
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Robust Phase Retrieval by Alternating Minimization
Seonho Kim, Student Member, IEEE, and Kiryung Lee, Senior Member, IEEE

Abstract—We consider a least absolute deviation (LAD) ap-
proach to the robust phase retrieval problem that aims to
recover a signal from its absolute measurements corrupted with
sparse noise. To solve the resulting non-convex optimization
problem, we propose a robust alternating minimization (Robust-
AM) derived as an unconstrained Gauss-Newton method. To
solve the inner optimization arising in each step of Robust-
AM, we adopt two computationally efficient methods for linear
programs. We provide a non-asymptotic convergence analysis of
these practical algorithms for Robust-AM under the standard
Gaussian measurement assumption. These algorithms, when
suitably initialized, are guaranteed to converge linearly to the
ground truth at an order-optimal sample complexity with high
probability while the support of sparse noise is arbitrarily fixed
and the sparsity level is no larger than 1/4. Additionally, through
comprehensive numerical experiments on synthetic and image
datasets, we show that Robust-AM outperforms existing meth-
ods for robust phase retrieval offering comparable theoretical
performance guarantees.

Index Terms—phase retrieval, outliers, least absolute deviation,
linear program, convex optimization

I. INTRODUCTION

Phase retrieval refers to the recovery of unknown signals
x⋆ ∈ Rd (or Cd) from the magnitudes of its linear measure-
ments, which are formulated as

bi = |⟨ai,x⋆⟩|, i = 1, . . . ,m, (1)

where a1, . . . ,am ∈ Rd (or Cd) and are known measurement
vectors. Solving the set of nonlinear equations in (1) arises
in numerous applications including X-ray crystallography,
diffraction and array imaging, and optics (e.g. [2]–[5]). We
consider the robust phase retrieval from the noisy amplitude
measurements in (1) corrupted with sparse noise, i.e.

bi =

{
ξi if i ∈ Iout

|⟨ai,x⋆⟩| if i ∈ Iin
(2)

where Iout ⊂ [m] and Iin = [m] \ Iout collect the unknown
indices of outliers and inliers respectively, and {ξi}i∈Iout is an
arbitrary sequence in R. For example, such a scenario arises in
phase retrieval imaging applications [6] due to various reasons
including detection failures and recording errors.

A suite of methods designed for the plain phase retrieval
[7] has been adapted to address the outliers. These methods
provide not only empirically successful performances but also
theoretical analyses under random measurement models. For
instance, anchored regression [8] and PhaseMax [9] formulate
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phase retrieval given an initial estimate as a linear program.
RobustPhaseMax [10] modifies these methods to offer robust
estimation by introducing an auxiliary variable to describe the
outliers. In another example, Reshaped Wirtinger Flow (RWF)
[11] and Amplitude Flow [12] follow a subgradient descent
approach for a least squares estimator (LSE). Median-RWF
[13] is a variant of these methods tailored to robust phase
retrieval. Specifically, Median-RWF uses a truncation type
of regularization that identifies and excludes outliers in each
iteration by median-based thresholding on the consistency
of the current estimate to the measurements. Median-RWF
significantly improves the empirical performance of Robust-
PhaseMax by tolerating a higher fraction of outliers. How-
ever, the regularization of Median-RWF involves algorithmic
parameters that have been tuned specifically for the Gaussian
measurement model. However, it has not been discussed how
to generalize the tuning parameters to other measurement
models.

A recent work proposed an approach to robust phase re-
trieval in the classical robust regression framework in statistics
[14]. Instead of the least squares, they adopted the least ab-
solute deviation (LAD) [15] to enforce the consistency to the
squared amplitude measurements with outliers. The parameter
estimation is then cast as a nonconvex optimization problem.
They proposed a prox-linear method that updates the estimate
iteratively through local linearization of the forward model.
This algorithm can be viewed as a variant of the Gauss-Newton
method that regularizes the updates with the proximity to the
previous iterate. The prox-linear algorithm iteratively refines
the estimate through a sequence of quadratic programs for
prox-linear problems and provides comparable performance
to Median-RWF. Importantly, the Gauss-Newton method does
not involve any tuning parameter. However, for large-scale
applications such as those in astronomical or medical imaging,
further acceleration of this iterative method is desired. They
developed the proximal operator graph splitting (POGS) solver
for this purpose.

In this paper, we propose an optimization approach to robust
phase retrieval that shares strong theoretical guarantees (high
tolerance of outlier ratio and no tuning parameters) with the
prox-linear algorithm and further improves its computational
cost. The objective is achieved by a simple unconstrained
Gauss-Newton method for LAD. The resulting optimization
is equivalent to an alternating minimization algorithm for
LAD, as described in [16], which is solved by a sequence of
linear programs. Since this alternating minimization approach
is robust in the presence of outliers, we refer to the opti-
mization as Robust-AM. Since this alternating minimization
is a robust estimator in the presence of outliers, we refer to
the optimization as Robust-AM Our main theoretical result
demonstrates that a suitably initialized Robust-AM converges
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to the ground-truth signal linearly from m = O(d) random
amplitude-only measurements including up to 25% outliers.
The desired initialization can be obtained by the existing robust
spectral estimators [13], [14]. We verified through compre-
hensive numerical simulations that Robust-AM empirically
outperforms the existing methods for robust phase retrieval.
Particularly, it can tolerate a higher fraction of outliers and
provide exact recovery with fewer observations. Furthermore,
due to its unconstrained optimization formulation with the
absolute amplitude measurement model, Robust-AM admits a
computationally efficient ADMM algorithm, which runs faster
than POGS for the prox-linear method. As shown in Figure 1,
ADMM for Robust-AM converges faster than POGS for the
prox-linear method. In this experiment, the fraction of outliers
is set to η := |Iout|/m = 0.3, with outlier entries generated
following zero and a Cauchy distribution with median 0 and
mean-absolute-deviation 1. The convergence is measured by
the metric dist(x,x⋆) := minα∈{±1} ∥x− αx⋆∥2 for x,x⋆ ∈
Rd. Figure 1 shows that the unconstrained Gauss-Newton
method, without any explicit control over the proximity to
previous iterates, converges to the ground truth signal x⋆

without overshooting.

time(sec)

(a) zero

time(sec)

(b) Cauchy distribution

Fig. 1: Convergence of Robust-AM by ADMM [17] (blue)
and prox-linear by POGS (red) in run time (d = 1, 000,m =
10, 000, and η = 0.3).

