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Abstract—Recent developments in unmanned aerial vehicles (UAVs) and mobile edge computing (MEC) have provided users with
flexible and resilient computing services. However, meeting the computing-intensive and latency-sensitive demands of users poses a
significant challenge due to the limited resources of UAVs. To address this challenge, we present a multi-objective optimization
approach for multi-UAV-assisted MEC systems. First, we formulate a multi-objective optimization problem aiming at minimizing the total
task completion delay, reducing the total UAV energy consumption, and maximizing the total amount of offloaded tasks by jointly
optimizing task offloading, computation resource allocation, and UAV trajectory control. Since the problem is a mixed-integer non-linear
programming (MINLP) and NP-hard problem which is challenging, we propose a joint task offloading, computation resource allocation,
and UAV trajectory control (JTORATC) approach to solve the problem. However, since the decision variables of task offloading,
computation resource allocation, and UAV trajectory control are coupled with each other, the original problem is split into three
sub-problems, i.e., task offloading, computation resource allocation, and UAV trajectory control, which are solved individually to obtain
the corresponding decisions. Moreover, the sub-problem of task offloading is solved by using distributed splitting and threshold
rounding methods, the sub-problem of computation resource allocation is solved by adopting the Karush-Kuhn-Tucker (KKT) method,
and the sub-problem of UAV trajectory control is solved by employing the successive convex approximation (SCA) method. Simulation
results show that the proposed JTORATC has superior performance compared to the other benchmark methods.

Index Terms—Unmanned aerial vehicle (UAV), mobile edge computing, task offloading, computation resource allocation, UAV
trajectory control
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1 INTRODUCTION

W ITH the rapid development of 6G and the Internet
of Things (IoT), the number of smart mobile devices

has shown unprecedented growth, leading to the increas-
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ing proliferation of various innovative mobile applications
[1]. Most of these applications, such as face recognition,
automatic navigation, and image processing, require in-
tensive computation resources and low latency [2]. How-
ever, handling the computation-hungry and real-time data
generated by these applications is challenging due to the
limited resources of mobile devices [3]. In this context,
mobile edge computing (MEC) has been regarded as a
promising solution that allows mobile devices to offload
the computation-intensive and delay-sensitive tasks to prox-
imate edge servers [4], thereby reducing the computation
burden, execution delay, and energy consumption of devices
[5], [6], [7]. However, conventional MEC network relies on
terrestrial infrastructures which are inflexible to deploy due
to the installation cost and environmental limitations.

To overcome the physical restrictions of traditional ter-
restrial MEC systems, unmanned aerial vehicles (UAVs)-
assisted MEC is emerging to offer flexible and low-cost
offloading services due to the high maneuverability, flexibil-
ity, fast deployment, and line-of-sight (LoS) links of UAVs
[8], [9], [10], [11]. By offloading the computation tasks to
the proximate UAVs, mobile users can flexibly enjoy cloud
computing services anywhere and anytime [12], [13], [14].

However, designing an efficient task offloading ap-
proach in the multi-UAV-assisted MEC systems still faces
several challenges. The design of efficient strategy could face
the following challenges. First, due to the heterogeneous
and strict requirements of users, it is complex to deter-
mine efficient task offloading decisions that can satisfy the
diverse requirements of different users under the resource
constraints of UAVs. Second, unlike the powerful cloud
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computing, the UAV-assisted MEC servers are equipped
with restricted computing capabilities due to the weight
limitation of the UAVs. Therefore, it is challenging to effi-
ciently allocate the limited computing resources of UAVs to
guarantee the delay sensitivity and computation intensity
of the tasks. Finally, UAVs are intrinsically limited by the
finite onboard energy, which further limits the endurance of
flight and service. However, performing the computation-
intensive tasks could be time-consuming. Consequently,
energy-efficient trajectory control is crucial but challenging
for UAVs to provide satisfactory offloading service within
the limited flight time. From the perspective of problem
formulation, most current research tends to concentrate on
optimizing a single performance metric of the system, such
as time delay or energy consumption while overlooking the
multi-objective optimization. In terms of algorithm design,
the methods of machine learning such as reinforcement
learning generally face the challenge of difficult convergence
and long training periods, especially in large-scale scenarios.

To address the abovementioned challenges, this work
proposes a multi-objective optimization problem of task
offloading, computation resource allocation, and UAV tra-
jectory control for multi-UAV assisted MEC systems. The
main contributions are summarized as follows:

• We consider a multi-UAV-assisted MEC system. Based
on this system, we formulate a multi-objective opti-
mization problem aimed at minimizing the total task
completion delay, reducing the total UAV energy con-
sumption, and maximizing the total amount of of-
floaded tasks by jointly optimizing task offloading,
computation resource allocation, and UAV trajectory
control. Moreover, the optimization problem is proven
to be a non-convex and mixed-integer non-linear pro-
gramming (MINLP) problem.

• We propose a joint task offloading, computa-
tion resource allocation and UAV trajectory control
(JTORATC) approach to solve the problem. However,
the decision variables of task offloading, computation
resource allocation, and UAV trajectory control are cou-
pled with each other. Thus, we first split the problem
into three sub-problems, i.e., task offloading, compu-
tation resource allocation, and UAV trajectory control.
Then, the sub-problem of task offloading is solved
by using distributed splitting and threshold rounding
methods, and the sub-problem of computation resource
allocation is solved by adopting the Karush-Kuhn-
Tucker (KKT) method. Besides, the sub-problem of UAV
trajectory control is solved by employing the successive
convex approximation (SCA) method. Ultimately, the
proposed JTORATC approach effectively optimizes the
performance of the entire system, reduces the complex-
ity of the problem, and improves the solution efficiency.

• Simulations are conducted and the results show that the
proposed JTORATC achieves superior performance in
terms of objective function value, total task completion
delay, and total UAV energy consumption compared
to several benchmark schemes. Moreover, we find that
the proposed algorithm has better scalability in the
considered scenarios.

The rest of this study is organized as follows. Section 2
reviews the related work. Section 3 introduces the proposed

system model and problem formulation. Section 4 presents
the JTORATC approach. Moreover, the simulation results
are given in section 5. Finally, section 6 summarizes the
paper.

2 RELATED WORK

In this section, we review the research work that are re-
lated to MEC, UAV-assisted MEC, task offloading, resource
allocation, and UAV trajectory control, as well as optimiza-
tion approaches. Moreover, we summarize the differences
between the related works and this work in Table 1.

In recent years, MEC has become an area of intense inter-
est. By offloading the latency-sensitive, compute-intensive
and energy-intensive computing tasks to MEC servers, the
quality of service (QoS) of mobile users can be significantly
improved. For example, Zhang et al. [15] studied energy-
efficient computation offloading (EECO) mechanisms for
MEC in 5G heterogeneous networks. The optimization prob-
lem is formulated to minimize the energy consumption of
the offloading system while considering the energy cost of
both task computing and file transmission. Furthermore,
Mao et al. [16] considered MEC systems with energy har-
vesting devices and proposed an online task offloading algo-
rithm which jointly determines the offload decision, CPU cy-
cle frequency, and transmitted power. Besides, Kuang et al.
[17] studied the joint optimization problem of partial offload
scheduling and resource allocation in MEC systems with
multiple independent tasks, with the aim of minimizing the
weighted sum of execution delay and energy consumption
while ensuring the transmission power constraints of the
tasks. However, the abovementioned works studied task
offloading and resource allocation in MEC with fixed edge
infrastructures, which may not be applicable to the remote
or disaster scenarios with inadequate infrastructures.

To be more flexible in meeting the mobile needs of
UAVs in specific environments and to handle dynamic tasks
efficiently, there has been a growing research interest in task
offloading, resource allocation, and trajectory optimization
for UAV-assisted MEC systems. For example, Li et al. [18]
addressed the problem of maximizing UAV energy effi-
ciency through the joint optimization of UAV trajectory,
user transmit power, and computational load distribution.
Moreover, the authors in [19] explored the problem of
minimizing the total energy consumption by optimizing bit
allocation, time slot scheduling, power allocation, and UAV
trajectory. However, these studies mainly focus on single-
server MEC systems, which may not be applicable to real-
world scenarios, especially for large-scale scenarios with
many users.

