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Abstract—Self-supervised learning has emerged as a method
for utilizing massive unlabeled data for pre-training models,
providing an effective feature extractor for various mobile sensing
applications. However, when deployed to end-users, these models
encounter significant domain shifts attributed to user diversity.
We investigate the performance degradation that occurs when
self-supervised models are fine-tuned in heterogeneous domains.
To address the issue, we propose ADAPT2, a few-shot domain
adaptation framework for personalizing self-supervised models.
ADAPT2 proposes self-supervised meta-learning for initial model
pre-training, followed by a user-side model adaptation by replay-
ing the self-supervision with user-specific data. This allows models
to adjust their pre-trained representations to the user with only a
few samples. Evaluation with four benchmarks demonstrates that
ADAPT2 outperforms existing baselines by an average F1-score
of 8.8%p. Our on-device computational overhead analysis on a
commodity off-the-shelf (COTS) smartphone shows that ADAPT2

completes adaptation within an unobtrusive latency (in three
minutes) with only a 9.54% memory consumption, demonstrating
the computational efficiency of the proposed method.

Index Terms—Human Activity Recognition, Domain adapta-
tion, Self-supervised learning, Meta-learning

I. INTRODUCTION

The integration of deep learning into mobile sensing has
broadened the scope of ubiquitous applications, such as con-
tactless authentication [1], [2], sign language translation [3],
[4], and mobile health applications [5], [6]. Nevertheless, a
major challenge in mobile sensing is the scarcity of labeled
data, which is often expensive to acquire. As a breakthrough,
self-supervised learning [7] has been explored for its ability
to train models with unlabeled data and transfer knowledge to
downstream tasks. Self-supervised learning methods, such as
Contrastive Predictive Coding (CPC) [8], [9], similarity-based
contrastive learning (SimCLR) [10], and Multi-Task Learn-
ing [11], have been showing their effectiveness in sensory
applications without needing explicit labels.

A challenge arises when fine-tuning is performed by an
end-user showing heterogeneity from the pre-training data. In
mobile sensing, data collected in distinct environments varies
significantly across individual users, devices, and settings (e.g.,
position and sampling rate) [12]. Thus, the end-user data might
have heterogeneous characteristics from those used for pre-
training. This gap results in domain shift, where models trained

Fig. 1. Efficacy of CPC [9] pre-trained models on ICHAR [18] dataset,
comparing F1-scores between in-domain and out-of-domain pre-training sce-
narios. Ten participants with different devices are shown as domains. Domain
shifts deteriorate the performance of self-supervised models in heterogeneous
environments.

in one domain underperform when applied to another [13].
To illustrate this challenge within the self-supervised learning
setting, we conducted an empirical analysis using CPC pre-
trained models [9] (experimental details in §IV-F5). In Fig. 1,
the results show CPC is useful in downstream tasks when
models are pre-trained in the same domain as the target
domain (in-domain). However, there is a substantial decline
in performance when models are pre-trained with different
domains from the target domain (out-of-domain). This result
emphasizes the challenges of deploying self-supervised models
to diverse mobile sensing environments.

Training a domain-specific model with data from the end
user could be a straightforward solution, but this is infeasible
considering the efforts and cost of gathering enough data
from an individual user. To address the challenge, existing
research encompasses domain generalization methods [14]–
[16], which strive to train domain-invariant features, or domain
adaptation techniques [17]–[20] that leverage a small portion
of target domain data to achieve domain-specific performance.
However, they primarily rely on labeled data for training,
making them difficult to be applied to self-supervised learning
which utilizes only unlabeled data for pre-training.

To mitigate the issue, we propose ADAPT2 as a few-shot do-
main adaptation framework to refine the self-supervised model
into a personalized model specific to the end user. Inspired
by the capability of meta-learning to “learn to learn” from
few-shot data, we adapt the concept to our unsupervised pre-
training setting. We introduce self-supervised meta-learning
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Fig. 2. A high-level comparison between the standard self-supervised learning
(left) and ADAPT2(right).

for pre-training, which enables the model to “learn to self-
supervise” with only a few data. This results in the model
being adaptable to the learning task of self-supervised pre-
training, i.e., pretext task. Next, we synergistically harness the
adaptability by involving pretext replay as a pivotal domain
adaptation step. The end-user engages in adapting the pre-
trained model by replaying the pretext task using its own
few-shot data. This process effectively aligns the model to the
representation reflecting the end user’s domain property with
very few data. It is noteworthy that our framework is designed
to be agnostic to the self-supervision algorithm, and thus,
it can be integrated into existing self-supervision methods.
Fig. 2 outlines a comparative overview of ADAPT2’s operation
against the standard self-supervised learning.