Notations : Boldface lowercase letters denote column vectors.
We use ∥·∥1 and ∥·∥2 to denote the ℓ1 norm and the Euclidean
norm respectively. For brevity, the shorthand notation [n]
denotes the set {1, . . . , n} for n ∈ N. We adopt the big-O
notation so that q ≲ p is alternatively written as q = O(p).
With a notation Õ, we ignore logarithmic factors.

II. ROBUST ALTERNATING MINIMIZATION

We consider the minimization of the composite function
ℓ = h ◦ F where h : Rm → R is a convex function and
F : Rd → Rm is a nonlinear mapping. In the special case
when F is differentiable, Burke and Ferris [20] proposed a
constrained Gauss-Newton method where the amount of the
update is upper-bounded by a threshold. Duchi and Ruan [14]
considered a variant where the constraint on the proximity on
consecutive iterates is substituted by regularization with an
additive penalty. We consider a more challenging case where
F is non-differentiable and propose an unconstrained Gauss-
Newton method where the variable sequence (xk)k∈N∪{0} is
iteratively updated by

xk+1 ∈ argmin
x∈Rd

h(F (xk) + F ′(xk)(x− xk)) (3)

where F ′(xk) ∈ Rm×d denotes the Clarke’s generalized Jaco-
bian matrix at xk [21]. Due to the local linear approximation
of F at xk in (3), xk+1 is obtained as a solution to a
convex program. In a special case where h : Rm → R and
F : Rd → Rm are respectively given by

h(z) = ∥z∥1 (4)

and
F (x) = (|⟨ai,x⟩| − bi)

m
i=1 , (5)

their composition reduces to

ℓ(x) :=
1

m

m∑
i=1

||⟨ai,x⟩| − bi| . (6)

Then the minimization of ℓ corresponds to the LAD approach
to robust phase retrieval with the absolute amplitude measure-
ment model. Furthermore, given h and F as in (4) and (5),
the update rule in (3) is explicitly written as

xk+1 ∈ argmin
x∈Rd

m∑
i=1

|⟨ai,x⟩ − sign(⟨ai,xk⟩) · bi| . (7)

The resulting algorithm (7), derived from an unconstrained
Gauss-Newton method of robust phase retrieval, is equivalent
to an alternating minimization approach to the LAD formu-
lation of robust phase retrieval when noisy measurements
with a negative sign are discarded. An analogous alternating
minimization for least-squares phase retrieval has been studied
in the literature [16], [22]. Due to the robustness of LAD, we
refer to the iterative algorithm by (7) as a robust alternating
minimization (Robust-AM).

Duchi and Ruan [14] considered a similar robust phase
retrieval with the squared amplitude measurement model via
their regularized Gauss-Newton method.

III. OPTIMIZATION ALGORITHMS

This section discusses numerical algorithms for Robust-AM.
First, we note that the optimization in (7) is equivalent to a
linear program

minimize
x∈Rd,(ti)mi=1

⟨t,1m⟩

subject to ti ≥ ⟨ai,x⟩ − sign(⟨ai,xk⟩) · bi,
ti ≥ −⟨ai,x⟩+ sign(⟨ai,xk⟩) · bi, ∀i ∈ [m]

(8)
where 1m = [1, . . . , 1]T ∈ Rm. There exist various computa-
tionally efficient numerical methods to solve linear programs.
For example, the derandomized algorithm by van den Brand
[19] finds an exact solution to a linear program with d variables
and m constraints at the cost of Õ ((m+ d)c) multiplications
where c ≈ 2.38.

To further accelerate the convergence of Robust-AM, we
also adopt iterative numerical algorithms that provide an
approximate solution to the inner optimization in (7). In
particular, we consider two alternating direction method of
multipliers (ADMM) algorithms and a subgradient descent
algorithm for the inner optimization. We refer to the Robust-
AM with approximate solutions to the inner optimization
by these ADMM algorithms as fast Robust-AM since they
provide a significantly lower computational cost for the entire
convergence of Robust-AM to an ϵ-accurate estimate.
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TABLE I: Comparison of RobustPhaseMax [10], Median-RWF [13], Prox-linear [14] and Robust-AM for robust phase retrieval
in terms of computational cost to obtain ϵ-accurate solution and sparse noise assumptions for the performance guarantees.

Method Computational cost Algorithm type Support model Tolerable sparsity level

RobustPhaseMax O(m3 + (m+ d)2 log(1/ϵ)) ADMM for LP [18] adversarial unspecified
Õ((m+ d)2.38 log(1/ϵ)) Deterministic LP [19]

Median-RWF O(md log(1/ϵ)) truncated gradient descent arbitrary fixed unspecified
Prox-linear O

(
log log(1/ϵ)(md2 +md log(1/ϵ))

)
1 regularized Gauss-Newton (POGS) arbitrary fixed 1/4

Robust-AM O
(
m3 + (m+ d)2 log2(1/ϵ)

)
unconstrained Gauss-Newton via [18] arbitrary fixed 1/4

(Theorem IV.1) Õ
(
(m+ d)2.38 log2(1/ϵ)

)
unconstrained Gauss-Newton via [19]

1We establish this computational cost under the assumption that the POGS linear converges to the solution for the inner optimization of prox-linear.
However, to the best of our knowledge, the convergence rate of POGS has not been shown. Thus, this computational cost is a conjecture.

