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Abstract. The idea of adversarial learning of regularization functionals has
recently been introduced in the wider context of inverse problems. The intu-

ition behind this method is the realization that it is not only necessary to learn
the basic features that make up a class of signals one wants to represent, but

also, or even more so, which features to avoid in the representation. In this

paper, we will apply this approach to the training of generative models, leading
to what we call Maximum Discrepancy Generative Regularization. In partic-

ular, we apply this to problem of source separation by means of Non-negative

Matrix Factorization (NMF) and present a new method for the adversarial
training of NMF bases. We show in numerical experiments, both for image

and audio separation, that this leads to a clear improvement of the recon-

structed signals, in particular in the case where little or no strong supervision
data is available.

1. Introduction

Single Channel Source Separation (SCSS) is a type of inverse problem that is
concerned with the recovery of individual source signals from a measured mixed
signal. This problem arises in various real-world applications, such as speech and
music processing, biomedical signal analysis, and image processing. In such appli-
cations, the observed signal can be approximately modelled as a linear combination
of multiple sources, and the objective is to estimate the underlying sources from
this mixture. The simplest setting of this problem is that of denoising, where one
wants to separate a noisy signal into a clean signal and pure noise; here the term
“noise” is to be understood in a very wide sense and includes all unwanted parts of
the original signal. The term “single channel” comes from the fact that we assume
to only have one measurement of the mixed signal, as opposed to the multichannel
case where we have several measurements with different weights for the component
signals.

Mathematically, the problem can be formulated as follows: Given a signal v ∈
Rm, find S individual signals ui ∈ Rm and potentially also weights 0 ≤ ai ≤ 1 with∑S

i=1 ai = 1 such that
S∑

i=1

aiui =: Au = v. (1)

Of course, this problem is vastly underdetermined, and it cannot be reasonably
solved without using some prior knowledge about the properties of the component
signals ui and, if necessary, the weights ai. One possibility for encoding this prior
knowledge is in terms of smallness of some regularization’s functionals Ri and
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2 MARTIN LUDVIGSEN AND MARKUS GRASMAIR

Si. With this assumption, one can then reconstruct the component signals ui by
minimizing the (generalised, multi-parameter) Tikhonov functional

min
ui, ai

[1
2
∥Au− v∥2 +

S∑
i=1

λiRi(ui) +

S∑
i=1

µiSi(ai)
]
.

Here Au is as defined in (1). Moreover, the regularization parameters λi, µi > 0
have to be chosen in a suitable manner.

Training of regularization functionals. A major challenge in this approach is
the definition of the different regularization functionals Ri. Within mathematical
image processing, a classical approach is to use hand-crafted regularization function-
als that are intended to capture the different properties of the component signals.
This idea has for instance been applied in [27] in order to separate an image into
a cartoon component and a texture component. Other examples of such decom-
positions have been proposed in [1, 3], see also [7]. In the recent years, alternative
approaches have been developed that instead use learned regularization [21].

Of particular interest for this paper is the idea of adversarial regularization,
see [19]. There the authors consider the more general inverse problem of solving
a linear equation of the form Au = v with arbitrary linear operator A. To that
end, they assume that one has knowledge about the probability distributions PV

and PU of the measured data and the data of interest respectively. In order to
train a regularization functional, they use the probability distribution PV in order
to define a new distribution of adversarial data on the solution space by setting
PZ := (A†)#PU . Here A† is the pseudo-inverse of the operator A, and (A†)#
denotes the push-forward operation.

Then they define a regularization functional R for the solution of the inverse
problem by computing the Wasserstein distance W(PU ,PZ) between the distribu-
tions PU and PZ . More precisely, they set R to be the solution of

W(PU ,PZ) = min
R : ∥R∥L≤1

Eu∼PU
[R(u)]− Eu∼PZ

[R(u)]. (2)

Here the minimisation is performed over all Lipschitz functions R : U → R with
Lipschitz constant ∥R∥L ≤ 1. Moreover Eu∼PX

denotes the expectation given the
distribution PX of the variable u. For the practical solution of the problem (2), one
restricts the admissible regularization functionals to some a-priori defined class, for
instance that of neural networks with a given architecture.

The intuition behind the adversarial approach is that R should yield low values
for true solutions and large values for naively inverted data, which can be treated
as adversarial data, since the measurement data v can be assumed to include noise.

Training of generative models. An alternative to this approach is the usage of
generative models for the component signals [5, 11, 26]. Here we model data from
source i by a generating function

gi : Rdi → Rm

that maps the lower dimensional latent variables hi ∈ Rdi to a typical component
signal ui = gi(hi). Then one can reconstruct the component signals ui by solving
the Tikhonov functional

min
ui, ai, hi

[1
2
∥Au−v∥2+

S∑
i=1

(
λiRi(hi)+µiSi(ai)

)]
s.t. gi(hi) = ui, i = 1, . . . , S. (3)

Common choices for the regularization functionals Ri : Rdi → R in this case are the
squared Euclidean norm Ri(hi) =

1
2∥hi∥22 modelling a Gaussian distribution of the

latent variables, or the 1-norm Ri(hi) = ∥hi∥1 modelling a Laplace distribution of
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the latent variables and enforcing a sparse representation of the component signal
ui.

The challenge in this approach is the training of the generating functions gi for
the different component signals. The regularization terms, in contrast, are chosen
a-priori and are in fact incorporated in the training process of the models, as are
the regularization parameters.

In this paper, we will focus on this approach. More precisely, we will introduce
a novel method for the training of the generating functions gi that is based on the
idea of adversarial regularization in [19].

Other approaches. As an alternative to generative regularization for inverse
problems, it is possible to discriminatively train end-to-end mappings from observed
data v to the separated sources u [12]. In recent years, this has been particularly
common for speech source separation and enhancement [28, 29]. Such approaches
can be effective in situations with large amounts of high quality data, as they can
be easily fine-tuned to specific data. However, this makes them less generalizable
compared to a generative approach, which can be used in a plug and play manner.

Overview and structure. In Section 2 we will introduce our main ideas for the
adversarial training of generative models in a general setting. In Section 3 we
will then consider the particular case of Non-negative Matrix Factorization (NMF),
which is a traditional method in the context of source separation. Details of the
numerical implementation are described in Section 4, and in Section 5 we present
numerical experiments both for image and audio data. The appendices contain
proofs of the theoretical results of this paper as well as further details concerning
the numerics.

2. Adversarial training for SCSS models

We will now propose a strategy for adapting the idea of adversarial regularization
to the training of generative models for source separation.

2.1. Notation and assumptions. We assume that we are given training data

consisting of mixed signals v(k) as well as clean individual signals u
(k)
i (see Sec-

tion 2.2 below for different possibilities how these signals could be given). Our goal
is to use these training data to construct generating functions gi such that we can
use (3) in order to separate new mixed signals v.

For each of the sources i we choose a class Gi of generating functions gi : Rdi →
Rm with which we want to represent signals from this source, as well as correspond-
ing regularization functionals Ri : Rdi → R≥0∪{+∞} and Si : [0, 1]→ R≥0∪{+∞}
and regularization parameters λi > 0 and µi > 0.

As an example, Gi could be a class of neural networks of a fixed architecture.
Another example, which we will discuss in more detail in Section 3 below, is the
case of non-negative matrix factorization (NMF), which is a traditional model in
the context of audio processing.

Assumption 1. We assume that the generating functions and regularization terms
satisfy the following conditions:

(1) The regularization terms Ri : Rdi → R≥0 ∪{+∞} are coercive, lower semi-
continuous, and proper.

(2) The regularization terms Si : [0, 1]→ R≥0∪{+∞} are lower semi-continuous
and proper.

(3) The evaluation mappings eval : Gi × Rdi → Rm are continuous.
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Input signals Latent Representation Output signals

Encoder
h∗(g, u)

Decoder
g(h∗(g, u))

“Projection” π(g, u)

Figure 1. A general encoder-decoder framework. Here the encod-
ing and decoding is done using NMF with sparsity (see Section 3
for details). While the encoding and decoding process does not
perfectly reconstruct signals, especially when using low complexity
models, they are still useful as a prior on signals. They are also
robust against noise, as we see that the process yields similar out-
puts for a signal and a noisy version of that signal.