To overcome the challenges above, more research has
focused on multi-UAV-assisted MEC environments. For
example, Tun et al. [20] proposed a multi-UAVs assisted
cooperative MEC system integrated with an MEC-enabled
terrestrial base station (BS) to minimize the total delay
experienced by mobile users, studying the joint offloading
decision as well as the allocation of communication and
computing resources under the energy constraints of mobile
users and UAVs. Guo et al. [21] proposed a software defined
network enhanced cooperative multiple UAV-enabled aerial
computing (MUEAC) system to minimize the processing
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TABLE 1
Comparison between Related Works and This Work

Edge computing architecture Optimization objective Optimization variables Method

Reference UAV-assisted
MEC

Multi-UAV-
assisted

MEC

Service
delay

Energy
consumption

Offloaded
tasks

Task
offloading

Resource
allocation

UAV
Trajectory

Control

Distributed splitting,
Threshold rounding,

SCA, KKT
[15] ✕ ✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕
[16] ✕ ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕
[17] ✕ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✕
[18] ✓ ✕ ✕ ✓ ✕ ✓ ✕ ✕ ✕
[19] ✓ ✕ ✕ ✓ ✕ ✓ ✕ ✓ ✕
[20] ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✕ ✕
[21] ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✕ ✕
[10] ✓ ✓ ✕ ✓ ✕ ✓ ✓ ✕ ✕
[22] ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ ✕
[23] ✓ ✕ ✕ ✓ ✕ ✓ ✓ ✕ ✕
[24] ✓ ✓ ✕ ✕ ✓ ✓ ✕ ✓ ✕
[25] ✓ ✓ ✕ ✓ ✕ ✓ ✕ ✓ ✕
[26] ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✕
[27] ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕
[28] ✓ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✕

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

delay of separable tasks, and studied the joint task schedul-
ing and computing resource allocation problem under task
data dependence and UAV energy consumption constraints.
Moreover, Ei et al. [10] studied a multi-UAVs assisted two-
stage MEC system, where UAVs provide computing and
relaying services to mobile devices to minimize the energy
consumption of mobile devices (MDs) and UAVs by jointly
optimizing task offloading, communication as well as com-
puting resource allocation. However, all the studies above
only optimize task offloading and resource allocation, and
the UAVs are either stationary or follow a certain trajectory,
which may not be suitable for dynamic or cooperative UAV
flight scenarios.

To make full use of the flexible mobility of UAVs, some
researches are devoted to integrating UAV trajectory control
into UAVs-assisted MEC systems for optimizing the path
planning of UAVs in dynamic environments and achieving
more efficient task execution and resource allocation. For
example, Yu et al. [22] focused on minimizing the weighted
sum of service latency and UAV energy consumption of
all IoT devices by jointly optimizing UAV location, com-
munication and computing resource allocation, and task
splitting decisions. Moreover, Chen et al. [23] aimed to
minimize UAV energy consumption by jointly optimizing
user offloading decisions, UAV positioning, and computing
resource allocation. However, these studies mainly concen-
trated on UAV deployment while overlooking the trajec-
tory optimization of UAVs, which could lead to inaccurate
decision-making due to the lack of real-time control, espe-
cially in dynamic and complex environments. To address
these issues, researchers have turned their focus to trajectory
optimization in multi-UAV-assisted MEC systems. For ex-
ample, Ji et al. [24] proposed a new scheme that maximizes
minimum throughput among users of UAV services by
jointly optimizing cache placement, UAV trajectory, and
transmission power within a finite time period. Further-
more, Lee et al. [25] investigated a multi-UAV-mobile edge
computing (UAV-MEC) network. By controlling the UAV-
MEC trajectory and offloading ratio, the energy consump-
tion, queue stability, and energy consumption of mobile

devices (MDs) are jointly optimized. Besides, Park et al.
[26] considered the deployment and optimization of MEC-
UAVs for subterahertz communication in remote areas so
that minimizing the energy consumption and latency of
MEC-UAVs and mobile users.

In addition, researchers have adopted various methods
to solve the maximum or minimum optimization problem
in UAV-assisted MEC systems. For example, Wu et al. [27]
studied joint computational offloading, UAV role and loca-
tion selection problems in hierarchical multi-coalition UAV-
assisted MEC networks, and formulated discrete Stackel-
berg games with multiple leaders and followers to capture
hierarchical features and discrete optimization. Moreover,
Zhang et al. [28] proposed the problem of maximizing the
computational efficiency in the multi-UAV assisted MEC
system, and the joint optimization of user association, CPU
cycle frequency, power and spectrum resource allocation
and UAV trajectory scheduling was carried out and the iter-
ative optimization algorithm of double-cycle structure was
used to find the optimal solution. However, the abovemen-
tioned methods may have high computational complexity,
especially when involving large-scale systems or complex
dynamic environments.

The limitations of these previous studies are summa-
rized as follows. First, these works primarily concentrated
on optimizing one single performance of the system, such
as delay and energy. Second, most of these studies only
consider partial decision variables, e.g., task offloading and
resource allocation or UAV trajectory and task offloading.
Finally, most of the algorithms in these studies have high
complexity. To address the limitations of these studies, we
formulate a joint task offloading, computing resource allo-
cation, and UAV trajectory control optimization problem
to jointly minimize the total task completion delay and
the total UAV energy consumption, and maximize the total
amount of offloaded tasks. Moreover, we adopt the methods
of distributed splitting, threshold rounding, KKT, and SCA
to reduce the computational complexity.
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TABLE 2
Summary of Notations

Symbol Description Symbol Description
U The number of users M The number of UAVs
U The set of users M The set of UAVs
H UAV flight altitude B Channel bandwidth
du,m[n] The distance between UAV m and user u in

time slot n
gu,m[n] Channel power gain of UAV m and user

u in time slot n
Ru,m[n] The data transmission rate between user u and

UAV m in time slot n
s The rotor stiffness

pu Transmit power of user u σ2 Noise power
Du[n] The size of the task Cu The computation intensity of the task
fu The computing capability of user u fm,u[n] The computing capability allocated by

UAV m to user u
Tlocal[n] The service delay of user u to offload its task

to UAV m in time slot n
Toff [n] The service delay of user u to process

task locally in time slot n
T comp
m,u [n] Task processing delay T trans

u,m [n] Task transmission delay
P0 The blade profile power of UAV in hover state Pind The induced power of UAV in hover

state
Utip The blade tip speed of the rotor blade v0 The average rotor induced speed
d0 The fuselage resistance ratio A The area swept by UAV blades
Efly

m [n] UAV m flight energy consumption Ecomp
m,u [n] UAV m calculate energy consumption

Vmin The minimum speed of UAV m Vmax The maximum speed of UAV m
κm The effective switching capacitance of UAV m κu Effective switching capacitance of user u

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model, fol-
lowed by the mobility model, communication model and
computation model. Then, we formulate the multi-objective
optimization problem. In addition, the notations associated
with the system model are listed in Table 2 for the sake of
readability.

3.1 System Model

Task Offloading Local Computing
MEC Server Task

UAV Trajectory
UAV 

User
User

User
User

User User

User User

Local Computing

Task Offloading

Fig. 1. Multi-UAV-assisted MEC for task offloading.

As shown in Fig. 1, a multi-UAV assisted MEC sys-
tem is considered, which consists of M rotary-wing UAVs
and U users, denoted as M = {1, 2, . . . ,M} and U =
{1, 2, . . . , U}. For ease of exposition, the continuous system
timeline T is discretized into N time slots with equal time
duration δt = T/N , which is consistent with the coherence
block of the wireless channel. Furthermore, each UAV is
equipped with one or multiple MEC servers to provide
computing services to the users. Besides, in each time slot,
each user could generate a task that can be executed locally
or offloaded to a UAV. The task of user u generated in time
slot n is characterized as < Du[n], Cu, τu >, wherein Du[n]

is the task size (in bits), Cu is computation intensity of the
task (cycles/bit), and τu denotes the deadline of the task.

