and spatial coordinate restoration, is designed meticulously with the created dataset 

consisting of different testing scenes. Additionally, the trained model is evaluated on the collected 

classification dataset, achieving good performance in different complex scenarios. Then, we 

analyzed the performance of the model, indicating that it can decompose different categories of 

targets. We compared the radar resolution models of different categories and combined the different 

characteristics of point clouds and projected target maps. The major contributions of this paper are 

summarized as follows: 

1. We designed a high-precision 4D radar system, generated high-quality RAM and optimized 

the imaging mode to obtain high precise 3D echo point clouds.  

2. We recognized and removed the curb from sectorial image of mmWave radar in polar 

coordinate, which is transformed into the projection of Cartesian coordinate for the subsequent 

detection using semantic NN. 

3. Multi-filter method for clustering and multi-frame overlapped technology for detection are 

proposed to increase the system performance. 

4. A high-precision point cloud dataset of 4D mmWave radar is generated with the target 

information such as length, width, velocity, types and so on, which can be used for further research 

work in target recognition using mmWave radar. 

III. RELATED WORK 

IV. High quality mmWave radar point cloud generation 

The mmWave radar point cloud imagery diagram is shown in Figure 1 which is proposed in our 

preliminary work]. As shown in Figure 1(a), the recorded echo data matrix from mmWave radar system 

is distributed in 3 dimensions which are range, channel and chirp dimension respectively. After the 2D 

FFT is performed in range-Doppler domain, several range-Doppler maps (RDMs) are obtained. Then 

constant false alarm rate (CFAR) detection, as shown in Figure 1(b), is used to detect the peak signal as 

the outputted target point, and another 2D FFT is performed to estimate the azimuth and elevation angles 

of the point target. The generated point cloud with parameters of range, Doppler, azimuth angle and 

elevation angle, as shown in Figure 1(c) and Figure 1(d), is the target geometry in polar coordinate and 

can be easily transformed into Cartesian coordinate as the final point cloud formation which is consistent 



with LiDAR point cloud, as shown in Figure 1(e) and Figure 1(f). 

 

Fig. 1.  The mmWave radar point cloud imagery diagram. 

A．RDM AND RAM GENERATIONS 

Without loss of generality, the principle of millimeter wave radar point cloud imagery is briefly 

introduced in this section below and the detailed description can be found in our preliminary work. 

Normally, the 4D mmWave Radar emits frequency modulated continuous wave (FMCW) signal in time 

division multiplex (TDM) mode. The total echo data matrix from the scenario after differential frequency 

reception between the 𝑚-th transmitter and the 𝑛-th receiver can be written as： 
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where 𝑡 and 𝑡𝑎 are slope time and azimuth time respectively. 𝑄 is the number of scatterers according 

to the scattering center hypothesis. 𝑓c is the carrier frequency, 𝑘r is the chip rate of the transmitted 

signal. 𝑐 is the light velocity. 𝑅𝑚𝑛,𝑞(𝑡𝑎) is the sum of the distances from the 𝑞-th scatterer to the  𝑚-

th transmitter and the 𝑛-th receiver respectively. 

Assuming 𝑣r,𝑞 is the radial velocity between the 𝑞-th scatterer and the radar, the RDM of each 

channel can be obtained through 2D FFT in range-Doppler domain, which can be written as: 
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where 𝑓 is the modulated frequency of the baseband signal. 𝑓𝑞 is the Doppler frequency caused by the 

target movement and 𝑓𝑞 = 2𝑣r/𝜆. 𝑇a is the coherent processing time during the target movement and 

𝑇p is the chirp signal pulse duration. 𝜆 is the wave length. 𝑅𝑚𝑛,𝑞(𝑡𝑎) is the radial movement between 

the 𝑞-th scatterer and the radar with 𝑅𝑚𝑛,𝑞(𝑡𝑎) = 𝑅𝑚𝑛,𝑞(𝑡𝑞0) − 𝑣r,𝑞𝑡𝑎. 

The RDM �̅�𝑚𝑛(𝑓, 𝑓𝑑) in Equation (2) is always used in automotive 4D mmWave radar as the 

dimensions of range and velocity which can be direct calculated from 𝑓𝑞 = 2𝑣r/𝜆. Another two 

dimensions are the estimated angles of the point target in azimuth and elevation directions 

respectively. 