Given a generator gi ∈ Gi and a signal u ∈ Rm, we denote

h∗
i (gi, u;λ) := argmin

h∈Rdi

[
∥gi(h)− u∥2 + λiRi(h)

]
. (4)

That is, h∗
i (gi, u;λi) is an “optimal” parameter for representing the signal u by the

generator gi, given our choice of regularization parameter λi. For ease of notation,
we will assume λi is fixed, and instead use the notation h∗

i (gi, u). Moreover, the
mapping h∗

i (gi, ·) : Rm → Rdi is the encoder corresponding to the generator (or
decoder) gi. In many machine learning contexts, the mapping h∗

i (gi, u) is instead
trained alongside gi, leading to what is commonly called an autoencoder. Because of
the continuity of gi and the lower semi-continuity and coercivity ofRi, such optimal
parameters h∗

i (gi, u) exist for each gi and u. Without additional assumptions,
however, these need not be unique, and thus we should interpret h∗

i (gi, u) as the
collection of all solutions of (4). In order to simplify notation, we assume in the
following that we select an arbitrary one of those solutions.

Next, we denote by πi : Gi × Rm → Rm the mapping

πi(gi, u) := gi
(
h∗
i (gi, u)). (5)

That is, πi(gi, ·) is the composition of the generator gi with the encoder h∗
i (gi, ·).

Informally, we interpret πi(gi, u) as the “projection” of the possibly noisy signal u
onto the manifold generated by the model gi. Because of the non-uniqueness issues
discussed above, this projection may depend on the choice of h∗

i (gi, u). Figure 1
illustrates the relation between generator, encoder, and the mapping π.

Finally, given generators g := (g1, . . . , gS) and a mixed signal v ∈ Rm we denote
by

u∗(g; v) ∈ Rm×S (6)

the u-component of the solution of (3). That is, the columns u∗
i of u∗ represent an

optimal decomposition of the signal v given the models gi for the different sources.
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Again, this decomposition need in general not be unique and we use the notation
u∗ = (u∗

1, . . . , u
∗
S) to denote any of the minimizers.

Remark 2. In our work, the term “generative model” refers to something broader
than what is common in standard machine learning contexts. Generative models
like GANs are trained for the purpose of generating new data like g(h) ≈ u ∼ PU ,
where h is sampled from a suitable probability distribution. We here consider any
mapping g so that the “distance” ∥π(g, u) − u∥ is small for relevant data u ∼ PU ,
and preferably large for irrelevant data. Thus, the data has a generating function
g. We do not require g to be able to generate data on its own, but instead that the
data can be represented by g. In particular, the generative model can be dictionary
methods and other dimensionality reduction methods.

2.2. Strong and weak supervision. For the training of the generative models
gi, it is necessary to have access to some type of training data for the different
sources. In the context of source separation, the data will usually be available in
one of two forms, which we term “strongly supervised” and “weakly supervised”
data, see Figure 2 for an illustration.

+ =

PU×V

Strong Supervision

PU0 PU1 PV

Weak Supervision

Figure 2. Illustration of the difference
between strong supervision and weak su-
pervision. In the strong supervision situ-
ation, all paired data is available. In weak
supervision, only data from the marginals
are available, and these data are unpaired.

Strongly supervised data. This is also
called paired data. These are samples
v(k) of the mixed data together with the
correctly separated sources such that

v(k) =
∑

i aiu
(k)
i . Here the superscript

refers to the k-th data in the avail-
able dataset. In terms of the inverse
problem (1), this means that we have
samples of the right hand side v to-
gether with the true solution u as well
as the true operator A. In a probabilis-
tic setting, we can also interpret this
as having access to samples from the
joint probability distribution PA×U×V

of weights, sources, and mixed sources.
If a sufficiently large amount of

such training data is available, then it
can be possible to train dedicated dis-
criminative models for a specific prob-
lem. Compared to the method we are
proposing, such discriminative models can often yield superior results. However, in
practice it is usually unrealistic to obtain a sufficient amount of strongly supervised
training data.

Weakly supervised data. This is also called semi-supervised or unpaired data. There
exist different interpretations of the notion of weak supervision, but in this paper
we will focus on the setting where we have access to samples of the different sources

u
(ℓ)
i and also samples v(k) of mixed data, but no information about the correct

separation v(k) =
∑

i a
(k)
i u

(k)
i , though we might have some probabilistic model for

a
(k)
i . In many cases, one can relatively easily obtain clean signals from the different

sources as well as clean mixed signals, whereas it is much more difficult to obtain a
mixed signal together with the correct separation into its component signals. Thus
this type of data will in practice be much more common than strongly supervised
data.
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Translated to the probabilistic setting, we have samples of the marginal distri-
butions PUi

for the source i and PV for the mixed data, and in addition some model
for the distribution PA of the weights. However, we generally cannot assume that
the distributions are independent, as this would essentially mean that each sample
from any source can be arbitrarily mixed with any sample from a different source.
Thus, from these weakly supervised data we can infer only little or no information
about the joint distribution PA×U×V .

In practical applications, the amount of training data for the different sources
may vary significantly. In the extreme case, it can be even possible that we have
no data at all from one of the sources. This is particularly relevant in denoising
applications, where we may have access to noisy and clean signals, but no access
to samples of “clean noise”.

Remark 3. If we have access to weakly supervised data and can reasonably assume
that the distributions of the individual sources are independent, we can generate
synthetic samples of supervised data by using the forward model (1), provided we
have information about PA. This allows us to synthetically simulate strongly su-
pervised data. This is in particular common for audio tasks, as noise can often be
assumed to be independent from the audio of interest.

Remark 4. In this paper we will not discuss the problem of blind source separa-
tion, where one only has access to samples of mixed data, but not to samples from
the unmixed sources. This setting requires knowledge-based assumptions about the
unmixed sources in contrast to the data-driven methods to be discussed here. For an
example of a possible approach that is based on non-negative matrix factorization,
we refer to [17].

2.3. Adversarial training. For the training of the generators gi, we now assume
that we have access to weak supervision data in the form of samples of probability
distributions PUi

, i = 1, . . . , S, of the clean sources, samples of the distribution PV

of the mixed signals, and a model PA of the distribution of the weights. In addition,
we might have access to a limited amount of strong supervision data in the form
of samples of the joint distribution PA×U×V . Following the idea of adversarial
regularization introduced in [19] we now propose to train the generators gi ∈ Gi by
minimizing functionals of the form

Fi(g) = τWFW
i (gi)− τAFA

i (gi) + τSFS
i (g). (7)

Here FW
i , FA

i , and FS
i are cost functions for weak supervision data, adversarial data

(to be discussed below), and strong supervision data, respectively; τW , τA, τS ≥ 0
are regularization parameters that balance the importance of the weak supervision,
adversarial and strong supervision terms; and g = (g1, . . . , gS) is the collection of
the generators for the different sources. The goal of the weak supervision and strong
supervision terms FW

i and FS
i will be to obtain the best possible fits for clean data

from the different sources. In contrast, the goal of the adversarial term FA
i is to

fit certain adversarial data as bad as possible. We call τW the weak supervision
weight, τA the adversarial weight, and τS the strong supervision weight. In the case
where no strong supervision data is available, we can ignore the term FS

i in (7);
formally this can be done by setting the regularization parameter τS to 0.

We now discuss the definitions of the different terms.

• Weak supervision term: Here the goal is to fit data from source i as good
as possible with the model gi. Thus it makes sense to minimize the recon-
struction error ∥πi(gi, u)− u∥2 over all available samples u from the source
i, where πi is defined in (5). Taking into account all the available training
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data from source i, we thus arrive at the definition

FW
i (gi) := Eu∼PUi

(
∥πi(gi, u)− u∥2

)
, (8)

where Eu∼PUi
(·) denotes the expectation with respect to the probability

distribution PUi
. This is the only term included in standard training of

generative models, where the goal is only to represent data as well as possi-
ble, not necessarily to be used for downstream tasks like source separation.

• Strong supervision term: Here we are working with the available samples
of correctly separated data v =

∑
i aiui. As a cost function, it makes sense

to use the mean reconstruction error

FS
i (g) := E(a,u;v)∼PA×U×V

(
∥u∗

i (g; v)− ui∥2
)
, (9)

where u∗
i is as defined in (6). In case the solution of (6) is not unique, we use

in the definition of FS
i a solution for which ∥u∗

i (g; v)−ui∥ is minimal. Note
that this cost function depends not only on the generator gi, but also the
generators gj for j ̸= i. If this is the only term is used, we can interpret this
as a particular parameterization of a discriminative end-to-end mapping,
especially if the encoder in equation (4) is trained alongside g.