A. ADMM for LAD

Given xk, the optimization in (7) is viewed as LAD for
linear regression and one can use an ADMM algorithm for
LAD [17, Chapter 6.1]. To describe the update rule of the
ADMM algorithm, we introduce shorthand notations for the
sake of brevity. Let A ∈ Rm×d be a matrix whose i-th row
is aT

i for i ∈ [m], b := (b1, . . . , bm) ∈ Rm, and Λk =
diag(sign(⟨a1,xk⟩), . . . , sign(⟨am,xk⟩)). By following [17,
Chapter 6.1] with an auxiliary variable yt ∈ Rd and dual
variable ϕt ∈ Rm, the update rules are given in a closed form
as follows:

xt+1 = A+

(
yt − 1

ρ
ϕt

)
, (9a)

yt+1 = Λkb

+ sign

(
Ax+

1

ρ
ϕ−Λkb

)
⊙
[∣∣∣∣Ax+

1

ρ
ϕ−Λkb

∣∣∣∣− 1

ρ

]
+

,

(9b)

ϕt+1 = ϕt + ρ(Axt+1 − yt+1), (9c)

where ⊙ denotes the Hadamard product. The most expensive
step in (9) is the least squares problem in (9a). Since it repeats
with the same A, the pseudo inverse A+ of A can be pre-
computed as A+ = (ATA)−1AT with cost O(d3 + d2m) and
be used on memory over iterations. For faster convergence, we
adopt the varying step size strategy for ρ [17, Section 3.4.1].
Importantly, A remains the same over the outer iteration of
Robust-AM, the pseudo inverse is computed only once. The
POGS algorithm [23] for the prox-linear [14, Section 5] in-
volves a similar matrix inversion. However, since their matrix
evolves over the outer iteration, unlike the fast Robust-AM
with ADMM, it is necessary for POGS to repeat the matrix
inversion. Recall that we wanted to adopt ADMM for the
inner iteration of Robust-AM to accelerate the convergence
with approximate solutions. Therefore, the convergence rate
in the inner optimization is crucial. However, to the best of
our knowledge, the convergence rate has not been shown for
the above ADMM algorithm and the POGS algorithm. Below
we will present another ADMM algorithm and a subgradient
descent method for (7) with proven linear convergence in the
next section. Despite their theoretical convergence results, the
ADMM by (9) empirically outperformed the other methods.
In our numerical studies, we found that the fast Robust-AM
with ADMM by (9) provides faster empirical convergence than
POGS (see Figure 1).

B. ADMM for linear program with linear convergence

Wang and Shroff [18] proposed the ADMM approach for a
linear program and showed that their ADMM approach solves
a linear program significantly faster than standard software
such as CPLEX [24] and Gurobi [25]. Moreover, they showed
the linear convergence result for their ADMM approach. To
apply their approach to our linear program (8), we reformulate
it into the standard form of a linear program (only with
equality constraints) [18, Equation 1] by introducing 2m
auxiliary variables u,v ∈ Rm as

minimize
w∈Rd+3m

⟨c,w⟩

subject to Bw = pk, u, s ≥ 0m,
(10)

where 0m := [0, . . . , 0]T ∈ Rm, 0m,d := [0m, . . . ,0m] ∈
Rm×d, and

c := [0d; 1m; 0m; 0m] ∈ Rd+3m

w := [x; t; u; s] ∈ Rd+3m

pk := [Λkb; Λkb] ∈ R2m

B :=

[
A −Im 0m,m Im
A Im −Im 0m,m

]
∈ R2m×(d+3m).

Then, by following [18, Algorithm 1], the update rule is given
as a closed form with auxiliary variable yt = [yt

1; y
t
2] ∈

Rd+3m and dual variable zt = [zt
1; z

t
2] ∈ Rd+5m for

y1 ∈ Rd+m, y2, z1 ∈ R2m, and z2 ∈ Rd+3m as

wt+1 =
1

ρ
(I +BTB)

−1 (
BT

1

(
zt + ρ(B2y

t − p̄k)
)
+ c
)
,

(11a)

yt+1 = wt+1 +
zt
y

ρ
, yt+1

2 = [yt+1
2 ]+, (11b)

zt+1
1 = zt

1 + ρ
(
Bxt+1 − p

)
, zt+1

2 = zt
2 + ρ(wt+1 − yt+1),

(11c)

where

B1 :=

[
B

Id+3m

]
, B2 :=

[
0d+2m,d+3m

−Id+3m

]
, p̄k :=

[
pk

03m

]
,

and [·]+ takes the positive part of each entry of the input
vector. The most expensive step is the matrix inversion given
in (11a). It is calculated via the matrix-inversion lemma as

(Id+3m +BTB)−1 = Id+3m −BT(I2m +BBT)−1B

with cost O(m3). Since this step does not depend on previous
outer iterations, one can use a pre-computed result on memory
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over the inner and outer iterations. Hence, by the linear
convergence result [18, Theorem 1], the cost for an ϵk-accurate
solution to (10) is O

(
m3 + (m+ d)2 log(1/ϵk)

)
. However,

due to more auxiliary variables in (10) compared to (7), in
our numerical studies, the ADMM algorithm by (11) showed
slower convergence in the run time relative to the algorithm
by (9).

C. Subgradient descent for LAD

Yang and Lin [26] proposed a restarted subgradient (RSG)
for non-smooth optimization. The specification of their sub-
gradient descent to LAD in (7) is written as

xt+1 = xt − ηt
m

m∑
i=1

sign
(
⟨ai,x

t⟩ − sign(⟨ai,xi⟩) · bi
)
· ai,

(12)
where ηt > 0 denotes a step size. The step size remains
the same for T consecutive iterations and then decreases by
half. They showed that the subsequence of iterates sampled at
every T indices converges at a linear rate for a sufficiently
large T . Therefore, the cost for an ϵ-accurate solution to
(7) is O(mdT log(1/ϵ)). However, in our numerical studies,
RSG did not provide the fastest convergence in the run time
compared with the other ADMM algorithms.

IV. THEORETICAL RESULTS

In this section, we present the convergence analysis of
the Robust-AM algorithms under the following assumptions.
First, we adopt the standard random linear measurements and
outliers with arbitrary support and adversarial values [14].
Assumption 1: The measurement vectors (ai)

m
i=1 are

independent copies of a ∼ Normal(0, Id).
Assumption 2: The outliers are supported on an arbitrarily
fixed set Iout with |Iout| = ηm for η ∈ [0, 1/4] and their
magnitudes |ξi| can be adversarial.

Additionally, to provide the convergence analysis of the fast
Robust-AM, we introduce an extra assumption that quantifies
the suboptimality of solving (13) by ADMM.
Assumption 3: There exists a bounded sequence (ϵk)k∈N

such that xk is an inexact minimizer up to the sub-optimality
level ϵk for all k ∈ N, i.e.

m∑
i=1

|sign(⟨ai,xk⟩)⟨ai,xk+1⟩ − bi|

≤ ϵk + min
x∈Rd

m∑
i=1

|sign(⟨ai,xk⟩)⟨ai,x⟩ − bi| .
(13)

We denote the highest sub-optimality level as ϵmax, i.e.

