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Abstract—In modern medical diagnostics, magnetic resonance
imaging (MRI) is an important technique that provides detailed
insights into anatomical structures. In this paper, we present a
comprehensive methodology focusing on streamlining the seg-
mentation, reconstruction, and visualization process of 3D MRI
data. Segmentation involves the extraction of anatomical regions
with the help of state-of-the-art deep learning algorithms. Then,
3D reconstruction converts segmented data from the previous
step into multiple 3D representations. Finally, the visualization
stage provides efficient and interactive presentations of both 2D
and 3D MRI data. Integrating these three steps, the proposed
system is able to augment the interpretability of the anatomical
information from MRI scans according to our interviews with
doctors. Even though this system was originally designed and
implemented as part of human brain haptic feedback simulation
for surgeon training, it can also provide experienced medical
practitioners with an effective tool for clinical data analysis,
surgical planning and other purposes.

Index Terms—human-computer interaction, image segmenta-
tion, magnetic resonance imaging, visualization, surgical training

I. INTRODUCTION

Medical imaging plays an important role in modern health-
care systems, as it is able to provide clear insights into
internal structures. MRI is the most heavily utilized of imaging
services. It works by employing radio waves and magnetic
fields to capture the inside of the body. Compared with
computed tomography (CT), MRI can provide better image
contrast especially when dealing with soft tissues [1].

However, the legibility of MRI scans can be compromised
by the restricted characteristics of 2D greyscale images. In
this context, our work contributes by developing a research
component to enhance their visual representations. While this
research was originally part of haptic feedback simulation,
its real-world application can extend far beyond the initial
intention and it can be applied for patient data analysis, clinical
decision-making, and other purposes.

This research aims to design a framework to streamline
the automatic segmentation, reconstruction, and visualization
of MRI data to increase its comprehensibility. The main

objectives of the proposed system are to allow easy MRI file
selection, utilize state-of-the-art deep learning algorithms to
segment the selected MRI file, develop a workflow to recon-
struct segmentation data into 3D representations, implement
a user-friendly interface for visualization of the outcome,
integrate these feature into one standalone application with
minimal user intervention, and enable high extensibility to
allow additional features to build upon for other purposes.

The rest of this paper is structured as follows: Section II
summarizes the literature review of related work. Section III
presents our methodology for efficient segmentation, recon-
struction, and visualization techniques. Section IV discusses
the results, followed by doctors’ feedback. Finally, Section V
concludes our research and proposes potential future work.

II. LITERATURE REVIEW

A. Segmentation

MRI segmentation refers to the technique of drawing bound-
aries between substructures within the MRI image [2], which
plays a crucial role in medical imaging analysis.

The field of MRI segmentation has historically been dom-
inated by traditional methods such as thresholding. Simple
thresholding assigns a defined value to pixels in each region [3]
[4]. The more adaptive thresholding approach is Otsu’s thresh-
olding, which calculates the threshold value by minimizing the
image intra-class variance [5]. Atlas-based and surface-based
techniques can be used for MRI segmentation as well [2].

However, traditional methods often require MRI scans to
follow certain modality and resolution specifications, which
limits their flexibility. In recent years, deep learning has
significantly impacted this field and featured more reliable
results [6]. For example, various convolutional neural networks
(CNNs) based models with patch-wise, semantic-wise, or
cascaded architectures have been proposed to contribute to
MRI segmentation [7]. Among these advancements, SynthSeg
stands out by its ability to handle variations in contrast and
resolution by utilizing a generative network based on the
Bayesian segmentation and domain randomization strategy [8]
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[9]. As an unsupervised model, SynthSeg achieves a similar
level of accuracy as other supervised CNN models and out-
performs other state-of-the-art adaptations without retraining,
making it suitable for plug-and-play clinical applications.

B. Reconstruction

3D reconstruction is the process of creating 3D represen-
tations from 2D scans by extracting triangle topology and
closing the surfaces. One classic 3D reconstruction technique
is Marching Cubes, which divides the 3D volumetric space
into small cubes and evaluates the scalar field’s values at
each cube’s corners [10]. This determines the most appropriate
configuration of its neighbouring voxels within the cube and
creates corresponding triangles representing the surfaces.

On the other hand, Flying Edges [11] is an improved 3D
reconstruction technique based on Marching Cubes. Unlike
standard Marching Cubes which adopts a cube-like approach,
Flying Edges works by traversing the grid row by row. It
directly analyzes edge information within the scalar field and
connects the edges across voxels to create surfaces. When
dealing with noisy data, Flying Edges can produce better and
faster results than Marching Cubes.

By leveraging the Flying Edges algorithm as well as other
optimization techniques such as Taubin smoothing, optional
decimation and surface normal computation, 3D Slicer [12]
has the ability to create a closed surface representation to
achieve 3D reconstruction. As a renowned medical image pro-
cessing tool, 3D Slicer also provides other powerful functions
to facilitate the comprehension of various medical data.