• Adversarial term: Here the goal is to fit certain adversarial data as badly
as possible with the model gi. Noting that this term appears with negative
sign in the functional Fi, we can thus define

FA
i (gi) := Eu∼PZi

(
∥πi(gi, u)− u∥2

)
,

where PZi
is the probability distribution of the adversarial data.

For the definition of the adversarial data, we follow the argumentation
of [19] and include data that is produced by naively inverting the forward
operator A, as this approach is expected to preserve, or even amplify, pos-
sible noise in the data. For this we define

fi(a1, . . . , aS ; v) =
ai∑S
j=1 a

2
j

v, (10)

which is precisely the i-th component of A†v, where A† is the pseudo-inverse
of A. Denote moreover by PA×V the joint distribution of weights and mixed
data. Then we obtain the distribution PVi of the i-th component of naively
inverted mixed data as

PVi
:= (fi)#(PA×V ),

where (fi)# denotes the push-forward by the mapping fi. That is, PVi(Ω) =

PA×V (f
−1
i (Ω)) for every measurable subset Ω ⊂ Rm of mixed data. In

the weak supervision setting, we cannot generally assume that the joint
distribution PA×V is available. Lacking any better model, we will therefore
assume that PA and PV are independent, which naturally encapsulates the
case where the weights are deterministic.

In addition to naively inverted mixed data, we propose to include data
from other sources j ̸= i in the adversarial data for the training of gi, as we
intuitively want the generator gi be bad at representing different sources.
Thus, we define the distribution of the adversarial data as the mixture
distribution

PZi
:=
∑
j ̸=i

ωijPUj
+ ωiiPVi

,

where the weights 0 ≤ ωij ≤ 1 are chosen such that
∑

j ωij = 1. In
practice, a reasonable possibility is to weigh the different terms according
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to the amount available data. This leads to the adversarial distribution

PZi :=
∑
j ̸=i

Nj

N̂i

PUj +
(
1−

∑
j ̸=i

Nj

N̂i

)
PVi ,

where Nj , j = 1, . . . , S, is the amount of weak supervision data from the j-

th source, NV the amount of available mixed data, and N̂i := NV +
∑

̸=i Nj

the total amount of adversarial data for the i-th source.

Combining these terms, we arrive at the cost function

Fi(g) = τWEu∼PUi

(
∥πi(gi, u)− u∥2

)
− τAEu∼PZi

(
∥πi(gi, u)− u∥2

)
+ τSE(a,u;v)∼PA×U×V

(
∥u∗

i (g; v)− ui∥2
)

(11)

for the training of the i-th generator function gi. We would like to stress that the
inclusion of an adversarial term for training generative models for use in regular-
ization is a novel concept to our knowledge. We call this approach Maximum
Discrepancy Generative Regularization.

In the case where no strong supervision data is available, we set τS := 0, effec-
tively ignoring the last term. In that case, the function Fi only depends on the
generator gi, and thus the training of the different generators can be performed
independently.

In the presence of strong supervision data, the different cost functions are coupled
through the terms u∗

i (g1, . . . , gS ; v) that occur in the strong supervision costs FS
i .

In that case, we obtain therefore the multi-objective problem of solving

min
g

{
F1(g), . . . ,FS(g)

}
.

One approach for this is to minimize the weighted sum

min
g

(
α1F1(g) + . . .+ αSFS(g)

)
(12)

with weights αi > 0 depending on the importance of the source i as well as the
available training data for that source.

We will now show that the problem (12) admits a solution. For this, we will
need a technical assumption concerning the projections πi.

Assumption 5. For all gi ∈ Gi and u ∈ Rm, the value ∥πi(gi, u)−u∥ is independent
of the choice of h∗

i (gi, u).

We note that Assumption 5 is trivially satisfied if πi(gi, u) is unique. This is
in particular the case for Non-negative Matrix Factorization, to be discussed in
Section 3.

Theorem 6. Assume that Assumptions 1 and 5 hold. In addition, assume that
the sets Gi are (sequentially) compact and that the training data have finite second
moments, that is,

Eu∼PUi
(∥u∥2) <∞

for all i = 1, . . . , S and that

Ev∼PV
(∥v∥2) <∞.

Then the problem (12) admits a solution.

The proof is given in Appendix A.

Remark 7. For dictionary methods like NMF, compactness of the sets Gi required
in Theorem 6 can be obtained by normalizing the bases; for neural networks, one
can constrain the weights of the network. For GANs, this is commonly done to the
discriminator with weight clipping, spectral normalization and gradient penalties
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[18]. It is less commonly also applied to the generator itself to stabilize training.
As an alternative, it is possible to choose a (coercive, proper, and lower semi-
continuous) regularization term T for the generators and train them by minimizing
the regularized functional

min
g

(
α1F1(g) + . . .+ αSFS(g) + T (g)

)
.

With straightforward modifications of the proof of Theorem 6 the existence of solu-
tions of this problem can be shown as well.

3. Application to NMF

Non-negative Matrix Factorization (NMF) is a matrix factorization and dictio-
nary learning method traditionally used for dimensionality reduction [16], and with
notable applications in source separation problems [6]. Assume that we are given

training data in the form of samples u
(k)
i ∈ Rm

≥0 for each source i. The underly-
ing assumption for NMF is that these samples can be approximately written as

non-negative linear combinations u
(k)
i ≈ Wih

(k)
i for some yet to be determined

basis/dictionary Wi ∈ Rm×d
≥0 and latent variables/weights h

(k)
i ∈ Rd

≥0. Here the
number of basis vectors d has to be chosen a-priori and will have a large effect
on the final result, as well as the computational complexity. It is also possible to
choose a different dimension di for each of the sources, which can be important if,
for instance, one of the source signals is vastly more complex than the others.

One of the main drawbacks of NMF is that the underlying assumption is very
restrictive and NMF may therefore not be sufficiently expressive for real data. One
way of solving this problem is to train NMF with more basis vectors. However, this
leads to overdetermined bases that can represent signals of other sources, which in
turn leads to poor separation results. In the literature, the main way of alleviating
this is using sparsity during testing and training, so that a signal can be represented
with a small number of basis vectors in a large dictionary [13]. Instead of fitting
sparse NMF, we can also fit so-called Exemplar-based NMF (ENMF), where the
basis vectors are simply chosen as randomly sampled signals from the training set
[30]. ENMF has the benefit that it requires no training (only sampling), while still
providing comparable performance for large di. Usually, one additionally assumes

sparsity in the weights, that is, many of the components of h
(k)
i .

Since NMF is a traditional source separation method, and because of its relative
low complexity, we will use it as an application to explore the ideas of maximum
discrepancy generative regularization.

3.1. NMF as generative model for source separation. We will now explain
how NMF can be used for single channel source separation and how it fits into the
approach described in Section 1, see also [13,30]. We start by interpreting NMF as
a generative model, defining the generator gi as

gi(h) := Wih where Wi ∈ Rm×di

≥0 and h ∈ Rdi

≥0.

In the following, we will identify the generator gi with the non-negative matrix Wi.
On a more abstract level, we can interpret the NMF model as the assumption

that the data samples lie in the positive (sparse) cone spanned by the columns of
Wi. This cone is invariant under scaling of the columns of Wi, and thus we may
assume without loss of generality that they are all normalized to length 1.

Separation of new data. A common regularization term used in the context of NMF
is the entry-wise 1-norm

R(h) := |h|1,
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which encourages sparsity in the representations of the data. Assuming that we
have trained generators Wi for the different sources, we can thus separate a mixed
signal v ∈ Rm

≥0 by solving the problem (cf. (3))

(h∗
i )

S
i=1 = argmin

hi≥0, i=1,...,S

∥∥∥v − S∑
i=1

Wihi

∥∥∥2
F
+ λ

∑
i

|hi|1 (13)

and recover the separated signals as u∗
i = Wih

∗
i . Since the NMF generates signals

in a convex cone, which is invariant under scaling, we have here ignored the possible
scaling of the different sources.

For the numerical solution of (13), we can concatenate the bases and the latent
variables to matrices

W =
[
W1 . . . WS

]
, h =

[
hT
1 . . . hT

S

]T
.

Then (13) reduces to a non-negative least squares problem with sparsity constraints
equivalent to (16).