ϵmax := max
k∈N

ϵk.

Theorem IV.1. Suppose that Assumptions 1, 2, and 3 hold.
Then there exist absolute constants C, c > 0 and constants
νη ∈ (0, 1), λη > 0 depending only on η, for which the
following statement holds for all x⋆ ∈ Rd with probability
at least 1− exp(−cd): If m ≥ Cd and

max (dist (x0,x⋆) , ληϵmax) ≤ sin(2/25)∥x⋆∥2, (14)

then the sequence (xk)k∈N∪{0} by the fast Robust-AM algo-
rithm satisfies

dist (xk,x⋆) ≤ νkη · dist (x0,x⋆) + ληϵmax (15)

for all k ∈ N, where dist(x,x⋆) := minα∈{±1} ∥x− αx⋆∥2.

The Robust-AM algorithm updates iterates with an exact
solution to (7). Therefore, setting ϵmax to 0 in Theorem IV.1
provides a sufficient condition for the exact recovery of x⋆ by
Robust-AM. We compare the specification of Theorem IV.1 to
this scenario to the analogous results for competing methods:
RobustPhaseMax [10], Median-RWF [13], and prox-linear
[14]. Theorem IV.1 as well as the previous results achieve the
exact recovery when the number of observations m exceeds
a multiple of the signal dimension d. Earlier theoretical
results on RobustPhaseMax and Median-RWF showed that
there exists an unspecified numerical constant so that the
algorithms provide the exact recovery if the outlier fraction
is below this constant. In contrast, the analyses of the prox-
linear [14] and Robust-AM (Theorem IV.1) demonstrate that
these methods can tolerate outliers up to 1/4 of the total
observations. These theoretical guarantees consider different
degrees of adversary for their outlier models. The performance
guarantee of RobustPhaseMax by Hand [10] assumed the
highest adversary so that both the support and values of
sparse noise are adversarial. The performance guarantees of
Median-RWF by Zhang et al. [13] considered the same outlier
model as in Assumption 2, but they also introduced additive
noise of a bounded norm in addition to sparse noise. Duchi
and Ruan [14] used the lowest adversary so that the support
of sparse noise is random but the nonzero values of sparse
noise can depend on the measurements. Despite providing
performance guarantees under the highest adversary, as shown
in Section V, RobustPhaseMax showed significantly inferior
empirical performance relative to the other methods in terms
of the tolerable outlier ratio.

Theorem IV.1 establishes a local linear convergence of the
Robust-AM algorithms. As discussed in Section II, Robust-
AM has no explicit control over the amount of the update in
each iteration unlike the constrained or regularized versions
of the Gauss-Newton method [14], [20]. However, despite its
simple form, Robust-AM provides the monotone decrease of
the estimation error toward zero without any overshooting for
robust phase retrieval in the setting of Theorem IV.1. All
convergence analyses by Theorem IV.1 and previous work
[13], [14] require an initialization within a neighborhood
of the ground truth. The size of the basin of convergence
was determined with an explicit numerical constant only in
[10] and Theorem IV.1. Various initialization methods with
theoretical performance guarantees have been developed to
obtain the desired initial estimate [13], [14]. The sample
complexity for these initialization methods does not exceed
those for the subsequent estimators in order.

Next, we discuss the computational costs for the robust
estimators. First, RobustPhaseMax is formulated as a linear
program and thus it can be exactly solved with Õ((m +
d)2.38 log(1/ϵ)) multiplications by derandomized algorithm
[19]. Furthermore, as we discussed in Section III-B, there
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exists an ADMM algorithm for the linear program that costs
O(m3 + (m + d)2 log(1/ϵ)) for an ϵ-accurate solution. Due
to the term log(1/ϵ), if the desired accuracy decreases in
proportion to the size of the problem, it is preferable to
use ADMM. Otherwise, the derandomized algorithm will
be computationally efficient. The other estimators are given
as an iterative algorithm with a proven convergence rate.
Therefore, we compare their computational costs to obtain
an ϵ-accurate solution. Median-RWF is a truncated gradient
descent with the per-iteration cost of O(md). Since the linear
convergence of Median-RWF has been established, the total
cost is O(md log(1/ϵ)). Unlike Median-RWF, the updates
in prox-linear and Robust-AM involve a nontrivial inner
optimization, respectively cast as a quadratic program and
a linear program. One may use an exact solver for these
sub-problems. For example, there exists an interior point
method for quadratic programs with the cost O((m + d)4)
[27]. Since it has been shown that prox-linear converges
quadratically, the total cost with this exact inner solver is
O((m+ d)4) log log(1/ϵ). The inner optimization in Robust-
AM can be exactly solved at the cost Õ((m+d)2.38 log(1/ϵ))
by the derandomized algorithm [19]. Due to its linear conver-
gence, the total cost of Robust-AM is Õ((m+d)2.38 log(1/ϵ)).
However, as shown in Theorem IV.1, the linear convergence
of Robust-AM remains valid when the inner optimization
problems are solved only approximately. The fast Robust-
AM with the ADMM solver for linear programs has the per-
iteration cost of O(m3 + (m+ d)2 log(1/ϵmax)) as shown in
Section III. Due to its linear convergence in Theorem IV.1,
the total cost to obtain the ϵ + ληϵmax accuracy is O(m3 +
(m+ d)2 log(1/ϵmax) log(1/ϵ)). In contrast, the convergence
rate of POGS for the inner optimization in prox-linear has
not been established. We summarize the comparison for the
computational costs of algorithms in Table I.

Lastly, we elaborate on the dependence of the parameters
νη and λη in Theorem IV.1 on the outlier ratio η. The linear
convergence parameter νη in (15) is explicitly specified as an
increasing function of η in the proof of Theorem IV.1 and
illustrated in Figure 2a. Therefore, smaller η implies faster
convergence. The final error bound by (15) with k going to
infinity is given as the amplification of the sub-optimality
parameter ϵmax in the inner optimization by a factor of λη .
First, similar to νη , the parameter is also explicitly given as an
increasing function of η in the proof (see Figure 2b). However,
the final estimation can still be sufficiently small, as one can
set the accuracy parameter to a sufficiently low value (less
than 10−10) using linear program packages in readily available
software such as CPLEX and Gurobi. Hence, the assumption
on {ϵi}ki=1 in Theorem IV.1 is easily satisfied.