For evaluation, we used four Human Activity Recognition
datasets [13], [18], [21], [22] that are representative datasets
used for evaluating the performance under domain shifts. Our
experiments demonstrate the superior performance of ADAPT2

to domain generalization and adaptation baselines [23], [24],
exhibiting a high F1-score that shows an 8.83%p improvement
on average. To further assess the practical viability of execut-
ing fine-tuning with domain adaptation on mobile devices, we
measure the computational overhead of ADAPT2 on an off-the-
shelf smartphone. Our evaluation reveals that the adaptation
step with pretext replay can be completed within three minutes,
indicating marginal user-side computational overhead while
achieving improved performance.

We summarize our main contributions as follows:
• We investigate the domain shift problem arising when

self-supervised models are deployed to diverse users for
fine-tuning. Our research reveals that even after fine-
tuning the pre-trained model with target domain data,
the domain shift from the pre-training data can lead to
significant performance degradation.

• We introduce ADAPT2, a few-shot domain adaptation
framework that can be integrated into existing self-
supervised learning methods. ADAPT2 incorporates self-
supervised meta-learning for the pre-training and target-
side pretext replay, enabling the adaptation of pre-trained

representations to the target domain using only a few
target samples.

• We perform rigorous evaluations using four mobile sens-
ing datasets with diverse domain characteristics. We com-
pare ADAPT2 against domain generalization/adaptation
baselines, that shows ADAPT2 achieves an average F1-
score improvement of 8.83%p.

• We assess the computational overhead of deploying
ADAPT2 on real-world mobile applications and demon-
strate that the one-time target-side adaptation can be
executed within three minutes by consuming a mere
9.54% of the device’s memory on a COTS smartphone.

II. RELATED WORK

A. Self-Supervised Learning

Self-supervised learning trains models using an auxiliary
task that can be defined without labels, which enables learning
generalized features of the data. Among numerous approaches,
we focus on the methods applied for mobile sensing [7].
Multi-Task Learning [11] utilized multiple types of synthetic
augmentations on the data and trained task prediction net-
works to infer the occurrence of the augmentation. Sensor-
specific augmentations were selected to make the model learn
sensory properties. Recent work focuses on using contrastive
learning [25], which generates augmented views of data and
trains the model with the objective of maximizing the simi-
larity between the augmented views. Existing methods such
as MoCo [26] and SimCLR [27] were applied to mobile
sensing [10], [28] by using sensory augmentations to gen-
erate views. The temporal property of time-series data is
utilized for generating views in a recent work [29]. Taking
into account the multi-modality, Cosmo [30], COCOA [31],
and ColloSSL [32] utilized contrastive learning to maximize
the similarity between the embeddings driven from different
modalities in the same context. Contrastive predictive coding
(CPC) [8], [9] defined another type of task, predicting the
embedding of future segments within the data based on
the previously aggregated embeddings. In a similar context,
masked-reconstruction-based methods [33], [34] have been
explored for mobile sensing, using the task of reconstructing
the synthetically masked segment within the data.

While models trained through self-supervised learning are
known to be generalizable across diverse tasks, the potential
performance decline when applied to the task of different
domains (shown in §IV-F5) is overlooked. Our work differs
from the prior research in exploring the domain shift problem
between pre-training and fine-tuning data.

B. Domain Generalization and Domain Adaptation

Domain generalization (DG) [35] has been explored as a
solution to mitigate domain shifts. DG includes approaches
to learn domain-invariant features by adjusting the opti-
mization objective [36], [37], performing adversarial train-
ing to discriminate domains [38], and processing the data
to minimize the domain information from itself [39], [40].
Recent research incorporated meta-learning [41], [42] and



self-supervised learning [43], [44] to define domain-invariant
training objectives. In mobile sensing, GILE [14] introduced
a training scheme disentangling domain-specific information,
while SDMix [16] employed semantic-aware augmentations to
achieve DG tailored to activity recognition. Domain adaptation
(DA) methods [45] offer a more suitable fit for our scenario, as
they allow the utilization of fine-tuning data collected by end-
users. Most approaches target to utilize unlabeled or a limited
number of labeled target domain data [46], [47] to adapt the
model to the target domain. In activity recognition, DA has
been approached as an efficient transfer learning problem [20],
[48], [49], and methods employing feature matching and con-
fusion maximization [17] have been proposed. MetaSense [18]
introduced a meta-learning-based model training approach
followed by few-shot adaptation to create domain-specific
models. DAPPER [50] is proposed as another line of research
for estimating the expected performance of DA in mobile
sensing.