Finally, it is common to apply afterwards a Wiener filter

ui = v ⊙ Wih
∗
i∑S

j=1 Wjh∗
j + ε

, (14)

where ⊙ denotes entrywise (Hadamard) product the division is interpreted entry-

wise and ε is a parameter representing the magnitude of the residual e = v−
∑S

i=1 ui,
which is assumed to follow a Gaussian distribution. We will throughout this paper
assume that this residual is near zero, and instead use ε as a safe division factor.
This post-processing is crucial for NMF-based methods to perform well as it imposes
data fidelty, and the constraint that data lies on a convex cone is too restrictive for
practical applications.

Weakly supervised training. We will now discuss how NMF can be trained in the
presence of weak supervision data in the terminology of Section 2.3. Historically,
this approach has been named “supervised NMF” [6], to differentiate it from us-
ing NMF for blind source separation. We instead denote this in the following as
Standard NMF to distinguish it from NMF models that utilize strong supervision
data.

To start with, we collect the samples u
(k)
i ∈ Rm for each source i column-wise

in a matrix Ui. For each i, we then solve the bi-level problem

min
Wi≥0

∥Ui −WiH(Wi, Ui)∥2F , (15)

where

H(Wi, Ui) = argmin
H≥0

∥Ui −WiH∥2F + λ|H|1. (16)

Here ∥·∥F denotes the Frobenius norm, |·|1 denotes the entry-wise 1-norm, and λ >
0 is a parameter controlling the sparsity of the matricesHi. It is also possible to add
a further regularization term for the generators Wi in order to, for instance, enforce
representations with sparse vectors only. Also, it is possible to choose different
regularization parameters for the different sources. With the notation of Section 2.3,
the training problem (15) is the same as minimizing the weak supervision terms
FW

i defined in (8). We note that this bi-level formulation is not standard in NMF
literature.

In the case where we only have samples from the sources 1, . . . , S − 1, but not
from source S, the training is slightly different: For the training of the bases Wi,
i = 1, . . . , S − 1, of the given sources we proceed as above. Then, however, we
estimate a basis WS for the last source by trying to fit the given samples to mixed
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data. To that end, we store the mixed data columnwise in a matrix V and compute
WS by solving

min
WS≥0,

Hi≥0, i=1,...,S

∥∥∥V −WSHS −
S−1∑
i=1

WiHi

∥∥∥2
F
+ λ

S∑
i=1

|Hi|1. (17)

How well WS is able to approximate the unknown source S then depends on the
quality of the other bases Wi, i = 1, . . . , S − 1, as well as the amount of available
mixed data.

We can also extend this approach to the case where strong supervision data is
available by including a term as defined in (9). Such a generalization has been
proposed by other authors [30] under the name Discriminative NMF (DNMF). To
be more precise, in their work, they further propose optimizing the Wiener-filtered
solution given in equation (14), as well as using different NMF dictionaries for sep-
aration and for reconstruction, that is, separate dictionaries for the decoder defined
in (4) and for the encoder. We will, however, focus instead on the approach outlined
in previous chapters, denoting the case when we only use the strong supervision
term as DNMF.

3.2. Maximum Discrepancy NMF. We now combine the standard approaches
to the training of NMF bases with the idea of adversarial or maximum discrepancy
training developed in Section 2.3. To start with, we consider the setting where no
strong supervision data is available. Here we obtain the problem

min
W≥0

(
FW

i (Wi)−FA
i (Wi)

)
= τWEu∼PUi

[∥u−Wh(W,u)∥2]− τAEu∼PZi
[∥u−Wh(W,u)∥2]

≈ min
W≥0

τW
Ni
∥Ui −WiH(Wi, Ui)∥2F −

τA

N̂i

∥Ûi −WiH(Wi, Ûi)∥2F .

Here the second line is obtained by Monte-Carlo integration, and Ui and Ûi are data
stored columnwise and sampled from PUi and PZi , respectively. In our framework,
the adversarial data is the concatenation of all the data from other sources Uj ,
j ̸= i, and naively inverted mixed data. We refer to Appendix C for more details
on the generation and sampling of adversarial data.

We note that, for equal weights τW = τA = 1, the quantity −minWi≥0 FW
i (Wi)−

FA
i (Wi), viewed as function of PUi

and PZi
, is a form of Integral Probability Metric

(IPM), which is a notion that generalizes the Wasserstein distance, see [22]. In view
of the similarity to another IPM, namely the Maximum Mean Discrepancy [8], we
call this framework Maximum Discrepancy NMF (MDNMF).

An illustration of the conceptual difference between NMF and MDNMF is shown
in Figure 3.

While MDNMF can be fitted with sparsity, it can also be used to select a small
number of basis vectors that yield good separation as opposed to selecting an overde-
termined sparse basis.

3.3. Discriminative and Maximum Discrepancy NMF. Combining MDNMF
with DNMF we obtain the full model defined in equation (11). We call this ap-
proach Discriminative and Maximal Discrepancy NMF (D+MDNMF), and it en-
compasses the NMF models discussed so far, which can be recovered by setting
certain parameters to 0 or 1, see Table 1.

This approach is most interesting in the case where only a small amount of
strong supervised data is available as compared to weak supervised data, as fitting
purely adversarially or discriminatively is most likely better when a large amount
of strong supervised data is available. We also have the option of using the strong
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Fitted Basis vectors with NMF
Basis Vectors W
Original Data
Adversarial Data

Fitted Basis vectors with MDNMF
Basis Vectors W
Original Data
Adversarial Data

Figure 3. A figure illustrating the difference between NMF and
MDNMF. Here we use λ = [2 · 10−2, 2 · 10−2, 3 · 10−2], τW = 1 and

τA =
√
0.25. A fitted basis with NMF can be sensitive to outliers,

and the resulting basis can also represent adversarial data. MD-
NMF explicitly avoids fitting adversarial data, potentially leading
to worse representation of outlier data. This property can be ben-
eficial for downstream tasks like source separation.

NMF MDNMF DNMF D+MDNMF
τW = 1 = 1 = 0 > 0
τA = 0 > 0 = 0 > 0
τS = 0 = 0 = 1 > 0

Table 1. An illustration of the parameter values for τW , τA, and
τS for the different variations of NMF. D+MDNMF is a superset
of all methods.

supervised data for fitting both the weak supervision terms and strong supervision
terms. For D+MDNMF, this would mean that τS represents the relative weight
of weak supervision compared to strong supervision fitting. This can potentially
alleviate the problem of overfitting to specific data.

4. Numerical implementation

4.1. Multiplicative updates. One standard approach to fitting NMF is to al-
ternate between updates of the basis while keeping the latent variables fixed, and
updates of the latent variables while keeping the basis fixed. This approach can
usually find a local minimizer [15].

A standard multiplicative update for finding H(U,W ) in equation (16) where

U ∈ Rm×N
+ is given by

H ← H ⊙ WTU

WTWH + λ
. (18)

Here λ > 0 is the regularization parameter, but also serves as a safe division factor
[15]. This update preserves non-negativity, and the loss we are optimizing for is non-
increasing under this update. We can obtain a similar update rule for W , which
will be introduced later, and solve the NMF training problem (15) by applying
alternate updates to H and W . Although a good alternative to (18) is to use
projected gradient methods, we choose to use multiplicative updates because of
their simplicity.

Multiplicative update for D+MDNMF. We denote Hi, Ĥi and H̃i as the latent
variable of the weak supervision, adversarial and strong supervision data of the i-
th source respectively. We use corresponding notation for the data. The full update
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for D+MDNMF for the i-th source is

Wi ←Wi ⊙
τWUiH

T
i /Ni + τAWiĤiĤ

T
i /N̂i + τSŨiH̃

T
i /Ñ

τWWiHiHT
i /Ni + τAÛiĤT

i /N̂i + τSWiH̃iH̃T
i /Ñi + γ

. (19)

Here the parameter γ > 0 is a safe division factor ensuring that the denominator
never vanishes; alternatively, this can be interpreted as a sparsity regularization
parameter for Wi. The corresponding updates for the latent variables are given by
applying equation (18) to the appropriate data: Hi = H(Ui,Wi), Ĥi = H(Ûi,Wi)

and H̃ = H(V,W ). See Appendix C for extra notes on how to scale the adversarial
data. In addition, we normalize the columns of Wi after each update step, followed
by a corresponding rescaling of the weights Hi.

Similar to the standard W update for NMF [15], the update (19) obviously
preserves non-negativity, and we can further show that the loss we are optimizing
is non-increasing with the update.

Theorem 8. The D+MDNMF loss defined in equation (11) is non-increasing un-
der the update (19).