3.2 Mobility Model
Without loss of generality, we consider a three-dimensional
(3D) Cartesian coordinate system in which the horizontal
position of each user u ∈ U is denoted as wu = [xu, yu]

T.
Moreover, we consider that each UAV flies at a constant
altitude H with the instantaneous horizontal position qm =

[xm[n], ym[n]]
T, acceleration am[n], and velocity vm[n] [29].

Let Vmax be the maximum speed of the UAV, then the
maximum distance that each UAV can travel between the
two stone troughs is expressed as Dmax = Vmaxδt. In
addition, it is critical to ensure a safe distance among UAVs
to avoid collisions, which means that the distance between
any two UAVs should be greater than the minimum safe
distance in any time slot. Therefore, the mobility constraints
of UAVs can be given as follows:

qm[n+ 1] = qm[n] + vm[n]δt +
1

2
am[n]δ2t , ∀m,n, (1a)

vm[n+ 1] = vm[n] + am[n]δt, ∀m,n, (1b)
∥vm[n]∥ ≤ Vmax, ∥vm[n]∥ ≥ Vmin, ∀m,n, (1c)
∥qm[n]− qi[n]∥ ≥ Dmin, ∀m ̸= i, n, (1d)
qm[1] = qm[N ], ∀m, (1e)
∥qm[n+ 1]− qm[n]∥ ≤ Dmax = Vmaxδt, ∀m,n, (1f)

where (1a) and (1b) denote the position update and velocity
update of UAVs, respectively, (1c) represents the speed
constraints, (1d) ensures the safe distance between any two
UAVs to avoid collisions, (1e) indicates that the initial and
final positions of each UAV are fixed at the same location,
and (1f) constrains the maximum flight distance during each
time slot.

3.3 Communication Model
The channel power gain between a user and a UAV is calcu-
lated by incorporating the probabilistic LoS transmissions
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into both small-scale and large-scale fading [30]. For the
uplink communication, the channel power gain between
user u and UAV m at time slot n can be given as:

gu,m[n] = pLoSu,mgLoSu,m[n] + (1− pLoSu,m)gNLoS
u,m [n], (2)

where pLoS represents the probability of LoS link, gLoSu,m[n]
and gNLoS

u,m [n] represent the channel power gain between
user u and UAV m for LoS and NLoS links, respectively,
which is calculated as:

gLoSu,m[n] = |hLoS
u,m[n]|2

(
ILoSu,m[n]

)−1
10

−JLoS
σ
10 , (3a)

gNLoS
u,m [n] = |hNLoS

u,m [n]|2
(
INLoS
u,m [n]

)−1
10

−JNLoS
σ
10 , (3b)

where hLoS
u,m[n] and hNLoS

u,m [n], ILoSu,m[n] and INLoS
u,m [n], J LoS

σ

and J NLoS
σ are the components of small-scale fading, path

loss, and shadowing for LoS and NLoS links, respectively.
For LoS link, these components are detailed as follows.

First, the small-scale fading characteristic of the channel
is captured by using a parametric-scalable and good-fitting
generalized fading model, i.e., Nakagami-m fading [31], and
to distinguish it from the identification of UAV, we use w
to represent the shape parameters in the Nakagami model,
i.e., Nakagami-w. Specifically, hLoS

u,m[n] and hNLoS
u,m [n] follow

the Nakagami distribution with fading parameter wLoS and
wNLoS, which can be given as:

hLoS
u,m[n] =

2
(
wLoS

)wLoS

hLoS
u,m[n]2w

LoS−1e

(
−wLoSh2

p

)
Γ (wLoS) pw

LoS , (4a)

hNLoS
u,m [n] =

2
(
wNLoS

)wNLoS

hNLoS
u,m [n]2w

NLoS−1e

(
−wNLoSh2

p

)
Γ (wNLoS) pw

NLoS ,

(4b)
where p is the average received power in the fading enve-
lope, and Γ(w) is the Gamma function.

Second, the path loss between user u and UAV m for
LoS/NLoS link can be given as:

ILoSu,m[n] =
(4πd0fc)

2

c2

(
du,m[n]

d0

)βLoS

, (5a)

INLoS
u,m [n] =

(4πd0fc)
2

c2

(
du,m[n]

d0

)βNLoS

, (5b)

where fc is the carrier frequency, c is the speed of light,
d0 is the reference distance, du,m[n] is the distance between
user u and UAV m, and βLoS and βNLoS are the path loss
exponents for LoS and NLoS links, respectively.

Finally, the shadowing captures the signal attenuation
caused by shadowing in transmission, and it can be mod-
eled as a zero-mean Gaussian distributed random variable,
which is as follows:

J LoS
σ [n] ∼ O

(
0,
(
σLoS

)2)
, (6a)

J NLoS
σ [n] ∼ O

(
0,
(
σNLoS

)2)
, (6b)

where σLoS and σNLoS are the standard deviation of shad-
owing for LoS and NLoS links, respectively [30].

Accordingly, in time slot n, the data transmission rate
between user u and UAV m can be given as:

Ru,m[n] = B log2
(
1 +

pugu,m[n]

σ2

)
, (7)

where B is the channel bandwidth, pu is the transmit power

of user u, and σ2 is the noise power.

3.4 Computation Model

This section presents the service delay, energy consumption,
and total amount of offloaded tasks.

3.4.1 Service Delay
The service delay depends on the task offloading decision
au,m[n], which indicates whether the task of user u is
offloaded to UAV m (i.e., au,m[n] = 1) or processed locally
(i.e., au,m[n] = 0).

Local Computing. The service delay of user u to process
task Ku[n] locally in time slot n can be given as:

Tlocal[n] =
Du[n]Cu

fu
, (8)

where fu denotes the computing capability of user u.
UAV-Assisted Computing. The service delay of user u to

offload task Ku[n] to UAV m in time slot n mainly consists
of the transmission delay and processing delay. Specifically,
the transmission delay can be given as:

T trans
u,m [n] =

Du[n]

Ru,m[n]
. (9)

Moreover, the processing delay can be expressed as:

T comp
m,u [n] =

Du[n]Cu

fm,u[n]
, (10)

where fm,u indicates the computing capability allocated by
UAV m to the user u.

Therefore, by combining Eqs. (9) and (10), the service
delay for UAV-assisted computing can be calculated as:

Toff [n] =
Du[n]Cu

fm,u[n]
+

Du[n]

Ru,m[n]
. (11)

According to Eqs. (8) and (11), the total task completion
delay for all users across N time slots can be calculated as:

Ttotal =
N∑

n=1

U∑
u=1

M∑
m=1

au,m[n]Toff [n] + (1− au,m[n])Tlocal[n]

=
N∑

n=1

U∑
u=1

M∑
m=1

au,m[n] (Toff [n]− Tlocal[n]) + Tlocal[n].

(12)
Given that the results are typically much smaller in

comparison to the input data for most applications, the
result download delay is ignored [32].

3.4.2 Energy Consumption
Completing tasks could impose additional costs of energy
consumption on both users and UAVs.

Local Computing. The energy consumption of user u to
process task Ku[n] locally in time slot n can be given as:

Ecomp
local [n] = κu(fu)

2Du[n]Cu, (13)
where κu denotes the effective capacitance coefficient of
user u, which depends on the chip structure of the CPU
[33].

UAV-Assisted Edge Computing. The energy consumed
by UAV m to process task Ku[n] in time slot n can be given
as [34]:

Ecomp
m,u [n] = κm(fm,u[n])

2Du[n]Cu, (14)
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where κm represents the effective switching capacitance that
depends on the CPU architecture.

UAV Fight. The propulsion power consumption of UAV
m flying at speed vm[n] can be given as [35], [36]:

Efly
m [n] =

(
P0

(
1 +

3
∥∥vm[n]

∥∥2
U2

tip

)
+ Pind

(√√√√
1 +

∥∥vm[n]
∥∥4

4v40

−
∥∥vm[n]2

∥∥
2v20

)1/2
+

1

2
d0ρ0|sA

∥∥vm[n]3
∥∥)δt,

(15)
where P0 is the blade profile power, Pind is the induced
power, Utip is the blade tip speed of the rotor blade, and v0 is
the average rotor induced speed. Moreover, d0 indicates the
fuselage resistance ratio, ρ0 is the air density, s is the rotor
stiffness, and A indicates the area swept by UAV blades.