RDM is the foundation of the 4D mmWave radar imagery where the point target information can 

be detected and extracted, commonly used in the automotive areas. However, the stationary objects are 

neglected since the target moving assumption which can be represented in the RDMs. The stationary 

objects without movement are distributed in the zero Doppler cell of the RDM which can hardly be 

distinguished. 

From Equation (1), we ignore the high-frequency terms which can be neglected in non-focused 

imaging scenarios and derive the echo signal formation of distributed target as: 
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where 𝑟𝑚,𝑛 is the sum of the distances from the 𝑎-th element in surveillance scenario to the  𝑚-th 

transmitter and the 𝑛-th receiver respectively with stationary assumption, and 𝑟 ≈ 𝑟𝑚,𝑛/2 with the 

phase center approximation (PCA) algorithm. 𝐴  is the total number of the pixel elements in the 

detection area. 

 By translating Equation (3) from the polar coordinate to the Cartesian coordinate, we can get: 
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where 𝑘𝑥 = 4𝜋 ∙ 𝑐𝑜𝑠𝜃 /𝜆 and 𝑘𝑦 = 4𝜋 ∙ sin 𝜃 /𝜆. 



When the virtual array distribution which can be calculated form the PCA algorithm is uniform, 

the 𝜎(𝑥, 𝑦)  can be obtained from the 2D Fourier transformation of 𝑠(𝑘𝑥, 𝑘𝑦)  using the small 

angle approximation. 𝜎(𝑥, 𝑦) is distributed in Cartesian coordinate and can be easily translated 

into polar coordinate as 𝜎(𝑟, 𝜃) which is called RAM. Compared to the RDM, RAM has better 

ability to represent the stationary characteristics of the detected environment. 

B．POINT CLOUD GENERATION AND OPTIMIZATION 

The key point to generate accurate point cloud of target using 4D mmWave radar is the design of 

antenna array to distinguish target points in azimuth and elevation directions, with high resolution RDMs 

containing range and velocity information. With the incensement of the number of the MIMO transceiver 

antennas, the virtual antenna elements are increased significantly. The desired function of the 4D 

mmWave radar is then upgraded and promised to better reconstruction of the target details including 

distributions and contours, while the conventional radar still follows the algorithm of target detection.  

Based on the principle of minimum redundancy array (MRA), the virtual array formed by 12 TXs 

and 16 RXs is depicted in Figure 2(a) and the ambiguity function map (AFM) is analyzed and shown in 

Figure 2(b) which is computed from simulation method. 

  

(a) (b) 

Fig. 2. The resolution analysis of the designed array with (a) the virtual array and (b) the ambiguity function map. 

The designed angular resolutions using this antenna array achieve 1 degree in azimuth and 5 degrees 

in elevation respectively. This design provides the mmWave radar sufficient ability to distinguish targets 

in azimuth and elevation direction. 

Theoretically, the signal of weak target can be detected by the system through the low noise 

amplifier (LNA). However, the power of detected signal must be larger than the noise. Considering the 

system loss, the valid detection range can be written as: 
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where 𝐾𝐵0𝑇0𝐹0SNRmin𝐿  

Therefore, the detected target points satisfy two conditions: 

(1) The echo power of the target is larger than the noise base. 

(2) The target point presents a peak form in RDM. 

Only the echo power of the target exceeds the CFAR threshold and the system noise base can the 

valid detected. Therefore, the further points detected are sparser with less details. 

As can be seen from the range profile which is presented in Figure 3, the reflected intensity of the 

objects which have same radar cross section (RCS) exponentially decreases with the increase of the 

distance. 

 

Fig. 3. Range profile comparison of ideal and realistic scenarios. 

With the distance increase, the reflection intensity of radar point cloud will decrease significantly. 

The boundary points can hardly be detected when using CFAR detector with the fixed threshold. Then 

the density of the point cloud is decreased with the distance increase, which is shown in Figure 4. 
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Fig. 4. The density of the point cloud at different distances. 

Therefore, vehicles and roadside points will become confused, resulting in detected size errors in 

areas with high point cloud density as shown in the figure 5. According to the radar equation, the 

reflection power decreases exponentially to the fourth power with increasing distance. Therefore, the 

same target will have different point cloud reflection power at different distances. The categories of point 

cloud become more difficult to be distinguished as the distance increases, and the echo signal approaches 

the system noise base, leading to loss of details. As shown in Figure 5, the roadside point cloud is 

confused with the vehicle target point cloud.  

 

 

Fig. 5. The extracted points of a car in density point cloud distance. 