However, these approaches assume the availability of labels
in the source domain, making them incompatible with our
unsupervised pre-training scenario. DARLING [23] addresses
the domain shift from unsupervised learning and covers the
problem by integrating conditional optimization that optimizes
the contrastive loss per domain. However, our approach differs
from DARLING in that our method uses the available target
domain data (i.e.,fine-tuning data) to train domain-specific
models. In our evaluation (§IV-F2), we demonstrate that this
utilization results in superior performance.

C. Unsupervised Meta-Learning

We consider unsupervised meta-learning (UML) [24], [51],
[52] methods due to their effectiveness in few-shot adaptation,
which is also applicable to our unsupervised pre-training
scenario. Traditional methods employ pseudo-labeling data
through augmentation [51] or generative methods [52], fol-
lowed by supervised meta-learning [53] using the generated
labels. Set-SimCLR [24], during pre-training, trains a set
encoder by creating sets of augmented samples from the same
data, employing contrastive learning to maximize agreement
between set embeddings. In fine-tuning, it composes sets of
data by classes, generating class prototypes using the set en-
coder to initialize the classifier’s parameters. These prototypes
enable rapid adaptation for further few-shot fine-tuning. How-
ever, our approach differs in that we perform the adaptation to
refine the encoder for the target domain, while Set-SimCLR
primarily focuses on making the following classifier adaptable
to few-shot fine-tuning. Our evaluation (§IV-F2) demonstrates
the superior performance of our approach in mobile sensing
scenarios.

III. ADAPT2: FEW-SHOT ADAPTATION WITH
META-LEARNED PRETEXT REPLAY

A. Overview

We present ADAPT2 as a framework designed to effectively
tune a deployed self-supervised model into a personalized
model on an end user’s device. Fig. 3 shows ADAPT2 unfolds

through two core stages: (1) pre-training models via self-
supervised meta-learning and (2) adapting pre-trained models
via pretext replay. The process begins with a model provider,
utilizing a large amount of unlabeled data to train the model
with a self-supervised objective optimized via meta-learning.
This method is designed to enable the models to adapt effort-
lessly to the few-shot self-supervised learning of the end user.
Once trained, these models are deployed to the edge devices
of end users. Each user then engages in a domain adaptation
process, replaying the learning task of the self-supervised pre-
training (i.e., pretext task) with the user’s own few-shot data.
This results in the model achieving a personalized represen-
tation, akin to having been pre-trained with the same user’s
data. The tuned models are subsequently fine-tuned again with
few-shot labeled data, this time for downstream tasks, similar
to the original self-supervised learning. Further details about
these processes will be elaborated in the following sections.

B. Problem Formulation

Our target scenario is the same as typical self-supervised
learning, where a model is pre-trained through self-supervision
with unlabeled data, followed by fine-tuning on a target task
(in our case, this is an end user’s edge device) using very
few labeled data. This approach is designed to reflect two
key challenges: the difficulty of obtaining costly annotations
for pre-training, and the constraints faced by end users in
gathering enough data and executing large-scale training on
resource-limited edge devices. We explore a setup where data
for self-supervised pre-training originate from domains that are
completely separate from that of the end user. We assume the
availability of domain labels in the pre-training data. Domain
labels involve the type of measurement device or anonymized
user annotation, which are generally more accessible to acquire
as metadata.

Notations. We use x, y, and d to indicate the sensory
feature, label, and domain information (e.g., anonymized user
or device), respectively. We denote the unlabeled pre-training
dataset with N pt samples as Spt = {(xi, di) | i = 1...N pt}.
The set of di in Spt composes the source domain, referred
as Ds. The fine-tuning dataset with N ft samples is defined as
Sft =

{
(xi, yi) | i = 1...N ft

}
, where label yi is available. Data

xi in Sft originates from a single target domain Dt, which is
distinct from Ds, i.e., Dt ∩Ds = ∅. The fine-tuned model is
tested in the same target domain Dt.

C. Self-Supervised Meta-Learning

In ADAPT2, we pre-train an adaptable self-supervised
model through the integration of meta-learning. Meta-
learning [53], referred to as the method for “learning to
learn,” is renowned for its efficacy in fine-tuning models for
unseen environments using only a few data. However, the
incorporation of meta-learning into our framework presents
a challenge, as it traditionally relies on supervised training,
whereas our approach assumes the absence of labeled data.
ADAPT2 redefines meta-learning by shifting from a supervised
to a self-supervised training objective. This shift implies that
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Fig. 3. Overview of ADAPT2 framework.

the model transitions from “learning to supervise” to “learning
to self-supervise.” Our design is grounded on the intuition
that meta-learning, effective for enhancing supervised learning
with few-shot data, can be equally potent in a self-supervised
context, allowing our pre-trained models to adapt effectively
in a self-supervised manner, even with only a few data.
Therefore, we devise a unique adaptation approach for our
meta-learned model; we replay the self-supervised training
with the end user’s few-shot data by performing the same
pretext task. We detail this pretext replay in §III-D.