According to Eqs. (14) and (15), the total energy con-
sumption of the UAVs across N time slots is mainly incurred
by task execution and flight, which can be given as:

Etotal =
N∑

n=1

( U∑
u=1

M∑
m=1

(
Efly

m [n] + au,m[n]Ecomp
m,u [n]

))
. (16)

3.4.3 Total Amount of Offloaded Tasks
The total amount of offloaded tasks can reflect the service
quality provided by UAVs, which can be calculated as:

Ktotal =
N∑

n=1

( U∑
u=1

M∑
m=1

au,m[n]Du[n]
)
. (17)

3.5 Problem Formulation
This work aims to simultaneously minimize the total task
completion delay, minimize the total UAV energy con-
sumption, and maximize the total amount of offloaded
tasks by optimizing the decisions of task offloading A =
{au,m[n],∀u,m, n}, computation resource allocation F =
{fm,u[n],∀u ∈ U0,m, n}, and UAV trajectory control Q =
{qm[n],∀m,n}. Accordingly, the multi-objective optimiza-
tion problem can be formulated as:

P : min
A,F,Q

{Ttotal, Etotal, −Ktotal} (18a)

s.t. au,m[n] ∈ {0, 1}, ∀u,m, n, (18b)
M∑

m=1

au,m[n] ≤ 1, ∀u,m, n, (18c)

U∑
u=1

au,m[n] ≤ 1, ∀u,m, n, (18d)

au,m[n] · Tlocal[n] ≤ τu, ∀u,m, n, (18e)
au,m[n] · Toff [n] ≤ τu, ∀u,m, n, (18f)
0 ≤ fm,u[n] ≤ fmax

m , ∀m,n, (18g)
U0∑
u=1

fm,u[n] ≤ fmax
m , ∀u,m, n, (18h)

(1a) ∼ (1f). (18i)
Constraints (18b)-(18d) represent the task offloading con-
straints of users. Constraints (18e) and (18f) indicate the
deadline of the tasks. Constraints (18g) and (18h) limit the
computation resource of UAV. Moreover, constraint (18i)
represents the mobility constraint of UAV.

Theorem 1. Problem P is a non-convex and NP-hard MINLP.

Proof. Problem P involves binary variables (i.e., task of-
floading A) and continuous variables (i.e., computation
resource allocation F and UAV trajectory control Q), while
the inequalities in (1c) and (1d) are non-convex constraints.
Consequently, problem P is an MINLP problem, which is
also non-convex and NP-hard. ■

It can be deduced from Theorem 1 that it is difficult
to find an optimal solution to problem P due to the NP
hardness, which motivates us to propose the JTORATC.

4 THE PROPOSED JTORATC
In this section, the JTORATC is proposed to solve the formu-
lated optimization problem. First, we transform the original
multi-objective optimization problem into a single-objective
optimization problem to simplify complexity, unify evalua-
tion criteria, and facilitate trade-offs of different objectives.
Then, we split the single-objective optimization problem
into three sub-problems of task offloading, computation
resource allocation, and UAV trajectory control based on
the block alternate descent method, which alternates the
solution of each sub-problem iteratively. Specifically, we em-
ploy distributed splitting and threshold rounding methods
to solve the sub-problem of task offloading. Moreover, the
sub-problem of computation resource allocation is solved
by adopting KKT method, and the sub-problem of UAV
trajectory control is solved by employing SCA method.

4.1 Problem Reformulation
Similar to [37], we convert the multi-objective optimization
problem into a single-objective optimization problem by
using the right-of-use coefficient method. Consequently, the
objective function can be rewritten as:
ρ(A,F,Q) = w1Ttotal + w2Etotal − w3Ktotal

=
N∑

n=1

U∑
u=1

M∑
m=1

w1 (au,m[n] (Toff [n]− Tlocal[n]) + Tlocal[n])

+ w2

(
Efly

m [n] + au,m[n]Ecomp
m,u [n]

)
− w3 (au,m[n]Du[n]) ,

(19)
where the non-negative parameters w1, w2, and w3 denote
the weight factors of the delay, energy consumption, and
amount of offloaded tasks, respectively. Note that the weight
coefficients can be adjusted according to the user preferences
on the objectives. Then, the original multi-objective opti-
mization problem P is transformed into a single-objective
optimization problem P1, which is expressed as follows:

P1 : min
A,F,Q

ρ (A,F,Q) (20a)

s.t. au,m[n] ∈ {0, 1}, ∀u,m, n, (20b)
M∑

m=1

au,m[n] ≤ 1, ∀u,m, n, (20c)

U∑
u=1

au,m[n] ≤ 1, ∀u,m, n, (20d)

au,m[n] · Tlocal[n] ≤ τu, ∀u,m, n, (20e)
au,m[n] · Toff [n] ≤ τu, ∀u,m, n, (20f)
0 ≤ fm,u[n] ≤ fmax

m , ∀m,n, (20g)
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U0∑
u=1

fm,u[n] ≤ fmax
m , ∀u,m, n, (20h)

(1a) ∼ (1f). (20i)
This transformation reduces the difficulty of the orig-

inal formulated optimization problem, avoids the metric
differences between different objectives, and permits flexible
handling of objectives through weight adjustments.

However, the transformed optimization problem is still
difficult to solve due to the convex objective function and
non-convex constraints. Considering that the decision vari-
ables of task offloading, computation resource allocation,
and UAV trajectory control are coupled with each other,
we split the single-objective optimization problem into three
sub-problems of task offloading, computation resource al-
location, and UAV trajectory control based on the block
alternate descent method.

Remark 1. If problem P1 is split into three sub-problems,
each sub-problem can be transformed into a convex optimization
problem and can be solved using the existing methods. However,
splitting problem P1 into two sub-problems may compromise
flexibility, solving efficiency, and complexity. For example, if
the original problem is split into the sub-problems of P1.1 :
minA,F ρ (A,F) and P1.2 : minQ ρ (Q), or into the sub-
problems of P1.1 : minA,Q ρ (A,Q) and P1.2 : minF ρ (Q),
combining binary variable A and continuous variable F or
Q into a single sub-problem might limit the ability to apply
different methods tailored to each variable type. Furthermore, if
the problem is split into sub-problems of P1.1 : minA ρ (A) and
P1.2 : minF,Q ρ (F,Q), the mixed continuous variables could
further add the complexity on solving the problem. Thus, it is
reasonable to split the original optimization problem into three
sub-problems.

4.2 Task Offloading
Given the computation resource allocation F̂ =
{F̂m,u[n],∀u ∈ U0,m, n} and UAV trajectory control
Q̂ = {q̂m[n],∀m,n}, the task offloading optimization
problem can be expressed as:

P1.1 : min
A

ρ
(
A, F̂, Q̂

)
(21a)

s.t. au,m[n] ∈ {0, 1}, ∀u,m, n, (21b)
M∑

m=1

au,m[n] ≤ 1, ∀u,m, n, (21c)

U∑
u=1

au,m[n] ≤ 1, ∀u,m, n, (21d)

au,m[n] · Tlocal[n] ≤ τu, ∀u,m, n, (21e)
au,m[n] · Toff [n] ≤ τu, ∀u,m, n. (21f)

Problem P1.1 is still non-convex due to the constraint
(21b), which involves the binary variable au,m[n]. Therefore,
we first transform problem P1.1 into a convex problem by
using the distributed splitting method. Then, the threshold
rounding method is adopted to convert the relaxed contin-
uous variables back into binary variables.