V. NUMERICAL RESULTS

This section compares the empirical performances of
Robust-AM to its theoretical analysis in Theorem IV.1.
Robust-AM is also compared against the competing meth-
ods for robust phase retrieval, which are RobustPhaseMax,
Median-RWF, and the prox-linear. Recall that all these meth-
ods require an initial estimate. For this purpose, we adopt the
spectral method by Zhang et al. [13].

(a) νη (b) λη

Fig. 2: The dependence of parameters ηn and λn in Theo-
rem IV.1 on the outlier fraction η.

A. Synthetic data experiments

First, through experiments on synthetic data, we show that
the numerical results corroborate our theoretical findings in
Theorem IV.1 and Robust-AM outperforms the competing
methods. In this experiment, the measurement vectors are
generated so that {ai}mi=1

i.i.d.∼ Normal(0, Id) by following
the assumptions in Theorem IV.1 and analogous theoretical
analyses of the other methods. The ground-truth signal is
generated as x⋆ ∼ Normal(0, Id) independently from the
measurement vectors. The outlier support is randomly selected
following the uniform distribution on all possible subsets
Iout ⊂ [m] of size ηm.
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Fig. 3: Phase transition of empirical success rate by Robust-
AM per the number of measurements m and the dimension d.

Figure 3 shows the phase transition of the empirical success
rate by Robust-AM through Monte Carlo simulations, where
the outlier values are i.i.d. following the Cauchy distribution
with median 0 and mean-absolute-deviation 1. The fraction
of outliers is fixed to η = 0.25 Recall that the performance
guarantee in Theorem IV.1 applies uniformly to all ground-
truth signals. To observe the empirical performance in an
analogous setting, we design the experiment as follows: 1)
Generate 20 sets of random measurement vectors {ai}mi=1.
Generate 30 sets of random ground-truth x⋆; 2) For each
fixed {ai}mi=1, success is declared if the estimator recovers
all 30 ground-truth signals by satisfying dist(x̂,x⋆) ≤ 10−3
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(a) Cauchy distribution
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(b) uniform distribution
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(c) zero

Fig. 4: Phase transition of success rate per the measurement
ratio m/d and the fraction of outliers η for various outlier
magnitude models. Subfigures are displayed according to
RobustPhaseMax (top-left), Median-RWF (top-right), prox-
linear method (bottom-left), and Robust-AM (bottom-right).

where x̂ denotes the estimate; 3) The empirical success rate is
calculated on the outcomes from 20 distinct sets of measure-
ment vectors. The transition occurs at the boundary where
the number of measurements is proportional to the ambient
dimension (signal length). This empirical result corroborates
our theoretical finding in Theorem IV.1. Next, we repeat the
same experiment on RobustPhaseMax, Median-RWF, and the

prox-linear. Figure 4a compares the empirical performance
of Robust-AM against RobustPhaseMax, Median-RWF, and
the prox-linear by displaying the phase transition of these
methods for a range of the outlier fraction η in this setting.
The ambient dimension is set to d = 100. Figure 4a shows that
Robust-AM outperforms all the other methods with a signif-
icantly lower threshold for the phase transition. We further
expand the comparison to other models for outlier values.
The second scenario draws ξi from the uniform distribution
on (−d∥x⋆∥22/2, d∥x⋆∥22/2). The third scenario sets ξi to 0.
As observed in Figures 4b and 4c, similar trends appear in
the other outlier models. RobustPhaseMax, while providing
the strongest theoretical performance guarantee, shows the
worst empirical performance in the comparison. There is no
consistent dominance between Median-RWF and the prox-
linear algorithm. Median-RWF outperforms the prox-linear in
the second scenario, but the other way around in the other
scenarios.

Next, we compare the convergence speed of Robust-AM and
the prox-linear algorithm. In this experiment, the dimension
parameters are set to m = 1, 500 and d = 200 where
the values of outliers are zero. The outlier ratio varies over
η ∈ {0.1, 0.2, 0.3}. Figure 5 illustrates how the log of
dist(xk,x⋆) decays over the iteration index k. The median
over 10 trials is plotted. In their theoretical analyses, the prox-
linear algorithm converges faster at a quadratic rate than the
linear convergence of Robust-AM in Theorem IV.1. However,
as shown in Figure 5, Robust-AM empirically converges faster
than the prox-linear algorithm in the iteration count for all
considered η. Moreover, Figure 5 illustrates that the number of
iterations for Robust-AM increases as η increases. This implies
that for each iteration, the convergence rate of Robust-AM is
proportional to η. This supports our theoretical finding that the
convergence parameter νη in Theorem IV.1 is an increasing
function of η as shown in Figure 2a.

B. Real image experiments

We further apply Robust-AM to a set of image data to show
that Robust-AM continues outperforming the other competing
methods for non-Gaussian measurement models. We adopt the
structured random measurement model in the experimental
setting in [14, Section 6.3] given by

AH = (Ik ⊗Hn)[S1,S2, · · · ,Sk]
T ∈ Rkn×n, (16)

where Hn ∈ Rn×n denotes the normalized Hadamard matrix
and S1, . . .Sk ∈ Rn×n are diagonal matrices whose diagonal
entries are independently drawn uniformly random from {±1}.
The measurement vector ai is the i-th column of AT

H for i ∈
[m], where m = kn. The linear measurement operator in (16)
applies to the vectorized version of a 2D input image X⋆ ∈
Rn1×n2 denoted by x⋆ := Vec(X⋆) ∈ Rn with n = n1 ×n2.
The measurements corresponding to outliers are substituted by
zero in the experiment.

Robust-AM and the competing algorithms are tested on
the collection of 50 images of handwritten digits1 Figure 7

1https://hastie.su.domains/ElemStatLearn/datasets/zip.digits.

https://hastie.su.domains/ElemStatLearn/datasets/zip.digits
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Iteration index k

(a) η = 0.1

Iteration index k

(b) η = 0.2

Iteration index k

(c) η = 0.3

Fig. 5: Convergence of Robust-AM (blue) and the prox-linear (red) in the iteration count.