Since the RAM is a whole projection of detected scene in 1D plan, the demand for point cloud 

density is reduced, which is shown in Figure 6. The 1D projection can completely represent all the targets 

in surveillance area. Therefore, it can be considered to first extract the road edges in RAM. Additionally, 

a unified point cloud clustering method is also considered for the same type of targets at different 
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Fig. 6. The RAM containing roadside in polar coordinate. 

As mentioned above, the same RCS target reflection at different distances will have different point 

densities. Then a dynamic DBSCAN clustering method is proposed whose diagram is described as: 

(1) Calculate the minimum radius value and minimum cluster number using the k-distance method. 

(2) Perform DBSCAN clustering on the point cloud according to the velocity differences. 

(3) Perform DBSCAN clustering on point clouds of each velocity cluster generated from step (2) in 

Cartesian coordinate.  

(4) Remove clusters with small number of points and unreasonable shapes. 

The minimum radius established depends on the a 𝑘-distance graph with 𝑘 selected according 

to the number of data matrix dimensions, for example, twice of the number of data matrix 

dimensions. The 𝑘-distance graph is a topology diagram of the distance from each point to the 𝑘-

th point closest. After sorting these distances, the minimum radius is the distance value of the 

inflection point which can be used in the clustering as the radius threshold. A typical example 

embodiment is illustrated in Figure 7. 

  

(a) (b)  



  

(c)  (d) 

Fig. 7. The point cloud of (a) original generated, (b) after velocity clustering, (c) after the second clustering and (d) the final 

produced. 

V. Target information extraction method 

Based on the output characteristics of mmWave radar targets, in order to obtain better classification 

results for complex scenarios, different types of output data are combined using the UNET model to 

identify the roadside in the bird-eye view with RAM as input images. Combining the advantages of 

spatial-stereo radar point cloud points, the output data of different models is separated and used. The 

final output is fused into the Cartesian coordinate, using another designed NN, with information such as 

categories, sizes, locations, etc.  

A. IMAGE SEGMENTATION AND FILTERING 

In order to classify the detected targets, the RAM and the point cloud generated from RDMs of the 

mmWave radar are transferred into a segmentation module, followed by point cloud cluster filtering. 

Extracting spatiotemporal information from 4D mmWave radar into point clouds, the proposed method 

is illustrated in Figure 8. The proposed method has 2 major parts of a pixel feature learning UNET module 

to extract pixel information from RA images and a spatial fusion module with different coordinate 

systems. 



 

Fig. 8. The proposed segmentation and filtering method. 

Since the RAM is still quite noticeable which can be seen from Figure 8, the target features are 

preserved with the distance extending. RAM needs only 2D information of the target, so the target is 

clearly represented in the RAM. The RAM detection network structure is shown in Figure 9. It consists 

of a contraction path (left) and an expansion path (right). The contraction path follows the typical 

architecture of convolutional networks. It includes repeated applications of two 3x3 convolutions 

(unfilled convolutions), with each convolution followed by a rectified linear unit (ReLU), as well as a 

2x2 max pooling operation with a step size of 2 to perform the down-sampling operation. In each down-

sampling step, we will double the number of feature channels. Each step in the extension path involves 

up-sampling of the feature map, followed by a 2x2 convolution, halving the number of feature channels. 

After cutting the number of feature channels by half using a 2x2 convolution, the feature channels are 

combined with the corresponding cropped feature maps and two 3x3 convolutions in the contraction path, 

with each convolution result is activated using a ReLU. Due to the loss of boundary pixels in each 

convolution, the cropping operation is necessary to be taken. In the final layer, a 1x1 convolution is used 

to map each 64 component feature vector into the desired categories. There are a total of 23 convolutional 

layers in the network. It is crucial to choose the size of the input tile in order to achieve seamless tiling 

of the output segmentation image. It is important to choose the size of the input tiles so that all 2x2 max 

pooling operations are applied to even numbered layers, which have the same size in two dimensions of 

the images. 
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Fig. 8. The RAM detection network structure. 

Additionally, multiple frame overlay is adopted to provide results with higher confidence, which 

can increase the point cloud accuracy and reduce the noise level. The point cloud of each frame of the 

mmWave radar contains individual points such as clutter points and target points. The normalization is 

necessary to transform the heterogeneous data into a same shape. The input data mainly consists of 4 

dimensional information, which are 3D spatial information and 1D velocity information. Coordinate 

transformation is carried out in the subsequent target space coordinates. The velocity is involved in the 

clustering operation. Then the target trajectory can be determined using any tracking method. 