For the non-convex constraint (21b), we first employ
the distributed splitting method to transform the binary
variables into continuous variables. In specific, the variable

of task offloading A is split into two parts, i.e., X and Y as
follows:

X = {xu
a [n] | xu

a [n] = 1− au[n], ∀u, n} , (22a)
Y = {yma [n] | yma [n] = am[n], ∀m,n} , (22b)

where au[n] = 1 indicates that the task is processed locally,
and am[n] = 1 means being offloaded to the UAV. Then, We
slack the variables into continuous variables as follows:

X ≜

{
U∑

u=1

xu
a [n] = 1, xu

a [n] ∈ [0, 1]

}
, (23a)

Y ≜

{
M∑

m=1

yma [n] = 1, yma [n] ∈ [0, 1]

}
. (23b)

Based on the above steps, problem P1.1 is transformed into
problem P1.1′ as follows:

P1.1′ : min
X,Y

ρ
(
X,Y, F̂, Q̂

)
(24a)

s.t.
M∑

m=1

yma [n] ≤ 1, ∀u,m, n, (24b)

U∑
u=1

xu
a [n] ≤ 1, ∀u,m, n, (24c)

xu
a [n] · Tlocal[n] ≤ τu, ∀u,m, n, (24d)

yma [n] · Toff [n] ≤ τu, ∀u,m, n, (24e)
(23a), (23b). (24f)

Theorem 2. Problem P1.1′ is a convex non-linear programming
(NLP) problem.

Proof. Since the computation resource allocation and UAV
trajectory control have been fixed, Efly

m [n] and E
comp
m,u [n] are

fixed values that do not affect the convexity of problem
P′

1.1. Consequently, the objective function ρ is the sum of
three linear expressions about xu

a [n] and yma [n], rendering it
a linear function. Besides, two variables (i.e., X and Y) are
involved in the sub-problem. Therefore, problem P1.1′ is a
convex NLP problem [38]. ■

According to Theorem 2, solving problem P1.1′ directly
remains challenging since it is a convex NLP. Therefore, we
iteratively optimize X and Y by splitting P1.1′ . Specifically,
it can be expressed as:

PX
1.1′ : min

X
ρ
(
X, F̂, Q̂

)
(25a)

s.t. (24c), (24d), (23a). (25b)

PY
1.1′ : min

Y
ρ
(
Y, F̂, Q̂

)
(26a)

s.t. (24b), (24e), (23b). (26b)

Then, the optimal solution of Xr can be obtained by apply-
ing CVX. However, Xr is a continuous variable within the
closed interval of [0, 1] while the decision of task offloading
is a binary variable. Hence, the threshold rounding method
[39] is applied to transform the relaxed Xr into binary
variables. Specifically, each element x∗ ∈ Xr is transformed
as:

x∗ =

{
1, if x∗ ≥ δ,
0, otherwise, (27)

where δ ∈ (0, 1) is a positive rounding threshold.
Therefore, the optimal decisions of task offloading for
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users can be obtained as X∗, and problem PX
1.1′ is solved.

Similarly, problem PY
1.1′ can be solved using the analogous

method. As a result, the optimal solutions of task offloading
can be obtained as X∗ and Y∗, and thus Ar can be obtained.

However, the integrity gap is significant because the
rounding process from continuous variables to binary vari-
ables may violate the constraint. Therefore, to overcome this
issue after rounding, we denote ∆1 and ∆2 as the maximum
violation of constraints (24c) and (24d), respectively. As
described in [40], the integrity gap ζ as follows:

ζ = min
X

ρ

ρ+ ξ∆
, (28)

where ∆ = ∆1+∆2, and ζ is the weight of ∆. Furthermore,
the optimal solutions are accepted when ζ = 1, which is
proved by Theorem 3 .

Theorem 3. There is no violation of the constraints when ζ = 1.

Proof. Taking X∗ as an example, constraints (24c) and (24d)
are modified as follows:

U∑
u=1

xu
a [n] ≤ 1 + ∆1, (29a)

xu
a [n]Tlocal[n] ≤ τu +∆2, (29b)

where ∆1 and ∆2 are obtained as follows:

∆1 = max

{
U∑

u=1

xu
a [n]− 1, 0

}
, (30a)

∆2 = max {xu
a [n]Tlocal[n]− τu, 0} , (30b)

where the solution of ρ is obtained through relaxing the
variables X, while the solution of ρ + ξ∆ is obtained after
rounding the relaxed variables. We consider that the best
rounding is achieved when ζ (ζ ≤ 1) is closer to 1. In other
words, ζ = 1, when ∆1 = 0 and ∆2 = 0. Similarly, the same
proof also applies to Y∗. ■

4.3 Computation Resource Allocation
Given the optimized task offloading Ar ={
aru,m[n],∀u,m, n

}
for users and the UAV trajectory

control Q̂ = {q̂m[n],∀m,n}, the computation resource
allocation problem can be expressed as:

P1.2 : min
F

ρ
(
Ar,F, Q̂

)
(31a)

s.t. 0 ≤ fm,u[n] ≤ fmax
m , ∀m,n, (31b)

U0∑
u=1

fm,u[n] ≤ fmax
m , ∀u,m, n. (31c)

It can be deduced from Theorem 4 that (31a) is con-
vex. The sub-problem of computation resource allocation
is solved by adopting the KKT method. This is because
KKT method can effectively deal with complex problems by
transforming original problems into optimization problems
with equality constraints, and improve the solving efficiency
when considering multiple constraints.

Theorem 4. Problem P1.2 is a convex optimization problem.

Proof. The first-order derivative of ρ with respect to fm,u[n]
is calculated as:
∂ρ

∂fm,u
= −

aru,m[n]Du[n]Cu

fm,u[n]2
+2κmaru,m[n]Du[n]Cufm,u[n].

(32)

The second-order derivative of ρ with respect to fm,u[n]
is calculated as:

∂2ρ

∂f2
m,u

= −
2aru,m[n]Du[n]Cu

fm,u[n]3
+2κmaru,m[n]Du[n]Cu. (33)

It is clear that the second derivative ∂2ρ
∂f2

m,u
≥ 0, and

objective function ρ is a convex function with regard to
fm,u[n]. Therefore, problem P1.2 is convex and has an
optimal solution. ■

Hence, the slater condition is satisfied and the problem
can be solved by using partial Lagrange function, which is
formulated as:

L(F, λ) = ρ(Ar,F, Q̂) + λ

(
U0∑
u=1

fm,u[n]− fmax
m

)
, (34)

where λ ≥ 0 is the Lagrange multiplier related to the
computation resource constraint of UAV.

Furthermore, the KKT conditions are used to obtain the
optimal computation resource allocation Fr. Specifically, by
differentiating L(F, λ) with respect to fr

m,u[n] and setting
the result as 0, which can be expressed as:

2κmaru,m[n]Du[n]Cuf
r
m,u[n]

3 + λ∗fr
m,u[n]

2

− aru,m[n]Du[n]Cu = 0. (35)

Then, the optimal computation resource allocation so-
lution Fr can be achieved by applying the bisection al-
gorithm [41], as shown in Algorithm 1. Specifically, the
search accuracy threshold ε, lower bound λmin and upper
bound λmax are set firstly (Line 1). Then, enter the loop of
iterations until condition λmax − λmin ≥ ε is satisfied (Line
2). Furthermore, in each iteration, the algorithm determines
the value of λ by bisection and performs the calculation of
the computation resource allocation fr

m,u[n], then compares
it with the maximum resource owned by the UAV fmax

m and
updates λ if the condition is met (Lines 3 to 12).

Algorithm 1: Bisection Algorithm-based Computa-
tion Resource Allocation

Input: The maximum resource owned by the UAV
fmax
m .

Output: The optimal computation resource
allocation Fr = {fr

m,u[n],m ∈M}.
1 Initialization: Search accuracy threshold: ε, the

lower bound λmin = 0 and the upper bound
λmax = λbound;

2 while λmax − λmin ≥ ε do
3 Define λ = λmin+λmax

2 ;
4 for u ∈ U0 do
5 Compute fr

m,u[n] by substituting λ into Eq.
(35);

6 end
7 if fr

m,u[n] ≥ fmax
m then

8 λmin = λ;
9 else

10 λmax = λ;
11 end
12 end
13 return Fr = {fr

m,u[n],m ∈M}.
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4.4 UAV Trajectory Control

Given the optimized decisions of task offloading Ar ={
aru,m[n],∀u,m, n

}
and computation resource allocation

Fr =
{
fr
m,u[n],∀u ∈ U0,m, n

}
, the UAV trajectory control

problem can be expressed as:
P1.3 : min

Q
ρ (Ar,Fr,Q) (36a)

s.t. qm[n+ 1] = qm[n] + vm[n]δt +
1

2
am[n]δ2t , ∀m,n,

(36b)
vm[n+ 1] = vm[n] + am[n]δt, ∀m,n, (36c)
∥vm[n]∥ ≤ Vmax, ∥vm[n]∥ ≥ Vmin, ∀m,n, (36d)
∥qm[n]− qi[n]∥ ≥ Dmin, ∀m ̸= i, n, (36e)
qm[1] = qm[N ], ∀m, (36f)
∥qm[n+ 1]− qm[n]∥ ≤ Dmax = Vmaxδt, ∀m,n.