(a) Ground-truth
(b) Recovered image by the
prox-linear method

(c) Recovered image by our
method

Fig. 6: Example of recovery for an image data.
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Fig. 7: Phase transition of success rate per k and the fraction
of outliers η for zero outlier magnitude models. Subfig-
ures are displayed according to RobustPhaseMax (top-left),
Median-RWF (top-right), prox-linear method (bottom-left),
and Robust-AM (bottom-right).

compares the two methods in the empirical success rate over
50 images, where the number of random modulations k and the
outlier fraction η respectively vary over k ∈ {1, . . . , 12} and
η ∈ [0, 0.4]. Similar to the previous experiments on synthetic
data, Figure 7 demonstrates that Robust-AM outperforms the
competing algorithms by providing recovery with smaller k for
each observed η. Since the algorithmic parameters of Median-
RWF are specifically selected for Gaussian measurements in
[13], we heuristically tuned the step size to 0.2 so that Median-
RWF performs for the measurement setting (16).

VI. PROOF OF THEOREM IV.1

We first prove by the induction on the iteration index j that

dist (xj ,x⋆) ≤ νη · dist (xj−1,x⋆) +
ϵj−1

Cη
(17)

holds for all j ∈ N for some numerical constant νη ∈ (0, 1)
and Cη > 0 depending only on η. Let k ∈ N be arbitrarily
fixed. Suppose that xj satisfies (17) for all j ≤ k. Note that
the distance between x and x⋆ is written as

dist(x,x⋆) = ∥x− φ(x)x⋆∥2, (18)

where
φ(x) := argmin

α∈{±1}
∥x− αx⋆∥2 .

Then we have dist (xk+1,x⋆)≤∥xk+1 − φ(xk)x⋆∥2 and
dist(xk,x⋆) = ∥xk − φ(xk)x⋆∥2. Therefore, it follows that

∥xk+1 − φ(xk)x⋆∥2 ≤ νη∥xk − φ(xk)x⋆∥2 +
ϵk
Cη

(19)

implies (17) for j = k + 1. This completes the induction
argument.

Therefore, it suffices to show that the hypothesis of the
theorem implies (19). For the sake of brevity, we denote the
objective function of the optimization formulation in (7) by

fxk
(x) =

1

m

m∑
i=1

|sign (⟨ai,xk⟩) ⟨ai,x⟩ − bi| .

Then (13) provides

fxk
(xk+1)︸ ︷︷ ︸
(A)

≤ fxk
(φ(xk)x⋆)︸ ︷︷ ︸

(B)

+ϵk. (20)
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Next, we derive a lower bound (resp. an upper bound) on (A)
(resp. (B)) of (20). By from the definition of bi in (2), (A) is
written as

(A) =
1

m

m∑
i=1

|sign (⟨ai,xk⟩) ⟨ai,xk+1⟩ − bi|

=
1

m

∑
i∈Iin

|sign(⟨ai,xk⟩)⟨ai,xk+1⟩ − |⟨ai, φ(xk)x⋆⟩||︸ ︷︷ ︸
(a)

+
1

m

∑
i∈Iout

|sign (⟨ai,xk⟩) ⟨ai,xk+1⟩ − ξi| .

(21)
To simplify the partial summation over Iin, we introduce the
spherical wedge [28] defined by

Wx,z := {v ∈ Sd−1 | sign(⟨v,x⟩) ̸= sign(⟨v, z⟩)}. (22)

Then if follows that ⟨ai, φ(xk)x⋆⟩ and ⟨ai,xk⟩ have the
opposite sign if and only if ai ∈ Wxk,φ(xk)x⋆

. Therefore,
the summand in (a) is rewritten as

(a) =
1

m

∑
i∈Iin

1{ai∈Wxk,φ(xk)x⋆} |⟨ai,xk+1 + φ(xk)x⋆⟩|

+
1

m

∑
i∈Iin

1{ai /∈Wxk,φ(xk)x⋆} |⟨ai,xk+1 − φ(xk)x⋆⟩| .

The second summand on the right-hand side provides a valid
lower bound on (a) since the other summand is nonnegative.
Combining the above results, we obtain that

(A) ≥ 1

m

∑
i∈Iin

1{ai /∈Wxk,φ(xk)x⋆} |⟨ai,xk+1 − φ(xk)x⋆⟩|

+
1

m

∑
i∈Iout

|sign (⟨ai,xk⟩) ⟨ai,xk+1⟩ − ξi| .

(23)
Similarly, (B) is written as

(B)=
1

m

∑
i∈Iin

|sign(⟨ai,xk⟩)⟨ai, φ(xk)x⋆⟩ − |⟨ai, φ(xk)x⋆⟩||︸ ︷︷ ︸
(b)

+
1

m

∑
i∈Iout

|sign(⟨ai,xk⟩)⟨ai, φ(xk)x⋆⟩ − ξi| .

If ai ∈ Wxk,φ(xk)x⋆
, then ⟨ai,xk⟩ and ⟨ai, φ(xk)x⋆⟩ have

the opposite sign and hence (b) satisfies

(b) = 2 |⟨ai,x⋆⟩| ≤ 2 |⟨ai, φ(xk)x⋆ − xk⟩| .

Otherwise, if ai ̸∈ Wxk,φ(xk)x⋆
, then (b) = 0. Therefore, we

have

(B) ≤ 2

m

∑
i∈Iin

1{ai∈Wxk,φ(xk)x⋆} |⟨ai, φ(xk)x⋆ − xk⟩|

+
1

m

∑
i∈Iout

|sign(⟨ai,xk⟩)⟨ai, φ(xk)x⋆⟩ − ξi| .
(24)

By plugging in the bounds of (23) and (24) into (20), we
obtain that (20) implies

1

m

∑
i∈Iin

1{ai /∈Wxk,φ(xk)x⋆} |⟨ai,xk+1 − φ(xk)x⋆⟩|

+
1

m

∑
i∈Iout

|sign (⟨ai,xk⟩) ⟨ai,xk+1⟩ − ξi|︸ ︷︷ ︸
(∗)

− 1

m

∑
i∈Iout

|sign(⟨ai,xk⟩)⟨ai, φ(xk)x⋆⟩ − ξi|︸ ︷︷ ︸
(∗∗)

≤ 2

m

∑
i∈Iin

1{ai∈Wxk,φ(xk)x⋆} |⟨ai, φ(xk)x⋆ − xk⟩|+ ϵk.