The proof is given in Appendix B.

Remark 9. Theorem 8 does not imply that the update guaranteed to converge
to a local minimizer of (11). We show numerical convergence experimentally in
Appendix E.

The asymptotic computational complexity of each iteration of D+ANMF for all

bases is of order O(dmNtot), where Ntot =
∑S

i=1[Ni+N̂i+Nsup] is the total amount
of data. Thus the computational complexity of the updates for NMF, MDNMF,
DNMF, and D+MDNMF scales at the same rate with the amount of data used.

Semi-supervised update. In the semi-supervised case where the S-th source is un-
known, but we have access to the mixed data V , the updates for WS and the latent
variables Hi become

WS ←WS ⊙
V HT

S /NV

(
∑S

i=1 WiHi)HT
S /NV + γ

,

Hi ← Hi ⊙
WT

i V

WT
i (
∑S

j=1 WjHj) + λ
.

Here the bases Wi, i = 1, . . . , S − 1, are pre-trained, and they can be trained
adversarially by using the mixed data as adversarial data.

4.2. Stochastic Multiplicative Updates. For standard NMF, each column of
the data U has a corresponding column in the latent variable H. At the start of
each epoch, we can shuffle the data in U , perform a corresponding shuffle of H,
and divide the matrices columnwise into batches U (b) and H(b) following the ideas
of [24]. We can then successively apply the update for W for data from the different
batches. We update all latent variables H simultaneously instead of batch-wise in
a single update.

For initialization, we primarily use exemplar-based initialization, which means
that to initialize W so that U ≈WH, we sample d columns of U , and then initialize
H via projection. This is also used in the cases where W is already pre-trained,
and we want to train either adversarially or discriminatively. In the cases where
this is infeasible, we use randomized initialization, where we sample from a uniform
distribution.

When applying these stochastic multiplicative updates to either MDNMF or
D+MDNMF, we face the challenge that we are minimizing a loss with different
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terms and potentially unbalanced data, and need to select batch sizes accordingly.
To overcome this, we select one term we are interested in fully sampling and un-
dersample or oversample data from the other terms. The data is shuffled and a
new epoch begins when we have passed through all data of this chosen term. For
more discussion on this, see Appendix D. The full proposed algorithm for fitting
D+MDNMF where the same parameters are used for all sources is given in Al-
gorithm 1. For simplicity, we assume that all parameters are the same for the
different sources, including the number of basis vectors and the amount of data in
each source.

Algorithm 1 Stochastic Multiplicative Update for D+ANMF

Input: epochs ∈ N, d ∈ N, λ, γ > 0, τW , τA, τS > 0, and batch sizes.
Data input: True, adversarial, and supervised datasets U ∈ RS×m×N

+ , Û ∈
RS×m×N̂

+ , and Ũ ∈ RS×m×Nsup

+ . Supervised mixed data Ṽ ∈ Rm×Nsup

+ .

Initialize: W ∈ Rm×dS
+ randomly or exemplar-based.

Initialize: Latent variables H, Ĥ, H̃ either randomly or with (18) applied to
the respective data.
Calculate: Number of batches.
for k = 0, k < epochs do

Shuffle U, Û , Ũ ,H, H̃, Ĥ, Ṽ .
Update H̃ with (18) applied to H(Ṽ ,W ).
for i = 1, i ≤ S do
Update Hi and Ĥi with (18) applied to H(Ui,Wi) and H(Ûi,Wi)
for b = 0, b < number of batches do

Update Wi with (19) using U
(b)
i , H

(b)
i , Û

(b)
i , Ĥ

(b)
i , Ũ

(b)
i and H̃

(b)
i .

end for
end for
Normalize W and rescale H, Ĥ, H̃.

end for

This universal algorithm for D+MDNMF can also be used to fit NMF, MDNMF
and D+MDNMF by selecting the parameters τW , τA, and τS , see Table 1. It is
also worth noting that we can swap the order of the loop over sources and the loop
over epochs. For NMF and MDNMF this does not affect anything, as the bases
can be fitted independently of each other in parallel. This should however not be
done for DNMF and D+MDNMF, as the bases should be updated concurrently for
each epoch.

4.3. Hyperparameter tuning. Hyperparameter refers to a parameter that is cho-
sen a priori and is not fitted during training. This usually needs to be done in the
presence of strong supervised data, even if the models themselves do not need to
be trained with strong supervised data. In this sense, performing hyperparameter
tuning fits a discriminative model, because the model is tuned to a specific problem.

We will be interested in fitting several parameters at the same time, and we
will do this where limited amounts of strong supervised data is available. For
this, we will apply a randomized search, as it is easy to implement while still being
relatively efficient [2]. The idea of this method is to simply sample hyperparameters
from predetermined probability distributions and select the parameters that yield
the best solution on the test data with or without cross-validation (CV) [10].

For NMF and MDNMF, which only require weak supervised data, we have the
option of using the strong supervised data for fitting or only for tuning. We expect
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that the benefits of using more data outweighs the detriments of overfitting, and
therefore use all data for fitting.

For DNMF and D+MDNMF, we use CV to avoid overfitting the specific strong
supervised data. For D+MDNMF, each CV fold uses all weak supervision data
available for fitting.

For source separation problems, the selection of a suitable metric to be optimized
during hyperparameter tuning is a non-trivial problem, because we have to assess
the quality of all the separated sources simultaneously. For that, we suggest using
a weighted mean of some metric of interest (PSNR, SDR, etc.) over the sources,
where the weight is chosen based on the importance of the sources. When the
signals are of equal importance, we will use the arithmetic mean, and for denoising
problems we will ignore the noise source and only weigh the signal of interest.

5. Numerical experiments

We now want to test our proposed algorithm for both image and audio data with
a few different data settings. For all experiments we implement the algorithms in
Python using NumPy [9]; the code is available in the GitHub repository https:

//github.com/martilud/ANMF.

5.1. Image data. We first test our algorithms on the famous MNIST dataset [4].
This dataset consists of 70000 28× 28 grayscale images of 10 different handwritten
digits. We treat each of the different digits as a class and attempt to separate mixed
images of two different digits from each other.

Experiment 1: Data Rich, Strong Supervised Setting. We investigate first a setting
with an abundance of strong supervision data, which make discriminative models
like DNMF applicable. We use Nsup = 5000 data-points and synthetically generate
strong supervised data with “zero” and “one” digits with deterministic weights
a0 = a1 = 0.5. Similarly, we create Ntest = 1000 data points that will be used for
testing. We select the same number d of basis vectors for both sources, and test
different values. We select the sparsity parameter as λ = 1e−2 and choose the safe
division factor γ = 1e− 10, as this choice worked well for all methods.

The results are illustrated in Figure 4. We see that MDNMF outperforms all
methods, and performance increases with the number of basis vectors d.

Surprisingly, MDNMF outperforms DNMF in this strong supervision setting,
even though it does not explicitly utilize the fact that we have strong supervision
data, which DNMF explicitly does. We predict that, given enough data, DNMF
can potentially find a global minimizer that outperforms MDNMF, though this
does not practically happen in our experiments.

One beneficial property of MDNMF is that it performs model selection in the
sense that as d increases, additional basis vectors are chosen to be in the span of
the existing ones, and these can potentially be removed after fitting. This is seen in
Figure 4, as performance plateaus for high d for MDNMF. It thus selects a “sharp”
cone and can potentially be used to select optimal d.

We observe that ENMF can outperform NMF for large d. This is remarkable,
as ENMF requires virtually no training, only sampling. However, we are mainly
interested in the case of lower values of d, where ENMF performs poorly, we will
omit the results of ENMF in the further experiments.

We now investigate how the performance is affected by the value of the parameter
τA. We run the same experiment, except this time we vary τA and focus only on
MDNMF. The results are shown in Figure 5. They indicate that, while a good
selection of the parameter τA is crucial for performance, there is a relatively large
range of values for which the performance is acceptable. Noting that the case τA = 0

https://github.com/martilud/ANMF
https://github.com/martilud/ANMF
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Figure 4. Results from experiments in a data rich strong super-
vised setting. The lines show the median PSNR of the reconstruc-
tions of the methods applied to the test dataset, along with the
standard error. For MDNMF we use τW = 1 and τA = 0.2. We
note that performance tends to improve as the number d of basis
vectors increases, and that MDNMF consistently outperforms the
other methods.

corresponds to standard NMF, we also see that the performance benefit of using
MDNMF over NMF increases with model complexity.