(36g)

Since the constraints (36d) and (36e) are non-convex, the
sub-problem P1.3 is non-convex. In view of the fact that
the SCA method shows reliable convergence when dealing
with non-convex optimization problems, and its property of
effectively handling complex constraints, we choose to use
SCA method to solve the sub-problem of UAV trajectory
control, so as to improve the efficiency and speed of problem
solving.

According to Lemma 1, we can transform the non-
convex constraint into a lower bound on a convex function.

Lemma 1. For a given local point xr, we have the following
inequality:

x2 ≥ 2xr (x− xr) + (xr)
2
. (37)

Proof. we first define a quadratic function as follows: f(x) =
x2. It can be easily observed that f(x) is a convex function.
Since any convex function can obtain its lower bound by
adopting its first-order Taylor expansion at a local point, the
inequality holds in (37) [24]. ■

For the non-convex constraint (36d), we first rewrite the
non-convex constraints in (36d) as:

∥vm[n]∥2 ≥ V 2
min, ∥vm[n]∥2 ≤ V 2

max. (38)

Furthermore, according to Lemma 1, given the local point
vrm[n], we have:

∥vm[n]∥2 ≥ ∥vrm[n]∥2 + 2(vrm[n])
T
(vm[n]− vrm[n])

≜ ϑr
m[n]. (39)

Therefore, the non-convex constraint (36d) can be bounded
as:

ϑr
m[n] ≥ V 2

min, ϑ
r
m[n] ≤ V 2

max. (40)

For the non-convex constraint (36e), we introduce an
auxiliary variable Dm,i[n] as:

Dm,i[n] = ∥qm[n]− qi[n]∥ , ∀n,m ̸= i. (41)

Furthermore, since the distance between any two UAVs in
the system should be greater than or equal to the defined
safe distance, Eq. (41) can be further rewritten as

∥∥Dm,i

∥∥2 ≥
D2

min. Thus, given the fixed point Dr
m,i[n], we have:

∥Dm,i[n]∥2 ≥ 2
(
Dr

m,i[n]
)T

(Dm,i[n] −Dr
m,i[n]

)
+
∥∥Dr

m,i[n]
∥∥2 . (42)

Therefore, for the given points of UAV qr
i [n] and qr

m[n], the
non-convex constraint (36e) can be converted to:

D2
min ≤ ∥qr

m[n] + qr
i [n]∥

2
+ 2 (qr

m[n]− qr
i [n])

T

× (qm[n]− qi[n]− qr
m[n] + qr

i [n])

≜ ζrm,i[n], ∀n,m ̸= i. (43)
In conclusion, according to (40) and (43), sub-problem

P1.3 can be transformed into a convex problem P1.3′ by
introducing the auxiliary variables ϑr

m[n] and ζrm,i[n], which
is as follows:

P1.3′ : min
Q

ρ (Ar,Fr,Q) (44a)

s.t. ϑr
m[n] ≥ V 2

min, ϑ
r
m[n] ≤ V 2

max, ∀m,n, (44b)

ζrm,i[n] ≥ D2
min, ∀n,m ̸= i, (44c)

(36b), (36c), (36f), (36g). (44d)
It can be directly solved by existing optimization software
such as CVX [42].

Theorem 5. Problem P1.3′ does not change the optimality of
problem P1.3, i.e., ρ1.3′ (Ar,Fr,Q) ≤ ρ1.3 (A

r,Fr,Q).

Proof. By applying the lower bound results in (40) and (43),
it can be deduced that the set of feasible solutions for sub-
problem P1.3′ is included within that for P1.3. Accordingly,
the objective function value obtained from P1.3′ is always
less than or equal to that from P1.3, which indicates that
there exists at least one local optimal solution [24]. ■

4.5 Main Steps of JTORATC and Analysis
In this section, the main steps of the JTORATC are shown in
Algorithm 2. First, the decision parameters of task offload-
ing, computation resource allocation, UAV trajectory, and
iteration numbers are initialized (Line 1). Then, the optimal
decisions of task offloading, computation resource alloca-
tion and UAV trajectory control are obtained by solving the
sub-problems P1.1, P1.2 and P1.3 alternately (Lines 2 to 8).
In addition, the convergence and computational complexity
of JTORATC are proved respectively.

4.5.1 Convergence and Computation Complexity
The convergence of JTORATC is analyzed as follows:

ρ (Ar,Fr,Qr)
(a)

≥ ρ
(
Ar+1,Fr,Qr

)
, (45a)

(b)

≥ ρ
(
Ar+1,Fr+1,Qr

)
, (45b)

(c)

≥ ρ
(
Ar+1,Fr+1,Qr+1

)
. (45c)

Since task offloading is solved for a given resource allocation
and UAV trajectory, the inequality (45a) holds. Furthermore,
inequality (45b) is satisfied because the KKT condition is
introduced to solve resource allocation sub-problem. More-
over, the inequality (45c) is due to the sub-optimality of
UAV trajectory. Besides, the objective function ρ (A,F,Q)
is always positive owing to its non-negative expression.
Therefore, the objective function is always non-increasing
after every iteration, which is also finitely lower-bounded.

The computational complexity of problem P1.1 is
O
(
K
(
log2(

1
ϵ + 1

))
[43] based on the analysis of Theorem

2 and Theorem 3, where K = U + M , U is the number
of users, M is the number of UAVs, and ϵ is the tol-
erance of accuracy. Furthermore, problem P1.2 is solved
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Algorithm 2: JTORATC

Input: Task offloading A0, computation resource
allocation F0, UAV trajectory Q0, and
iteration index r0.

Output: Optimal task offloading Aopt, computation
resource allocation Fopt and UAV trajectory
Qopt.

1 Initialization: The iteration index r = 1, the
tolerance of accuracy ϵ = 10−4, A0 = ∅;

2 repeat
3 Fix {Fr,Qr}, obtain the optimal solution of the

problem P1.1 is Ar+1;
4 Fix

{
Ar+1,Fr,Qr

}
, obtain the optimal solution

of the problem P1.2 based on Algorithm 1 is
Fr+1;

5 Fix
{
Ar+1,Fr+1,Qr

}
, obtain the optimal

solution of the problem P1.3 is Qr+1;
6 Update {A,F,Q}r ←

{
Ar+1,Fr+1,Qr+1

}
and

r = r + 1;
7 until ρr+1−ρr

ρr
≤ ϵ;

8 return {Aopt,Fopt,Qopt}.

based on the bisection algorithm presented in Algorithm
1, and its computational complexity can be calculated as
O
(
log2

(
λmax−λmin

ε

))
[41], where λmin and λmax are the

lower and upper bounds of λ, respectively, and ε denotes
the search accuracy. Moreover, problem P1.3 involves solv-
ing non-convex problem, and the computational complexity
is O(M3.5 log2(

1
ϵ )) [44]. Therefore, the proposed JTORATC

approach converges in polynomial, and the computational
complexity is O

(
Ic
(
K
(
log2(

1
ϵ + 1

)
+ log2

(
λmax−λmin

ε

)
+

M3.5 log2(
1
ϵ )
))

, where Ic is the number of outer iterations
of Algorithm 2.

5 SIMULATION RESULTS

In this section, simulation results are presented to validate
the effectiveness of the proposed approach.

5.1 Simulation Setup

We perform simulations to verify the validity of our pro-
posed JTORATC method. Specifically, all the simulations
are performed in MATLAB R2022b on a desktop com-
puter equipped with an Intel(R) Core(TM) i7-8750H CPU
@ 2.20GHz 2.21GHz and 8 GB RAM.