(25)
By applying the triangle inequality to the summands in (∗)
and (∗∗), we obtain a necessary condition of (25) given by

1

m

∑
i∈Iin

1{ai /∈Wxk,φ(xk)x⋆} |⟨ai,xk+1 − φ(xk)x⋆⟩|︸ ︷︷ ︸
(c)

− 1

m

∑
i∈Iout

|⟨ai,xk+1 − φ(xk)x⋆⟩|︸ ︷︷ ︸
(d)

≤ 2

m

∑
i∈Iin

1{ai∈Wxk,φ(xk)x⋆} |⟨ai, φ(xk)x⋆ − xk⟩|︸ ︷︷ ︸
(e)

+ϵk.

(26)

We have shown that (20) implies (26). In the remainder
of the proof, we demonstrate that if (26) is satisfied, then
(19) holds with high probability. This is achieved by applying
a probabilistic lower bound on (c) and probabilistic upper
bounds on (d) and (e), using concentration inequalities.

To this end, note that the measurement vectors {ai}mi=1

depend not only on the current iterate xk and the next iterate
xk+1, but also on the indication functions within the spherical
wedge in (c) and (e). Therefore, we consider the uniform
bounds for all iterates and the collection of spherical wedges
with the largest angle less than θ ∈ (0, π). We introduce the
corresponding lemmas below.

Lemma VI.1. Let θ ∈ (0, π), η ∈ (0, 1/2) and δ > 0. Suppose
that {ai}mi=1 are independent copies of g ∼ Normal(0, Id).
Let

Wθ :=
{
Wx,z : x, z ∈ Rd,∠ (x, z) ≤ θ

}
, (27)

where Wx,z is defined in (22). Then there exists an absolute
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constant C such that

inf
W∈Wθ

z∈Sd−1

1

m

∑
i∈Iin

1{ai /∈W} |⟨ai, z⟩| ≥ (1− η)

√
2

π

− 2θ

π

(√
2

π
+

√
2 log

(eπ
2θ

))
− θ

20

(√
2θ

π
+ 1

)
, (28)

sup
z∈Sd−1

1

m

∑
i∈Iout

|⟨ai, z⟩| ≤ η

√
π

2
+
√
η
θ

20
, (29)

and

sup
W∈Wθ

z∈Sd−1

1

m

∑
i∈Iin

1{ai∈W} |⟨ai, z⟩|

≤ 2θ

π

(√
2

π
+

√
2 log

(eπ
2θ

))
+

√
2θ

π
· θ

20
(30)

hold with probability at least 1− δ provided that

m ≥ C · θ−2 (d log(m/d) ∨ log(1/δ)) . (31)

Proof: See Section VIII.
Now we derive the largest angle for the spherical wedge

Wxk,φ(xk)x⋆
. Since the angle between xk and φ(xk)x⋆ is

always acute, we have

sin (∠ (xk, φ(xk)x⋆)) =

∥∥∥∥(Id − xkx
T
k

∥xk∥22

)
φ(xk)x⋆

∥x⋆∥2

∥∥∥∥
≤
∥∥∥∥(Id − xkx

T
k

∥xk∥22

)
φ(xk)x⋆ − xk

∥x⋆∥2

∥∥∥∥
(i)

≤ ∥xk − φ(xk)x⋆∥2
∥x⋆∥2

=
dist (xk,x⋆)

∥x⋆∥2
(ii)

≤ sin

(
2

25

)
,

(32)

where (i) holds since the project operator is non-expansive;
(ii) follows since the induction hypothesis implies

dist (xk,x⋆)

≤ νkη · dist (x0,x⋆) +
maxi∈[0:k−1] ϵi

Cη

k−1∑
t=0

νtη

≤ νkη · dist (x0,x⋆) + (1− νη) sin

(
2

25

)
∥x⋆∥2

k−1∑
t=0

νtη

≤ sin

(
2

25

)
∥x⋆∥2,

where the second and the last inequalities follow from (14).
Hence, in Lemma VI.1, we plug in θ = 2/25. Then the

sample complexity in Theorem IV.1 invokes Lemma VI.1,
(28), (29), and (30) hold with probability at least 1 − δ
simultaneously. The remainder of the proof is conditioned on
the events that (28), (29), and (30) hold.

By applying (28) and (29) to (c) and (d) of (26) and (30)
to (e) of (26) with the choice of θ = 2/25, we obtain

∥xk+1 − φ(xk)x⋆∥2 ≤ νη∥xk − φ(xk)x⋆∥2 +
ϵk
Cη

for

νη :=
c0
Cη

and Cη := (1− 2η)

√
2

π
− c0 −

1

250
(1 +

√
η),

(33)
where

c0 :=
4

25π

(√
2

π
+

√
2 log

(
25eπ

4

))
+

1

625
√
π
.

Since νη satisfies

dνη
dη

=
c0

(
2
√

2
π + 1

500
√
η

)
(
(1− 2η)

√
2
π − c0 − 1

250 (1 +
√
η)
)2 > 0

for all η ∈ [0, 1/4], it is monotonically increasing in η and
upper-bounded as νη ≤ ν1/4 < 9/10. This implies νη < 1
uniformly over η ∈ [0, 1/4]. This completes the proof of (19).

VII. SUPPORTING LEMMAS

Lemma VII.1. Let g ∼ Normal(0, Id) and θ ∈ (0, π). Let
Wθ be defined as in (27). Then we have

sup
W∈Wθ

P(g ∈ W ) ≤ θ

π
.

Proof: Let W ∈ Wθ be arbitrarily fixed. It follows from
the definitions in (27) and (22) that W is a cone. Therefore,
g ∈ W if and only if g/∥g∥2 ∈ W . Furthermore, note that
g/∥g∥2 is uniformly distributed in Sd−1. Then we have

P (g ∈ W ) = P

(
g

∥g∥2
∈ W

)
≤ θ

π
. (34)

The assertion follows since W was arbitrary.

Lemma VII.2 ([29, Lemma 2.1]). Let δ ∈ (0, 1) and {ai}mi=1

be independent copies of g ∼ Normal(0, Id). Then it holds
with probability at least 1− δ that

sup
z∈Sd−1

∣∣∣∣∣ 1m
m∑
i=1

|⟨ai, z⟩| −
√

2

π

∣∣∣∣∣ ≤ 4

√
d

m
+

√
2 log(2/δ)

m
.