III. METHODOLOGY

A. Segmentation

MRI segmentation is the foundational step in many med-
ical imaging applications. The precision in identifying and
segmenting anatomical structures affects the accuracy of the
subsequent stages. In this context, SynthSeg, the state-of-the-
art deep learning algorithm, offers several key advantages,
making it a compelling choice for this scenario.

Our work seeks to ensure maximum usability by directly
supporting unprocessed MRI scans acquired from medical cen-
tres. Therefore, variations in imaging protocols and resolutions
in real-world clinical settings are taken care of in our design.
While traditional methods often have limited flexibility and
their resulting qualities fluctuate, deep learning models like
SynthSeg demonstrate better adaptability. Another advantage
of SynthSeg lies in its minimal retraining requirement. Al-
though traditional CNN models may have the capability to
handle varying data formats to some extent, extensive retrain-
ing is required for optimized results. However, SynthSeg’s
synthesis-based approach effectively bridges the gap between
different datasets without the need for frequent adjustments.

Admittedly, while SynthSeg presents significant advantages,
it might take a longer processing time. We have found that it
takes several minutes to segment an MRI scan, which is longer
than some traditional methods that generate results almost
instantly. However, it is also important to emphasize that this

computational cost is a one-time occurrence for each new MRI
scan, as future viewing of the same MRI scan will not need
the execution of SynthSeg.

Our segmentation process begins with resampling the origi-
nal MRI file to have a consistent 1mm isotropic resolution, op-
timized for segmentation and future visualization. The resam-
pled image then undergoes SynthSeg’s deep learning model,
which analyzes each voxel within the image. We also choose
to force SynthSeg to run on CPU instead of GPU for better
device compatibility and fewer dependencies. This generates a
segmentation mask, where every voxel is assigned a numerical
label corresponding to a specific anatomical structure.

B. Reconstruction

Subsequent to MRI segmentation, 3D reconstruction decides
the shapes of brain structures in the 3D environment, and
its accuracy directly impacts the final visualization. In this
research, we have selected to use 3D Slicer.

The 3D reconstruction stage also needs to ensure a high
adaptability to heterogeneous input data formats in the real
world, and thus Flying Edges has significant advantages over
Marching Cubes. Furthermore, its faster calculation also con-
tributes to greater efficiency. Therefore, 3D Slicer’s integration
of Flying Edges and multiple optimization and smoothing
techniques makes it a preferable choice for our project.

In our workflow, after obtaining segmented Neuroimaging
Informatics Technology Initiative (NIFTI) data, we use 3D
Slicer to automate the creation of closed surface representa-
tions for each structure and generate 3D STL models. Addi-
tionally, we employ a three-step process to obtain a 3D model
of the entire skull. We first utilize the voting binary hole-filling
image filter to fill cavities within the skull structure. Next, we
apply label map smoothing to refine the skull representation,
enhanced with anti-aliasing and Gaussian smoothing. Finally,
we export the full skull data to a separate STL file and place
it in the same folder as the segmented STL files.

C. Visualization

Following the previous phases, the dataset now comprises a
resampled NIFTI file including volumetric medical scan data
at a 1mm isotropic resolution, and multiple STL files repre-
senting the 3D surface geometry for the skull and segmented
anatomical structures.

For effective visualization of these data formats, our chosen
implementation platform for integration is Three.js. As a
robust JavaScript library [13], Three.js allows for web-based
visualization, allowing easy access across devices without
installing specific software. Furthermore, Three.js has native
support for various 3D model formats such as STL. Thanks to
its strong community support, third-party tools such as NIFTI
reader [14] also lower the difficulty of visualizing MRI scans.

To be more specific, our web application includes a 2D MRI
viewer and an interactive 3D viewer.

1) 2D Scan: 2D visualization starts with integrating the
open source javascript NIFTI reader [14] to parse the data.
After taking a resampled NIFTI file as input, it outputs the



voxel data structured as a 3D array and the image header infor-
mation, which provides useful information such as dimension
and transformation of the NIFTI file. Then, a slicing operation
is conducted on the 3D voxel data array to display axial,
sagittal, and coronal views of the MRI scan, which involves
iterating through each axis—x, y, and z—of the voxel data
array. Sliders have also been added to the web page to allow
users to control the depth of slicing on each axis. In the last
step, the sliced voxel data is mapped and loaded as the texture
of plane geometry in Three.js.

2) 3D Model: 3D visualization begins with loading the
STL files into a Three.js scene using the STLLoader, which
retrieves geometry and creates Three.js objects accordingly.
Once loaded, these models are grouped to allow for better
management and manipulation. Three.js’s orbit controls are
also included in our application so that users can freely
navigate the scene and inspect 3D segmentations from dif-
ferent perspectives. Finally, in order to distinguish different
structures visually, distinct colours are assigned to each model.
Transparency has been adjusted to enhance the visibility of
different components in case of overlapping.