Scenarios. We consider a multi-UAV-assisted MEC sys-
tem where 2 UAVs, 4 UAVs and 6 UAVs are deployed to
offer offloading services to 8 users in a 2500 × 3000 m2

rectangular area. The timeline is set as T = 100 s which
is divided into 50 time slots.

Parameters. The default values of the simulation param-
eters are listed in Table 3.

Benchmarks. This work evaluates the proposed
JTORATC in comparison with the following schemes.

• Random offloading and JTORATC-based resource allocation
and trajectory control (ROJRATC): the task offloading
strategies of users are decided randomly, while the
computation resource allocation and the trajectories of
UAVs are decided based on the proposed JTORATC.

TABLE 3
Simulation parameters

Symbol Meaning Default value
fu Computing capability of user

u
340 MHz

pu Transmission power of user u 30 dBm
τu Deadline of the task [0.1, 75]s
H Fixed flight altitude of UAV m 100 m
qI
1 Initial position of UAV1 [800, 1200]

qI
2 Initial position of UAV2 [2000, 1000]

Vmin Minimum speed of UAV m 20 m/s
Vmax Maximum speed of UAV m 60 m/s
fmax
m Computing capability of UAV

m
1200 MHz

κm Effective switching
capacitance of UAV m

10−27

Dmin Safe distance between UAVs 10 m
B Channel bandwidth 20 MHz
σ2 Noise power -100 dBm

• Nearby offloading and JTORATC-based resource allocation
and trajectory control (NOJRATC): the tasks of each user
are offloaded to the nearest UAV, while the computa-
tion resource allocation and the trajectory control are
decided based on the proposed JTORATC.

• Many-to-many matching-based offloading and JTORATC-
based resource allocation and trajectory control (MOJRATC):
the task offloading strategies are decided by using a
matching-to-matching mechanism [45], while the com-
putation resource allocation and the trajectories of
UAVs are decided based on the proposed JTORATC.

• Equalizing resources, JTORATC-based offloading and trajec-
tory control (ERJOTC): the computation resource alloca-
tion of UAVs are decided averagely while the strategies
of task offloading and trajectory control are determined
based on the proposed JTORATC.

• JTORATC-based offloading and resource allocation, circular
trajectory (JORACT): the task offloading strategies and
the computation resource allocation are decided based
on the proposed JTORATC, while the UAVs fly follow-
ing the circular trajectories.

• JTORATC-based offloading and resource allocation, prede-
fined trajectory (JORAPT): the task offloading strategies
and the computation resource allocation are decided
based on the proposed JTORATC, while the UAVs
follow predefined trajectories.

5.2 Evaluation Results
In this section, we first present simulation results to eval-
uate the performance of our proposed JTORATC. Then,
we compare the effects of different scenario setups on the
performance of the proposed JTORATC and benchmark
schemes.

5.2.1 System Performance
Figs. 2(a), 2(b), 2(c), and 2(d) show the comparison results
of the objective function value, total task completion de-
lay, total UAV energy consumption, and total amount of
offloaded tasks of seven approaches with the increasing of
the number of UAVs. It can be observed from Fig. 2 that
as the number of UAVs increases, the objective function
value and total UAV energy consumption of all approaches
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Fig. 2. System performance with UAV computation capacity. (a) Objective function value. (b) Total task completion delay. (c) Total UAV energy
consumption. (d) Total amount of offloaded tasks.

except the NOJRATC approach increase. This is because that
the increase in the number of UAVs may lead to complex
task scheduling, fierce competition for computing resources
and cross-conflict of trajectories. However, considering the
spatio-temporal relationship of tasks, the NOJRATC simpli-
fies task scheduling, effectively uses resources and reduces
conflicts on flight trajectories.

Moreover, the proposed JTORATC maintains superior
performance compared to other approaches as the number
of UAVs increases, and this can be attributed to several rea-
sons as follows. First, ROJRATC, NOJRATC and MOJRATC
mainly focus on optimizing the task offloading. The ran-
dom offloading of ROJRATC, the offloading of the nearest
MEC server of NOJRATC, and the matching offloading of
MOJRATC may lead to inflexibly resource allocation of the
MEC servers, triggering congestion and excessive resource
usage. Second, ERJOTC mainly focuses on optimizing the
computation resource allocation. It can be observed from
Fig. 2(c) that as the number of UAVs increases, ERJOTC
is slightly better than the proposed JTORATC in terms of
total UAV energy consumption, but far worse than the
proposed JTORATC in terms of the objective function value
and total task completion delay. This is because the pro-
posed JTORATC allows for more flexible task collaborative
optimization, adaptation to different task requirements and
dynamic changes, as well as latency reduction through
parallel processing, thus improving the overall system per-
formance, while ERJOTC can avoid excessive concentration
of resources on a few UAVs. Furthermore, JORACT and
JORAPT mainly focuses on the UAV trajectory control. The
circular trajectory of JORACT and predefined trajectory of
JORAPT have poor performance compared with the pro-
posed JTORATC. This is because the proposed JTORATC
allows dynamic adjustment of paths to accommodate real-
time changes, resulting in more efficient and flexible task
execution.

Accordingly, it can be concluded that the proposed
JTORATC achieves optimal performance in multi-UAV-
assisted MEC systems compared to other approaches.

5.2.2 Performance Evaluation
In this section, we evaluate the impact of different parame-
ters on the system performance based on two UAVs. In this
process, we keep the rest of parameters with default values
and only vary the UAV computation capacity, task computa-

tion intensity, task size, and number of users. Through such
exploration, we further verify that our proposed JTORATC
approach has significant robustness and scalability in the
system.

(1) Impact of UAV Computation Capacity. Figs. 3(a),
3(b), and 3(c) show the effects of UAV computation capac-
ity on the objective function value, total task completion
delay, total UAV energy consumption, and total amount
of offloaded tasks. It can be observed from Fig. 3(a) that
when the UAV computation capacity is less than 400 MHz,
the ERJOTC approach achieves a lower objective function
value than the proposed JTORATC. However, it is essential
to recognize that while ERJOTC may find a local optimal
solution in certain cases, ERJOTC cannot guarantee a global
optimal solution. Therefore, this discrepancy is expected. In
addition, as the computation capacity of UAVs increases, the
proposed JTORATC is superior to other schemes in terms of
objective function. The reason is that JTORATC jointly op-
timizes task offloading, computing resource allocation, and
UAV trajectory control to adapt the computing capabilities
of different UAV, resulting in satisfactory performance.

From Figs. 3(b) and 3(c), it is worth noting that when
the UAV computation capacity is less than 600 MHz, the
ROJRATC approach obtains a lower total task completion
delay than the proposed JTORATC. Similarly, this outcome
is expected since the proposed JTORATC is constrained
by insufficient computing resources, leading to longer task
completion times. Besides, with an increase in the UAV com-
putation capacity, ROJRATC achieves a similar total comple-
tion delay to the proposed JTORATC by using the random
offloading approach. However, the excessive focus on load
balancing in ROJRATC causes higher energy consumption,
leading to the relatively elevated energy consumption of
UAVs.

From Fig. 3(d), we can see that for the total amount of
offloaded tasks, the seven approaches all show a constant
trend regardless of the varying UAV computation capacity,
since the total amount of tasks completed by the UAV
depends on the amount of tasks generated by the users, and
has nothing to do with the computation capacity of UAV.

In summary, the results in Fig. 3 illustrate the adapt-
ability of the proposed JTORATC with varying computing
capacities of UAVs.