B. POINT CLOUD INFORMATION EXTRACTION 

The point cloud with Doppler velocity has 4D information to be processed. Firstly, the point cloud 

generated after dynamic DBSCAN is sampled using farthest point sampling (FPS) algorithm. Then the 

ball query is taken out which samples some points in a fixed radius distance around the query point and 

outputs the sampling indices. According to the sampling indices, the sampling points in the first step can 

be selected. Meanwhile, a number of points around the selected point are also selected and merged into 

the point set as the grouping result. Finally, the updated points are outputted with the merged point set. 

Then, a Bi-LSTM network is introduced as the sequential information learning module with the attention 

weight features, and a 4D-PointNet inspired by PointNet is also designed to predict the point features. 

For the 4D mmWave radar point cloud, different feature alignment is performed with feature 

transformation matrix using a mini network called T-net. The detailed network structure is illustrated in 

Figure 9. 
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Fig. 8. The network structure of point cloud information extraction. 

C. LOSS FUNCTIONS 

In the context of our image segmentation task, we have designed a composite loss function that 

combines both the Dice Loss and the Focal Loss. This approach is commonly employed in image 

segmentation to enhance segmentation performance and effectively address the issue of class 

imbalance. The Dice Loss, a well-established metric for measuring the degree of overlap between 

predicted and ground truth segmentation masks, encourages the model to generate accurate 

segmentations. It is formulated as follows: 

 Dice Loss =  −
2×∑ (Prediction𝑖×Ground Truth𝑖)𝑖

∑ Prediction𝑖
2+𝑖 ∑ Ground Truth𝑖

2
𝑖

 ( ) 

The Dice Loss focuses on maximizing the overlap between predicted and actual segmentations, 

promoting fine-grained segmentation accuracy. 

In addition to the Dice Loss, we have incorporated the Focal Loss to mitigate the challenges 

posed by class imbalance. The Focal Loss introduces a dynamic scaling factor that emphasizes hard-

to-classify samples, thereby improving the model's sensitivity to rare or critical classes. The Focal 

Loss can be expressed as: 

Focal Loss = −𝛼 × ( − Prediction)𝛾 × log (Prediction) (7) 

where 𝛼 is the factor which controls the balance between positive and negative class samples. 𝛾 

is the factor which adjusts the focusing factor to give more weight to hard samples. 

Moreover, we have introduced the flexibility of adjusting the relative importance of different 

classes within the loss function by utilizing class weights This feature allows us to assign varying 

weights to individual classes, ensuring that the model's training process is attentive to the specific 



requirements and imbalances within our segmentation problem. 

By integrating these components, our composite loss function encourages precise and robust 

image segmentation, even when faced with challenging class distributions, ultimately enhancing the 

model's performance on our segmentation task. 

In this paper, we employ the Cross-Entropy loss function as the training objective for our deep 

learning model. Cross-Entropy loss is widely used in multiclass classification problems and plays a 

pivotal role in our research. This loss function helps quantify the dissimilarity between our model's 

outputs and the actual labels. 

The mathematical expression of the Cross-Entropy loss is as follows: 

L(𝑦, 𝑝) = −∑ (𝑦𝑖 log(𝑝𝑖) + ( − 𝑦𝑖) log( − 𝑝𝑖))
𝑛

𝑖=1
 ( ) 

where L(𝑦, 𝑝)  represents the Cross-Entropy loss, 𝑛  denotes the number of categories in the 

classification task, 𝑦𝑖   stands for the true binary labels, and 𝑝𝑖  represents the predicted 

probabilities for the corresponding categories by the model. 

Our choice is based on the versatility and effectiveness of the Cross-Entropy loss function, 

particularly in multiclass classification problems, guiding our model to learn in the right direction. 

By employing the Cross-Entropy loss function, we can better train our model, allowing it to classify 

more accurately, thus establishing a solid foundation for our research. 

VI. EXPERIMENT AND EVALUATION 

To verify the proposed method in this paper, we carried out experiments with the prototype 

mmWave system which is shown in Figure 9(a). The deployed scenario and system are shown in 

Figure 9(b) and some test scenarios containing targets are shown in Figure 9(c). 

   

(a) (b) (c) 

Fig. 9. (a) The prototype mmWave system, (b) the deployed scenario and system and (c) some test scenarios containing targets. 