An example of the separation results for a mixed image is shown in Figure 6. We
see that MDNMF and DNMF appear to be better at learning which features belong
to the different images. While standard NMF only learns a set of features that can
be used to reconstruct the images, MDNMF and DNMF also learn what features
do not belong to that class of images. The result of this is that these methods have
a smaller tendency to have features of one source appear in another source, though
this comes at the cost of losing some reconstruction accuracy for the relevant data,
in particular for outlier data. Depending on the application, this ability to properly
discern what feature belong to which source can be of higher importance than the
overall reconstruction quality.

Experiment 2: Sparse data setting. We now investigate the behavior of the methods
in a more realistic, sparser data setting. We set the amount of strong supervised
data to Nsup = 250 and the amount of weak supervised data for each source to
Ni = 500. This emulates a setting where obtaining strong supervised data is more
difficult than obtaining weak supervision data. We also generate Ntest = 1000 test
data, which is not available during training, but will be used to compare the models.
The goal is to investigate how to best utilize this data to fit NMF bases. We will
attempt this by doing hyperparameter tuning as described in section 4.3.

The parameters that need to be tuned for the different methods are shown in
Table 2.

We choose not to tune d, as we saw in Figures 4 and 5 that results tend to
improve with d at the cost of computation speed and storage. We ideally want the
basis W to include as few basis vectors as possible, and we choose d = 64 for all
experiments.
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Figure 5. Results from experiments in data rich strong super-
vised setting with τW = 1 and varying τA for MDNMF. The lines
show the median PSNR over the test dataset for different parame-
ter values, along with the standard error. We note that τA = 0 cor-
responds with standard NMF. We see that selecting τA too large
leads to much worse performance, but there is a relatively large
range of parameters that yield better performance than standard
NMF. We also find that the discrepancy in performance between
NMF and MDNMF becomes larger as d increases.

Mix GT NMF MDNMF DNMF

Figure 6. Example separation on test data for bases trained in
data rich strong supervised setting with d = 128, τW = 1, and τA =
0.2. All images are plotted independently so that the brightest
pixel corresponds with the largest pixel value. The given PSNR
value is the PSNR between the reconstruction and the true source
data. All separations carry some artifacts from the Wiener-filtering
around the areas where the mixed images overlap. Standard NMF
performs especially poorly and the separated images have some
clear artifacts. We see this to a much smaller degree for MDNMF
and DNMF, and they are qualitatively similar.

We also test for more classes of digits. Images of “one” digits are most suited
for NMF based methods, in the sense that NMF bases trained on this digit do well
in the reconstruction. Therefore, we perform the experiment nine times, each time
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Parameters NMF DNMF MDNMF D+MDNMF
# Basis vectors d ✓ ✓ ✓ ✓
Parameters λ, γ ✓ ✓ ✓ ✓
Test epochs ✓ ✓ ✓ ✓

Training epochs ✓ ✓ ✓ ✓
Batch sizes ✓ ✓ ✓ ✓

Adversarial weight τA ✓ ✓
Supervision weight τS ✓

Table 2. Parameters that need to be tuned for different versions
of NMF. Most of these parameters can also be tuned separately
for each source. The parameter τW can always be set to 1.

with a “one” digit mixed with a different digit. We report the difference in median
PSNR between the desired method and standard NMF, denoted ∆Median PSNR.

The distributions used for the hyperparameters in the random search implemen-
tation can be found in the published code. For each fit we try 30 different randomly
sampled parameters. The results are shown in Figure 7.

zero two three four five six seven eight nine
Digit mixed with "one" digit

0.2

0.0

0.2

0.4

0.6

0.8

M
ed

ia
n 

PS
NR

Comparison in constrained data setting for different classes of digits
NMF
MDNMF
DNMF
D+MDNMF

Figure 7. Results from tuning experiments with different digits in
the low strong supervision data setting. The y-axis is the difference
in median PSNR between the method and standard NMF. The
digits on the x-axis illustrate which digit was mixed with “one”
digits when synthetically generating data. We observe that there
is not a large discrepancy in performance, but D+MDNMF tends
to perform best in cases where there is a discrepancy between NMF
and the more advanced methods.

The results seem to indicate that for some digits, or some train–test splits,
there is little performance gain from using more complex methods than standard
NMF, and such methods can even overfit the data, yielding worse generalization
performance. However, D+MDNMF tends to perform better, showing that there
is some potential benefit to utilizing all data in a careful way. On the contrary,
D+MDNMF also has high variance as it has the most tuning parameters. Ideally,
its performance should always be at least as good as either DNMF or MDNMF, as
it is a superset of both methods, but this experiment proves that practically finding
optimal parameter values and fitting optimal bases can be challenging.
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5.2. Audio data. We will now perform a single speaker speech enhancement exper-
iment to further exemplify the usage of our proposed methods. For that, we follow
the standard approach for using NMF for audio source separation [6,30]. Also, we
only consider the semi-supervised case, where we have clean speech recordings and
noisy speech recordings with different speech from the same speaker, but no clean
recordings of noise. The goal is then to denoise these specific noisy recordings.

Data. In order to make the experiment reproducible, we only use open-source data.
For speech, we use the LibriSpeech dataset [23], which contains 1000 hours of public
domain recordings of English audiobooks recorded at 16kHz. Specifically, we will
use the development set of this dataset, which contains roughly 10 minutes of
speech for each of 38 different speakers, both male and female. For noise, we use
the Musan dataset [25], which contains a variety of noise data, including general
ambient sounds and technical noises from electronic devices also recorded at 16kHz.
We split the dataset into training and testing, where the training dataset contains
half of the speech data and the test dataset contains half of the speech data with
added noise. We mix the noise additively at a constant SNR of 3. Because the noise
data is quite varied, the perceived noise level, as well as the difficulty in denoising,
varies quite a bit for different types of noise.

Feature extraction. We extract features by first computing the Short-Time Fourier
Transform (STFT) and then taking the amplitude to obtain the spectrum of the
audio. We then attempt to separate on the spectrum, and use Wiener-filtering
to reintroduce the phase before applying the Inverse STFT (ISTFT). We note
that using the noisy phase for reconstructions is a simple approach, and more
advanced approaches are preferable. However, the point of these experiments are
not necessarily to showcase state-of-the-art speech enhancement, but to test how
maximum discrepancy generative regularization performs compared to standard
generative regularization for this task. The librosa package is used to implement the

Noisy Audio Noisy STFT

Separation

Clean STFT Clean Audio

Phase Transfer

Figure 8. Feature extraction for audio speech using the STFT.
The separation is done through the proposed NMF method, and
the phase transfer is done by reusing the noisy phase for the re-
constructed audio.

STFT [20]. In the implementation of the Short-Time Fourier Transform (STFT), a
window length and Fast Fourier Transform (FFT) size of 512 samples are utilized,
equating to a latency window duration of 32 milliseconds. Furthermore, the hop
length is set to ensure a 50% overlap with adjacent frames.

Method. For speech denoising applications, we are only concerned with reconstruct-
ing speech. We first train a basis for the known speech signal using NMF or MD-
NMF with the noisy speech as adversarial data, then solve equation (17) to obtain
a basis for the unknown noisy signals. We use these bases to separate the noisy
signals, and recover the speech signals. To measure quality, we use SI-SDR [14],
which we apply to the individual audio clips. We repeat this experiment for different
speakers, and do the training from scratch for each speaker.
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Results. The results for the audio data can be found at the repository https:

//github.com/martilud/ANMF. For both sparsity and number of basis vectors, we
find that selecting different values for the speech and noise is beneficial. Specifically,
we use d = 128 basis vectors for speech, and d = 32 for noise, as well as λ = 10−3

for speech and λ = 10−10 for noise. The argument for this is that speech is usually
complex and sparse, while noise is often not sparse, instead spread over most of the
spectrum. Furthermore, if we allow the noise basis to be too complex, it will simply
learn the residual of the NMF representation of speech, though this is much more
problematic for NMF than MDNMF, and MDNMF is much less sensitive to the
selection of amount of basis vectors. We again see that MDNMF implicitly does
model selection, by setting some basis vectors to be roughly equal as d increases.