(2) Impact of Task Computation Intensity. Figs. 4(a),
4(b), 4(c), and 4(d) reveal the effects of task computation



12

200 400 600 800 1000 1200

UAV computation capacity (MHz)

0

10

20

30

40

50

60

70

O
b
je

ct
iv

e 
fu

n
ct

io
n
 v

al
u
e

ROJRATC NOJRATC

MOJRATC JORACT

JORAPT ERJOTC

JTORATC

200

60

60.5

61

61.5

1200

6.5

7

7.5

8

8.5

(a)

200 400 600 800 1000 1200

UAV computation capacity (MHz)

0

100

200

300

400

500

600

700

T
o
ta

l 
ta

sk
 c

o
m

p
le

ti
o
n
 d

el
ay

 (
s)

ROJRATC NOJRATC

MOJRATC JORACT

JORAPT ERJOTC

JTORATC

200

610

612

614

616

618

1200

75

80

85

(b)

200 400 600 800 1000 1200

UAV computation capacity (MHz)

0

1

2

3

4

5

T
o
ta

l 
U

A
V

 e
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

M
J)

ROJRATC NOJRATC

MOJRATC JORACT

JORAPT ERJOTC

JTORATC

(c)

200 400 600 800 1000 1200

UAV computation capacity (MHz)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

T
o
ta

l 
am

o
u
n
t 

o
f 

o
ff

lo
ad

ed
 t

as
k
s 

(M
B

)

ROJRATC NOJRATC

MOJRATC JORACT

JORAPT ERJOTC

JTORATC

(d)

Fig. 3. System performance with numbers of UAVs. (a) Objective function value. (b) Total task completion delay. (c) Total UAV energy consumption.
(d) Total amount of offloaded tasks.
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Fig. 4. System performance with task computation intensity. (a) Objective function value. (b) Total task completion delay. (c) Total UAV energy
consumption. (d) Total amount of offloaded tasks.

intensity on the objective function value, total task comple-
tion delay, total UAV energy consumption, and total amount
of offloaded tasks. As can be seen, as the computational
intensity increases, the seven approaches exhibit similar
upward trends in terms of objective function value, total
task completion delay and total UAV energy consumption.
This is because higher computational intensity indicates
heavier system workloads, which further leads to higher
computational requirements. Consequently, more frequent
task offloading, computation resource allocation and adjust-
ments of UAV trajectory are necessary, which potentially
results in additional overhead on computation and energy
consumption.

Moreover, it can be seen from Fig. 4(a) that the proposed
JTORATC outperforms other approaches in terms of objec-
tive function value. This is because JTORATC iteratively
optimizes the decisions of task offloading, computation
resource allocation, and UAV trajectory control to adapt to
scenarios with varying workloads. From Fig. 4(b), we can
observe that with the increasing of task computation in-
tensity, ROJRATC achieves a similar total completion delay
to the proposed JTORATC by using the random offloading
approach. However, the performance of ROJRATC in mini-
mizing the objective function value and total UAV energy
consumption is not as good as our proposed JTORATC
approach. This is because the ROJRATC mainly relies on
a random offloading strategy, which could not provide
sufficient performance benefits in terms of the objective
function, completion delay, and energy consumption, as the
computational intensity of the tasks increases. In contrast,

the proposed JTORATC takes a more comprehensive ap-
proach for system optimization.

From Fig. 4(c), it can be observed that ERJOTC shows
optimal performance in terms of total UAV energy con-
sumption. This is because ERJOTC helps to ensure the
load balance of each UAV during task execution, reduce
the excessive use of computing resources, and achieve an
even distribution of overall computing energy consumption.
However, the performance of ERJOTC is slightly inferior
to our proposed JTORATC approach in objective function
value and total task completion delay aspects. While from
Fig. 4(d), we can see that for the total amount of offloaded
tasks, the seven approaches all show a constant trend re-
gardless of the varying task computation intensity. Similarly,
because the total amount of tasks completed by the UAV
depends on the amount of tasks generated by the users, and
has nothing to do with the task computation intensity.

In conclusion, the simulation results in Fig. 4 indicate
the superiority of the proposed JTORATC in both light and
heavy computational scenarios.

(3) Impact of Task Size. Figs. 5(a), 5(b), 5(c), and 5(d)
depict the effects of task size on the objective function
value, the total task completion delay, the total UAV energy
consumption, and the total amount of offloaded tasks. It
can be seen from Fig. 5 that the seven approaches exhibit
upward trends as the task size increases. This is because
the increasing task size indicates heavier workloads, which
could further lead to higher costs of processing delay and
energy consumption.

From Figs. 5(a), 5(b), and 5(c), it can be observed that
when the task size is small (less than 1.5MB), the perfor-
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Fig. 5. System performance with task size. (a) Objective function value. (b) Total task completion delay. (c) Total UAV energy consumption. (d) Total
amount of offloaded tasks.
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Fig. 6. System performance with number of users. (a) Objective function value. (b) Total task completion delay. (c) Total UAV energy consumption.
(d) Total amount of offloaded tasks.

mance of ERJOTC is better than the proposed JTORATC
approach in objective function and total task completion
delay aspects. However, when the task size is large (more
than 3MB), ERJOTC has the worst performance of all ap-
proaches. Moreover, for the total UAV energy consumption,
ERJOTC shows the best performance. This is because when
the task size is small, resources are allocated uniformly, then
ERJOTC may be more efficient. However, when the task size
is large, ERJOTC does not fully consider the complexity and
different requirements of the task, which may lead to per-
formance degradation. In addition, the average allocation
strategy of ERJOTC ensures a relatively uniform distribution
of tasks among UAVs and avoids excessive loads, thus
reducing the energy consumption of UAVs.

Moreover, it can be seen from Fig. 5(d) that the seven
approaches all show a upward trend as task size increases
for the total amount of offloaded tasks, because the to-
tal amount of tasks generated by users is increasing, and
the characteristics and requirements of the tasks may also
change.

For the total amount of offloaded tasks, the seven ap-
proaches all show a upward trend as task size increases
since the total amount of tasks generated by users is increas-
ing, and the characteristics and requirements of the tasks
may also change.

Accordingly, the simulation results in Fig. 5 demonstrate
the superiority of the proposed JTORATC to adapt to heavy-
loaded scenarios.

(4) Impact of Number of Users. Figs. 6(a), 6(b), 6(c), and
6(d) present that with the increasing of the number of users,
the objective function value, the total task completion delay,

the total UAV energy consumption, and the total amount of
offloaded tasks of the seven approaches gradually increase.
The reason is that as the number of users increases, the total
number of tasks that need to be handled in the system also
increases. This leads to a surge in resource competition and
an increase in the load of communication networks.

Fig. 6(a) illustrates that our proposed JTORATC ap-
proach achieves the best performance in minimizing the
value of the objective function. This can be attributed to
the fact that our proposed JTORATC successfully balances
the system parameters by employing iterative optimization,
and thus obtains a significant advantage in the overall
performance.

From Figs. 6(b), 6(c), and 6(d), it can be observed that
ROJRATC performs best in terms of total task completion
delay. The random nature of ROJRATC can lead to tasks
being assigned and completed more quickly. However, it
should be noted that ROJRATC performs relatively poorly
in terms of total UAV energy consumption and total amount
of offloaded tasks. This suggests that we must fully balance
energy consumption and task completion efficiency while
considering delay. In contrast, our proposed JTORATC ap-
proach takes this balance into account. Moreover, the ER-
JOTC has a good performance in reducing the total UAV
energy consumption, mainly because evenly allocating re-
sources avoids some resources being idle or overloaded.
At the same time, because of the uniform allocation of
resources, there is a certain sacrifice in the task completion
delay, which is far less than our proposed JTORATC ap-
proach. This may be because task offloading is not flexible
enough or resources cannot be optimized for the specific
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needs of the task.
Consequently, this set of simulation results highlights the

importance of our proposed JTORATC approach in terms of
scalability and robustness of the system.

6 CONCLUSION

In this work, we study the multi-objective optimization
of task offloading, computation resource allocation and
UAV trajectory control in multi-UAV-assisted MEC systems.
We first formulate the multi-objective optimization prob-
lem with the aim of minimizing the total task completion
delay, reducing the total UAV energy consumption, and
maximizing the total amount of offloaded tasks. To solve
the problem, we transform the multi-objective optimiza-
tion problem into a single-objective optimization problem
and then propose the JTORATC to solve the transformed
problem at a lower cost. Simulation results demonstrate
that the proposed JTORATC has superior performance in
terms of the total task completion delay and total UAV
energy consumption. Specifically, JTORATC demonstrates
better adaptability to the scenarios with varying computing
capacities of UAVs, and it shows superior scalability in both
light and heavy workload scenarios.
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