Our meta-learning implementation is based on Model-
Agnostic Meta-Learning (MAML) [54]. We aim to identify the
model parameters that effectively perform pretext tasks within
new domains in minimal gradient steps. Our objective closely
aligns with the core idea of MAML, training initial parameters
for optimal performance on new tasks with minimal gradient
updates. It is noteworthy that the model-agnostic nature of
MAML enables ADAPT2 to be adapted flexibly, regardless of
the type of self-supervised learning methods.

MAML structures a set of tasks, T , to emulate the process
of few-shot training and subsequent testing. Each task, Ti,
involves training the model using a small number of examples
to optimize task-specific weights, θi. The dataset for training
these weights is denoted as the support set, i.e., Si. The trained
task-specific weights are then evaluated on a distinct dataset
termed the query set, i.e., Qi. The evaluation results from each
task are aggregated over all tasks and summed into a loss value
to optimize the actual model weights.

Task Generation. We design the meta-learning task Ti
to facilitate domain-specific few-shot adaptation. As we aim
to adapt the model to data from a single target domain,
we configure each task to compose the data samples in Si
and Qi from a single domain d. We call these composed
tasks as domain-specific tasks. d is randomly selected from
Ds. We further mitigate the risk of overfitting to domains
based solely on Ds by leveraging multi-conditioned tasks.
Drawing on a prior study [55], we note that incorporating a
small proportion (e.g., 30%) of tasks comprised of samples
from various random domains can enhance the robustness
of the meta-learned model. These multi-conditioned tasks,
formed from domain-agnostic random samples, function as

new synthetic domains. While not representing real domains,
we ensure they are not the primary, accounting for only a small
fraction of the total task set T . Algorithm 1 summarizes our
meta-learning task generation.

Algorithm 1 ADAPT2’s Task Generation for Meta-Learning
Inputs: Pre-train dataset Spt, number of tasks M and
number of domain-specific tasks Mdom < M

1: for j ∈ {1, 2, ...,M} do
2: if j ≤Mdom then
3: Select domain d from Ds uniformly at random
4: Select K samples with domain d randomly:

S = {xi ∈ Spt|di = d} such that |S| = K
5: Select another set of K samples with d randomly:

Q = {xi ∈ Spt|di = d} such that |Q| = K
6: else
7: Select K samples randomly:

S = {xi ∈ Spt} such that |S| = K
8: Select another set of K samples randomly:

Q = {xi ∈ Spt} such that |Q| = K
9: end if

10: Update a set of task T ← T ∪ (S,Q)
11: end for
12: return Task set T

Parameter Updates. Our framework trains adaptable pa-
rameters to optimize for minimal evaluation loss in a single
domain, through simulating few-shot self-supervised learning
tasks. For each task Ti, composed from a random single do-
main. It trains task-specific weights, θi, using Si and evaluates
the corresponding task-specific performance using Qi. The
loss function LSSL, used for both training and evaluation, is
tailored to self-supervised learning. Importantly, our frame-
work is designed to be agnostic to self-supervised learning
methods, allowing for a versatile loss function application.
During the training, task-specific losses are aggregated across
all tasks and then utilized to optimize the model parameters,
θ. The iteration of this process results in model parameters
that are highly adaptable for few-shot self-supervised learning
across different domains. Algorithm 2 outlines the process of
parameter updates via self-supervised meta-learning. α and β



denote the learning rates for task-specific training and model
parameter update.

Algorithm 2 ADAPT2’s Self-Supervised Meta-Learning
Inputs: Parameters θ and self-supervised loss LSSL

1: for epochs do
2: T = TaskGeneration(Spt)
3: for Ti = (Si,Qi) ∈ T do
4: Optimize task-specific weights using Si:

θi ← θ − α∇θLSSL(θ;Si)
5: Evaluate loss of updated model on Qi:

Compute LSSL(θi;Qi)
6: end for
7: Update parameters θ ← θ − β∇θ

∑
i LSSL(θi;Qi)

8: end for

D. Adapting Pre-trained Models via Pretext Replay

We introduce pretext replay as the core methodology for our
few-shot domain adaptation. This adaptation involves refining
the model using the same self-supervised learning objective
(i.e., pretext task) as in the pre-training step but with the
end user’s data. This step serves as an additional training
stage on the user’s edge device, facilitating domain adaptation
prior to the actual fine-tuning for the subsequent supervised
downstream task (e.g., Human Activity Recognition).