For MDNMF, we select τW = 1 and τA = 1.0, and use the approximation
described in Appendix C. For the calculation of the parameter βi (see (22)) we
use the exact weights that were used for mixing the noisy signals. The results are
shown in Figure 9, where we see that MDNMF significantly outperforms NMF.
We note that in our experiments, while there were some audio clips where NMF
quantitatively outperformed MDNMF, MDNMF outperformed NMF on average for
all 38 speakers. We also show the spectrogram of the result of a specific audio clip
in Figure 10.
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Figure 9. Results from audio experiment. We see that MDNMF
consistently outperforms NMF in terms of mean SI-SDR of the
different experiments for different speakers.

Qualitatively we note that the denoised signals produced by MDNMF are of
higher or equal quality, and there is still much room for parameter tuning. A fea-
ture of MDNMF is that it consistently removes more stationary (low-frequency)
noise from the signal, as well as specific frequencies that are not required for recon-
struction of speech signals. Another feature of MDNMF is that there is a trade-off
between how much noise is removed and the quality of reconstructed speech. This
means that some reconstructions where MDNMF performs quantitatively worse of-
ten remove more of the noise. As such, MDNMF is preferable not only because of

https://github.com/martilud/ANMF
https://github.com/martilud/ANMF
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Figure 10. Example clean, noisy, NMF recovered and MDNMF
recovered audio. MDNMF is clearly more capable at removing
noise, though there is still some room for improvement. In par-
ticular, for this specific audio clip it is clear that the noise also
exhibits sparsity.

the superior quantitative performance, but especially in situations where removal
of noise is more important than perfect reconstruction of the speech signal. We
also see that both methods perform worse at removing non-stationary noise, like
background music or sharp sounds from moving objects. We further note that using
the noisy phase is clearly insufficient, and more complex phase transfer methods
should be used to obtain high quality reconstructions. In order to be able to treat
this type of noise with NMF-based methods, we suspect one would need more basis
vectors to fully model the complexity of the noise, as well as more data to properly
fit the bases. Another approach would be to use generative models that are better
capable at modeling non-stationary noise data.

The conclusion is that MDNMF can learn compact bases that can be used for
single speaker speech denoising in a semi-supervised data setting. We believe MD-
NMF would also be suitable for more large scale multi-speaker denoising and other
audio applications, but this would require further investigation.

6. Further Work

Several potential avenues for future research are worth exploring, including in-
vestigating maximum discrepancy generative regularization for more complex gen-
erative methods, incorporating transfer learning techniques, and identifying better
approaches for parameter tuning. We believe that maximum discrepancy genera-
tive regularization can be a valuable tool for source separation and more general
inverse problems in weak supervision data settings. The main challenge is how to
most efficiently utilize trained models and data available to achieve good and robust
results.

7. Conclusion

In this article we have investigated maximum discrepancy generative regulariza-
tion for single channel source separation. In particular, we have developed a variant
of Non-Negative Matrix Factorization that we called Maximum Discrepancy Non-
Negative Matrix Factorization (MDNMF). We have discussed how to utilize weak
and strong supervision data for training adversarial generative functions for source
separation problems. We have seen in the numerical experiments that MDNMF
outperforms other NMF methods for both image and audio source separation prob-
lems, including methods that make use of strong supervision data.
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Appendix A. Proof of Theorem 6

Since the sets Gi are sequentially compact, it is sufficient to show that the
mappings FW

i and FA
i are continuous and that the mappings FS

i are lower semi-
continuous. For simplicity of notation, we drop in the following the indices i.

We start with the continuity of the mapping FW . For this, we show first that
the mapping g 7→ ∥π(g, y)− u∥2 is continuous. To that end, denote

P (h, g) = ∥g(h)− u∥2 + λR(h).
Because the mapping (g, h) 7→ g(h) is continuous and R is lower semi-continuous,
it follows that P is lower semi-continuous.

Assume now that the sequence {g(k)}k∈N ⊂ G converges to g0 ∈ G and let h(k) be

minimizers of the functions P (·, g(k)). Let moreover ĥ ∈ Rd be such thatR(ĥ) <∞.
Then

λR(h(k)) ≤ P (h(k), g(k)) ≤ P (ĥ, g(k)) = ∥g(k)(ĥ)− u∥2 + λR(ĥ)

≤ sup
g∈G
∥g(ĥ)− u∥2 + λR(ĥ)

for all k. Because G is sequentially compact and the mapping g 7→ g(ĥ) is continu-
ous, it follows that

sup
g∈G
∥g(ĥ)− u∥2 <∞.

Because R is coercive, it follows that the sequence {h(k)}k∈N ⊂ Rd is bounded.
After possibly passing to a subsequence we may thus assume that it converges to
some h0 ∈ Rd.

Since P is lower semi-continuous and h(k) minimizes P (·, g(k)), it follows that

P (h0, g0) ≤ lim inf
k→∞

P (h(k), g(k)) ≤ lim inf
k→∞

P (h, g(k))

for all h ∈ Rd. Since P is continuous with respect to g and g0 = limk→∞ g(k), it
follows that P (h0, g0) ≤ P (h, g0) for all h, which implies that h0 is a minimizer of
P . The continuity of g now implies that

lim
k→∞

∥π(g(k), u)− u∥2 = lim
k→∞

∥g(k)(h(k))− u∥2 = ∥π(g0, u)− u∥2.

Finally, Assumption 5 implies that the value of ∥π(g0, u) − u∥2 does not depend
on the choice of the convergent subsequence chosen earlier. Thus a standard
subsequence argument implies the (sequential) continuity of the mapping g 7→
∥π(g, y)− u∥2.

Next we obtain that

∥π(g(k), u)− u∥2 ≤ P (h(k), g(k)) = ∥g(ĥ)− u∥2 + λR(ĥ)

≤ 2∥g(k)(ĥ)∥2 + 2∥u∥2 + λR(ĥ) ≤ 2 sup
g∈G
∥g(ĥ)∥2 + λR(ĥ) + 2∥u∥2

for all k ∈ N. Since Eu∼PU
(∥u∥2) < ∞, we can thus apply Lebesgue’s Theorem of

Dominated Convergence and obtain that

lim
k→∞

Eu∼PU
(∥π(g(k), u)− u∥2) = Eu∼PU

(∥π(g0, u)− u∥2),

which proves the continuity of FW .

The proof of the continuity of FA is similar. The only difference is that we
require for the application of Lebesgue’s Theorem of Dominated Convergence that
Eu∼PZ

(∥u∥2) < ∞. This, however, holds because of the construction of the distri-
bution PZ in view of the boundedness of the coefficients ai and the finiteness of the
second moments of the data.



MAXIMUM DISCREPANCY GENERATIVE REGULARIZATION FOR SCSS 23

Finally, we show the lower semi-continuity of the term FS . Here we start,
similarly as above, by showing that the mapping g 7→ ∥u∗(g; v) − u∥2 is lower
semi-continuous.

Assume therefore that the sequence {g(k)}k∈N converges to g0. Moreover, let
(a(k),u(k), h(k)) be the corresponding solutions of (3). As in the argumentation
above, we then obtain that the sequence {h(k)}k∈N is bounded, and thus we can
choose a subsequence converging to some h0. By the continuity of the evaluation
mapping, the corresponding sequence of generated data u(k) = g(k)(h(k)) con-
verges to u0 = g0(h0). In addition, the parameters a(k) are by definition uniformly
bounded and thus also admit a subsequence converging to some a0. In view of the
lower semi-continuity of the functional in (3), it then follows that (a0,u0,h0) is a
solution of (3) for the generator g0.

Now note that u∗(g0; v) was chosen to be the i-th component of the solution
of (3) for which ∥u∗(g0; v)− u∥ was minimal. Thus

∥u∗(g0; v)− u∥2 ≤ ∥u0 − u∥2 = lim
k→∞

∥u(k) − u∥2.

Since this holds independent of the choice of the convergent subsequence, it follows
that the mapping g 7→ ∥u∗(g; v) − u∥2 is lower semi-continuous. Now the lower
semi-continuity of FS is an immediate consequence of Fatou’s lemma.

Appendix B. Proof of Theorem 8

The argument follows the original proof in [15]. We are interested in the loss

L(w) =
1

2
∥u− wH∥2 − 1

2
∥û− wĤ∥2 + 1

2
∥ũ− wH̃∥2 + γ∥w∥1, (20)

where w ∈ Rd
+ is a row vector, u, û, ũ ∈ Rn

+ and H, Ĥ, H̃ ∈ Rd×n
+ . We assume

that all data is strictly positive. For simplicity we assume that the amount of weak
supervision, adversarial and strong supervision data is equal.