(35)

Lemma VII.3 ([30, Lemma 6.4]). Let δ ∈ (0, 1) and {ai}mi=1

be independent copies of g ∼ Normal(0, Id). Let s ∈ N satisfy
s < m. Then it holds with probability at least 1− δ that

sup
z∈Sd−1

T :|T |≤s

1

s

∑
i∈T

|⟨ai, z⟩|

≤
√

2

π
+ 4

√
d

s
+

√
2 log

(em
s

)
+

√
2

s
· log

(
2

δ

)
.

(36)

Lemma VII.4 ([28, Lemma 5.1]). Let δ ∈ (0, 1) and an acute
angle θ > 0. Suppose {ai}mi=1 be independent copies of a
random variable a ∈ Rd and we consider the set Wθ given
by (27). Then, if

m ≥ (4π/θ)2(2d log(2em/d) + log(2/δ)),

we have

sup
W∈Wθ

1

m

m∑
i=1

1{ai∈W} ≤ 2θ

π
. (37)

holds with probability at least 1− δ.
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VIII. PROOF OF LEMMA VI.1

We proceed with the proof under the following four events,
each of which holds with probability at least 1−δ/4. The first
event is defined as

sup
z∈Sd−1

∣∣∣∣∣ 1m ∑
i∈Iin

|⟨ai, z⟩| − (1− η)

√
2

π

∣∣∣∣∣
≤ 4

√
d

m
+

√
2 log(8/δ)

m
,

(38)

which holds with probability at least 1 − δ/4. Since by the
assumption on outliers, we have a set |Iin| with |Iin| = (1 −
η)m and the outliers are independent of {ai}mi=1. Hence, (38)
is a direct result of (35) in Lemma VII.2. By following the
same argument, we also have that

sup
z∈Sd−1

∣∣∣∣∣ 1m ∑
i∈Iout

|⟨ai, z⟩| − η

√
2

π

∣∣∣∣∣ ≤ 4

√
ηd

m
+

√
2η log(8/δ)

m

(39)
holds with probability at least 1− δ/4.

Next, we describe the following event: for an arbitrary fixed
α ∈ (0, 1), it holds with probability at least 1− δ/4 that

sup
T :|T |≤αm

z∈Sd−1

1

m

∑
i∈T∩Iin

|⟨ai, z⟩| ≤

α

√
2

π
+ 4

√
αd

m
+ α

√
2 log

( e
α

)
+

√
2α log(8/δ)

m
.

(40)

Again, since by the Assumption 1, we have a fixed set |Iin|
with |Iin| = (1 − η)m and the outliers are independent of
{ai}mi=1, (40) holds by (36) in Lemma VII.3.

Since (31) invokes Lemma VII.4 with probability at least
1− δ/4, it holds with probability at least 1− δ/4 that

sup
W∈Wθ

m∑
i=1

1{ai∈W} ≤ 2θm

π
. (41)

Since we have shown that (38),(39),(40) and (41) hold
with probability at least 1 − δ, we will move forward with
the remainder of the proof by assuming those conditions are
satisfied.

We first show (28). We observe that for an arbitrary W ∈
Wθ and z ∈ Sd−1, it holds deterministically that

1

m

∑
i∈Iin

1{ai /∈W}|⟨ai, z⟩| =

1

m

∑
i∈Iin

|⟨ai, z⟩| −
1

m

∑
i∈Iin

1{ai∈W}|⟨ai, z⟩|.

Hence, by taking infimum on both sides over sets Wθ and
Sd−1, we have

inf
W∈Wθ

z∈Sd−1

1

m

∑
i∈Iin

1{ai /∈W}|⟨ai, z⟩|

≥ inf
z∈Sd−1

1

m

∑
i∈Iin

|⟨ai, z⟩|︸ ︷︷ ︸
(A)

− sup
W∈Wθ

z∈Sd−1

1

m

∑
i∈Iin

1{ai∈W}|⟨ai, z⟩|

︸ ︷︷ ︸
(B)

.

(42)

We first obtain a lower bound on (A) and an upper bound on
(B). We have a lower bound on (A) by (38):

(A) ≥ (1− η)

√
2

π
− 4

√
d

m
−
√

2 log(8/δ)

m
. (43)

By taking m (31) in (43) for a sufficiently large C > 0, we
have

(A) ≥ (1− η)

√
2

π
− θ

20
. (44)

It remains to show an upper bound on (B). Under the event
(41), we have

(B) ≤ sup
T :|T |≤2θm/π

z∈Sd−1

1

m

∑
i∈T∩Iin

|⟨ai, z⟩| .

Therefore, by letting α = 2θ/π in (40), (40) gives an upper
bound on (B):

(B) ≤ 2θ

π

√
2

π
+ 4

√
2θd

πm
+

2θ

π

√
2 log

(eπ
2θ

)
+

√
4θ log(8/δ)

πm
.

(45)
Taking m according to (31) yields

(B) ≤ 2θ

π

(√
2

π
+

√
2 log

(eπ
2θ

))
+

θ

20

√
2θ

π
. (46)

Hence, putting the results (44) and (46) into (42) completes
the proof of the statement (28).

For the proofs of remaining statements in (29) and (30),
the upper bound in (29) is a direct consequence of (39) with
choosing n according (31). Lastly, (30) is the result of the
upper bound of (B) in (46). These complete the proof of (29)
and (30).

IX. CONCLUSION

The least absolute deviation (LAD) has been a popular
statistical method for regression in the presence of outliers.
We consider the LAD approach to robust phase retrieval with
the magnitude-only measurement model. To solve the resulting
non-convex optimization, we derive a robust alternating min-
imization method (Robust-AM) as an unconstrained Gauss-
Newton method. Furthermore, we propose fast Robust-AM
by exploiting efficient solvers and show that Robust-AM by
ADMM converges faster than a similar approach known as the
prox-linear by its efficient solver POGS [14].

We established a local convergence analysis of Robust-AM
under the standard Gaussian measurement model when the
support of sparse noise is arbitrarily fixed but magnitudes can
be adversarial. A suitably initialized Robust-AM converges
linearly to the ground truth uniformly over all ground-truth
signals when the number of measurements m is proportional
to the signal length d and the outlier fraction is up to 1/4.
This theoretical result is comparable to existing prior art in
the literature. Furthermore, the numerical results show that
Robust-AM outperforms the existing guaranteed methods for
various outlier models in both synthetic data and real image
data.
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