D. Integration

Previous sections have described a three-step approach to
implement our proposed framework. SynthSeg is a Python-
based deep learning algorithm and 3D Slice also supports
Python integration. On the other hand, Three.js is a browser-
based visualization library using HTML and JavaScript.

Therefore, we use Django [15], a Python-based web frame-
work, to streamline the integration process. With the help
of Django, HTTP requests (GET and POST) can be used
for cross-language communication between JavaScript and
Python. In addition, we have employed a lightweight database
system, SQLite, to store data associated with each MRI file.
In this way, users can see a list of previously accessed files.
Introducing a database also prevents redundant segmentation
and reconstruction efforts each time the same file is accessed.

Fig. 1 summarizes the entire workflow of our proposed
pipeline, where the blue zone is segmentation, the green zone
is reconstruction and the orange zone is visualization.

IV. RESULTS AND DISCUSSION

A. Visual Representations

During the experiments, we tested our system with multiple
MRI files and two of them were selected as samples in this
paper. Table I shows the time consumed by each step for
these two MRI files, running on a test environment with AMD
Ryzen 7 6800H and Ubuntu 22.04. Both the first time (when
segmentation and reconstruction are needed) and the second
time (when the results are reused) data are recorded.

Fig. 2 illustrates the user interface of our system for the two
MRI samples. The 2D viewer offers MRI visualization from
three perspectives, complete with depth sliders. The 3D viewer
enables interactive visualization of the 3D brain structure with
different colours. The left panel allows the toggling of a
specific brain segmentation and the use of extra tools.

Fig. 1. Workflow of the proposed pipeline.

TABLE I
TABLE OF WORKFLOW DURATION FOR THE SELECTED MRI FILES

Filename PATIENT 01.nii.gz PATIENT 05.nii.gz
Resolution 512 * 512 * 150 mm 256 * 400 * 400 mm

1st or 2nd Time 1st 2nd 1st 2nd

Segmentation 362.77 s 0 s 321.42 s 0 s
Reconstruction 15.50 s 0 s 13.10 s 0 s
Visualization 1.15 s 1.16 s 2.28 s 1.30 s

Total 379.42 s 1.16 s 336.8 s 1.30 s

B. Doctor Feedback

We conducted two remote interviews with experienced
doctors to collect their opinions on our framework, each
lasting approximately 25 minutes. Each interview started with
a complete demonstration of the application using one of the
sample MRI files. The doctors were then invited to use the
application themselves with the other MRI sample.

After hands-on trials, questions were asked to gather feed-
back on usability, accuracy, clinical relevance and suggestions.

1) Usability: Both doctors showed positive impressions
regarding the graphic interface. The first doctor highlighted
the top navigation bar was intuitive. The second noted tooltips
could be added when hovering to help first-time users under-
stand each button’s function. Both offered similar opinions on
the time required for segmentation, stating a few minutes was
acceptable but less time would be appreciated.



Fig. 2. The interface of proposed system displaying with 2D and 3D viewers
for MRI visualization.

2) Accuracy: Both doctors acknowledged the application’s
high accuracy in segmenting anatomical structures. Although
they pointed out some errors near the edges of some structures,
they also stated that these errors were negligible and were of
low risk to decision-making.

3) Clinical Relevance: The first doctor emphasized its
application in teaching and training environments, and the
second was excited about its potential in surgical planning,
especially in collaborative discussions.

4) Other Suggestions: The first doctor recommended we
develop a patient-side application by incorporating artificial
intelligence techniques that can understand MRI scans and
answer related questions. The second advised us to look into
adding automatic path planning for surgeries.

C. Discussion

Insights from the two interviews gave us a practical under-
standing of the strengths and potential enhancements for our
framework. Doctors’ positive feedback on usability implied
that using Django to integrate the components in our system
is an effective choice, resulting in a simplistic workflow.
With barely any user intervention, the framework achieved
satisfactory outcomes in terms of final visualized brain struc-
tures, proving our selection of deep learning algorithms and
various tools yield high accuracy. Finally, the doctors’ ideas of
practical clinical uses, including medical education, surgical
planning, and collaborative discussions, displayed the great
potential and high extensibility of our proposed system.

V. CONCLUSION

In conclusion, this paper successfully presents a cohesive
pipeline that addresses the need for easier interpretation of
MRI scans and fulfills the research objectives.

Looking ahead, several aspects of this project are still
open for exploration. Future work can attempt to integrate
different deep learning models to further increase accuracy
and efficiency. Additionally, its extensibility allows future
specialized medical tools to quickly prototype by incorporating
it as a base module.

REFERENCES

[1] R. H. Hashemi, C. J. Lisanti, and W. G. Bradley, MRI: The basics.
Wolters Kluwer, 2018.
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