The D+MDNMF update in this case becomes

wk+1 = wk ⊙ uHT + ũH̃T + wkĤĤT

wk(HHT + H̃H̃T ) + ûĤT + γ
. (21)

The main tool we need for the proof are so-called auxiliary functions.

Definition 10. An auxiliary function for L(w) is a function M : Rd × Rd → R
such that

L(w) ≤M(w,wk), L(w) = M(w,w),

for all w, wk ∈ Rd.

Lemma 11. If M(w,wk) is an auxiliary function of L(W k), then given the update

wk+1 = argmin
w

M(w,wk),

we have

L(wk+1) ≤ L(wk).

Proof. By the definition of auxiliary functions

L(wk+1) ≤M(wk+1, wk) ≤M(wk, wk) = L(wk),

where the second inequality follows from the fact that wk+1 is a minimizer of
M(w,wk). □
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In the following, we will show that the multiplicative update (19) is of the form
described in Lemma 11 with the auxiliary function

M(w,wk) = L(wk) + (w − wk)T∇wL(w
k) + (w − wk)TK(wk)(w − wk)

for the loss (20), where

∇wL(w
k) = uHT + ûĤT + ũH̃T − w(HT + ĤT + H̃T ) + γ

and

K(wk) = diag

(
wk(HHT + H̃H̃T ) + ûĤT + γ

wk

)
.

Here the division is interpreted componentwise, As this function is quadratic and
strictly convex it is clear that

wk+1 = wk −K(wk)−1∇wL(w
k)

is a minimizer of M(w,wk). Moreover, one can verify that this update leads to the
proposed multiplicative update (21).

Thus, if we can show thatM(w,wk) is an auxiliary function for the loss, it follows
that the loss is non-increasing under this update. Following [15] this is equivalent
to showing that the matrix

B(wk) = K(wk)−HTH + ĤT Ĥ − H̃T H̃,

which is the difference between the proposed auxiliary function and the expansion
of the loss (20) around wk, is positive semi-definite. The terms corresponding to
weak supervision data and by extension strong supervision data have been shown
to be positive semi-definite by Lee and Seung, and the remaining terms are also
positive semi-definite as

wT (diag(
ûĤT + γ

wk
) + ĤĤT )w ≥ ∥ĤTw∥2 ≥ 0,

given the non-negativity of ûĤT and γ. It is worth noting that when including
the adversarial term, B(wk) is strictly positive definite when û and ĤT are strictly
positive.

Thus, M(w,wk) is an auxiliary function for the proposed loss (20), and thus
the loss is non-increasing under the update. It follows that the full D+MDNMF is
non-increasing under the update when the latent variables are fixed.

Remark 12. If any component of wk is 0, it will stay 0 under the update. This
can only happen analytically if it is initialized as such or if the data is not strictly
positive, and numerically due to rounding. In this case, we set the corresponding
component of K(wk)−1 to be 0, which again corresponds to the proposed update,
and the non-increase of the loss (20) still holds.

Appendix C. Scaling of Adversarial Data

Generally, we can select adversarial data for the i-th source following the mixture
distribution

PZi
:=
∑
j ̸=i

ωijPUj
+ ωiiPVi

,

where ωij represents the weight of the corresponding distribution of data PUj
,

and satisfies the constraints 0 ≤ ωij ≤ 1 and
∑

j ωij = 1. Moreover, PVi
=

(fi)#(PA×V ), with fi as defined in (10). A natural choice for the weights is to
select ωij equal to the ratio of the amount of available data from the correspond-
ing distribution and the total amount of adversarial data. However, more nuanced
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selection of these weights might be interesting, for example when training adversar-
ially against one class is more important than training adversarially against another
class.

A particularly useful property of NMF is that for any α > 0, we have

h(W,αu;αλ) = argmin
h≥0

∥αu−Wh∥2 + αλ|h|1

= argmin
h≥0

α2
(∥∥∥u−W

h

α

∥∥∥2 + λ
∣∣∣h
α

∣∣∣
1

)
= αh(W,u;λ).

Thus, we can compute the expected value over the adversarial data as

Eu∼PZi
[∥u−Wh(W,u;λ)∥2] =

∑
j ̸=i

Eu∼PUj
[∥√ωiju−Wh(W,

√
ωiju;

√
ωijλ)∥2]

+ Eu∼PVi
[∥
√
ωiiu−Wh(W,

√
ωiiu;

√
ωiiλ)∥2].

We can then store the adversarial data in a matrix

Ûi =
[√

ωi1U1 . . .
√
ωi(i−1)Ui−1

√
ωi(i+1)Ui+1 . . .

√
ωiSUS

√
ωiiVi

]
and obtain with Monte Carlo integration the approximation

Eu∼PZi
[∥u−Wih(Wi, u;λ)∥2] ≈

1

N̂i

∥Ûi −WiH(Wi, Ûi)∥2F ,

where the sparsity parameter for H(W, Ûi) needs to be scaled per data according
to ω. This can easily be done with the proposed numerical update. Scaling the
sparsity parameter only has an effect if the sparsity parameter λ is large, and can
likely be ignored in some applications.

Taking the expected value over PVi requires samples from the mixed data and
the weights in order to approximate the joint distribution PA×V . For the particular
case of NMF, however, we can obtain a reasonable approximation that only requires
sampling the data V : In the cases where αλ≪ 1 or α ≈ 1 we have

αh(W,u;λ) ≈ h(W,αu;λ),

which further implies that

∥αu−Wih(Wi, αu;λ)∥22 ≈ α2∥u−Wih(Wi, u;λ)∥22.

Because of the assumed independence of PV and PA, we further have that

Eu∼PVi

(
∥u−Wih(Wi, u)∥2

)
= E(a,u)∼PA×V

(∥∥∥ ai∑
j a

2
j

u−Wih
(
Wi,

ai∑
j a

2
j

u
)∥∥∥2)

≈ E(a,u)∼PA×V

(( ai∑
j a

2
j

)2∥∥u−Wih(Wi, u)
∥∥2)

= βiEu∼PV

(
∥u−Wih(Wi, u)∥2

)
with

βi = Ea∼PA

(( ai∑
j a

2
j

)2)
. (22)

We note that ai/(
∑

j a
2
j ) ≈ 1 is the case when ai ≈ 1/S, that is, when all weights

are roughly the same size.
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Appendix D. Additional notes on numerical implementation

When applying stochastic multiplicative updates to ANMF and D+MDNMF we
face the challenge that we are minimizing a loss with different terms with potentially
unbalanced data. This means that we can, and most likely should, select different
batch sizes for the different datasets. Some potential strategies for this selection
are the following:

• Proportional sampling: Select the batch sizes proportional to the size
of the datasets, in which case the number of batches are also equal.

• Undersampling: End the epoch and reshuffle all data when we have
passed through all batches of the dataset with the smallest number of
batches.

• Oversampling: When all batches of one dataset have been passed through,
resample the data-points from this dataset until all batches of the other
datasets have been passed through.

• Iterative sampling: Reshuffle only the corresponding data when we have
passed through all batches of this dataset. In this case each dataset has its
corresponding number of epochs.

All approaches have their advantages and disadvantages, but we propose using
undersampling and oversampling as they are simple to implement while still allow-
ing different batch sizes for the different terms. Specifically, we first select which
dataset we are interested in sampling fully, and then either undersample or over-
sample the other data. For oversampling, we sample circularly, starting from the
first data-points when we have passed through all data.

Appendix E. Numerical convergence of multiplicative updates

We run a convergence experiment to see if the proposed numerical algorithms
behave as expected. We synthetically generate N = 2500 strong supervised data
of mixed ”zero” and ”one” digits, and use sparsity parameters λ = γ = 10−10. For
MDNMF and D+MDNMF we use τW = 1 and τA = 0.1, and for D+ANMF we use
τS = 0.5. For MDNMF we use both data from other sources and mixed data as
adversarial data, and for D+MDNMF we use the strong supervised data for both
the strong supervised and the weak supervised term.

We only report the convergence for the basis and latent variables for the ”zero”
digit source or all methods, including DNMF and D+MDNMF which are fitted for
all other sources at the same time. The results are shown in Figure 11.
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[9] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,

David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
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Bibiane Schönlieb. Learned reconstruction methods with convergence guarantees: a survey

of concepts and applications. IEEE Signal Processing Magazine, 40(1):164–182, 2023.

[22] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in applied probability, 29(2):429–443, 1997.

[23] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An

ASR corpus based on public domain audio books. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, 2015.
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