A. IOU TESTING 

The experimental data contains objects of the roadside and the target points in the RAM and 



the generated point cloud respectively, which are transferred into the same coordinate system. The 

transformation accuracy is tested by introducing the criterion of intersection over union (IoU) which 

is described as (𝑏1 ∩ 𝑏2)/(𝑏1 ∪ 𝑏2) with two areas of 𝑏1 and 𝑏2. 

  

(a) (b)  

  

(c) (d) 

Fig. 10. (a) The original RAM, (b) the RAM after roadside segmentation using UNET, (c) the 2D point cloud contains roadside 

and (d) the 3D point cloud contains roadside. 

The test IoU rate over the roadside area is shown in Table 1, where we can get the IoU rate is 

larger than 90%. That means the segmentation accuracy of the road edges is high. The road edge 

extracted from RAM can overlap well with the point cloud map. The IoU rate will increase when 

the fixed threshold is relaxed. 

Tab. 1. The tested IoU rate over the roadside area. 

area 1 area 2 IoU rate 

left roadside area X (m) Y (m) 

>90% 

left top -6.829 0 

right top -5.566 0 

left bottom -5.7832 12.36328 

right bottom -4.8427 12.1875 

B. POSITIONING ACCURACY 

To analyze the target positioning accuracy, a test scenario is selected as shown in Figure 11. A 

corner reflector is placed between two stationary cars, and the distances from the corner reflector to 

the left vehicle and the right vehicle are measured and recorded. 
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Fig. 11. The test scenario of target positioning. 

The positioning accuracy is analyzed in Table 2. It can be seen that the positioning error is 

distributed from 0 to a maximum value of about 15%. The overall error is within 30cm, reaching an 

acceptable value in automotive applications. 

Tab. 2. Target positioning accuracy analysis. 

extracted data index 
distance a 

(m) 

distance b 

(m) 
error a error b 

1 2.56 2.325 12.53% 4.03% 

2 2.275 2.015 0.00% -9.84% 

3 2.285 1.885 0.44% -15.66% 

4 2.22 2.065 -2.42% -7.61% 

5 2.52 2.38 10.77% 6.49% 

6 2.2 2.15 -3.30% -3.80% 

7 2.5 2.095 9.89% -6.26% 

8 2.55 2.055 12.09% -8.05% 

9 2.31 2.22 1.54% -0.67% 

10 2.245 2.315 -1.32% 3.58% 

11 2.565 2.245 12.75% 0.45% 

12 2.5 2.345 9.89% 4.92% 

13 2.26 2.4 -0.66% 7.38% 

14 1.975 2.435 -13.19% 8.95% 

15 1.925 2.425 -15.38% 8.50% 

16 2.13 2.395 -6.37% 7.16% 

averaged value 2.31375 2.234375   

measured value 2.275 2.235   

C. TARGET CLASSIFICATION ACCURACY 

The target classification accuracy is tested under the scenario setup which is shown in Figure 

12. In order to obtain a mmWave radar dataset suitable for semantic segmentation and target 

a b



classification, the data collected 80 times containing different targets, such as pedestrians, bicycles 

and cars. 

 

Fig. 12. The test scenario of target classification. 

The collected data is divided into training dataset and testing dataset with the ratio of 3:1. After 

1000 iterations of training, the tested accuracy over the testing dataset of target classification in 

complex scenarios achieves 93.10%. In comparison, it achieves 80.10% using RADNET and 60.78% 

using pointnet++. The confusion matrix of 4 types target classification is shown in Table 3. 

 Tab. 3. The confusion matrix of 4 types target classification. 

 car roadside bicycle pedestrian 

car 100% 0 0 0 

roadside 0 95% 0 0 

bicycle 10% 0 80% 10% 

pedestrian 0 0 0 100% 

The learning rate curves of the loss and accuracy are shown in Figure 13(a) and Figure 13(b).   

  

(a) (b)  

Fig. 13. The learning rate curves of (a) the loss and (b) the accuracy. 

VII. CONCLUSION 

In this paper, a point cloud processing method of mmWave radar over automotive scenario is 

proposed, containing the parts of high quality mmWave radar point cloud generation and target 

information extraction. The RAM is introduced in our work, which is different from the traditional 

mmWave radar system used in the automotive applications, to distinguish the stationary objects in the 



surveillance scenarios. The dynamic DBSCAN is adopted to promote the efficiency of the point target 

clustering. An elaborately designed network is proposed to extract the target information which shows 

better performance than RADNET and pointnet++ through the experiment analysis.  
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