Importantly, pretext replay demonstrates its effectiveness
when coupled with self-supervised meta-learning. On the con-
trary, typical self-supervised models are prone to overfitting
when exposed to few-shot training through pretext replay. Sim-
ilarly, relying solely on self-supervised meta-learning without
the subsequent pretext replay step does not yield optimal
adaptability for supervised fine-tuning. We propose pretext
replay as the unique key bridging the self-supervised pre-
training and the subsequent supervised fine-tuning, enabled by
the integration of meta-learning in self-supervised pre-training.
This synergy between the self-supervised meta-learning and
pretext replay is the core aspect of our approach, and its
efficacy is validated in an ablation study detailed in §IV-F4.

The model weights, θ, are updated using the parameterized
function and the corresponding loss LSSL, originating from
the self-supervised meta-learning. Pretext replay uses the fine-
tuning data set Sft, without labels, and is performed in a few
steps (e.g., 10) with a fixed learning rate, as formulated in the
equation:

θ ← θ − α∇θLSSL(θ;Sft). (1)

After the adaptation, the model undergoes fine-tuning for
the downstream task, which is similar to the normal self-
supervised learning setup. Sft with the label information is
employed to fine-tune θ towards the downstream task. We
utilize the popular linear evaluation protocol [56] for fine-
tuning, only training a simple classification head attached after
the frozen encoder. The final model trained through this fine-
tuning is used for the end-user application.

IV. EXPERIMENTS

A. Datasets

We set Human Activity Recognition (HAR) as the repre-
sentative benchmark for evaluating ADAPT2. HAR is known
for its heterogeneity in users and devices [12], [13], making
it an effective benchmark for demonstrating the challenges
associated with domain shifts. Datasets are selected to assess
the effectiveness of ADAPT2 across various domain types.
ICHAR [18] comprises inertial measurement unit (IMU) data
for classifying nine types of daily activities, such as walk-
ing, running, and stair climbing. Data is measured from ten
participants using different models of mobile devices (seven
smartphones and three watches). Each participant is treated as
a unique domain.
HHAR [13] is designed for classifying six daily activities
collected from nine users with a combination of four smart-
watches and eight smartphones. We define domains based on
distinct user-device pairs.
PAMAP2 [21] classifies 12 different activity types using data
collected from IMUs placed on three body locations: the wrist,
chest, and ankle. Domains are divided by device positions.
DSA [22] encompasses a wide array of 19 daily and sports
activities data, gathered from eight participants wearing five
IMUs on the torso, arms, and legs. We used device positions
as domains.

B. Data Preprocessing

We preprocess all datasets using a fixed window size of
256 and an overlap of 128, following a prior work [18].
Additionally, we standardize the entire dataset to fall within
the range of -1 to 1. We focus exclusively on the 3-channel
accelerometer data from all available sources. We exclude data
from domains with fewer than 500 samples to ensure enough
data for training. As a result, we use 20 domains for HHAR,
representing combinations of five users and four devices. For
all datasets, we first split 70% of the data and use 90% of the
splitted data for pre-training and the 10% as the corresponding
validation. With the remaining 30% split, we use only a few
samples for the few-shot fine-tuning and divide the remaining
data with a 5 : 5 ratio to compose the validation and test sets.
We ensure that the pre-training, fine-tuning, and testing data
are completely separated.

C. Baselines

We benchmark ADAPT2 against baselines chosen for their
efficacy in mitigating domain shift between the unsupervised
pre-training and the following fine-tuning. Note that most
existing domain generalization [14]–[16] and adaptation [17]–
[20] methods assume labeled data for pre-training and thus
they are not applicable to our scenario. We found two ap-
proaches that fit our scenario.
DARLING [23] is a domain generalization method that uses
contrastive learning. It optimizes the contrastive loss by com-
posing intra-domain negative samples. Encouraging the intra-
domain discrimination for every sample during the training,
the model learns domain-invariant features.



Set-SimCLR [24] is an unsupervised meta-learning method
that employs a set encoder to enhance the agreement between
sets of augmented samples originating from identical source
data. Both an instance encoder and the set encoder are trained
through contrastive learning. In fine-tuning, the set encoder
generates class prototypes from sample sets by class and is
used to set the initial weights of the classifier. The resulting
classifier, adjusted by the prototypes, facilitates rapid adapta-
tion to novel conditions with the initial weights.

D. Implementation Details

ADAPT2 serves as a model- and method-agnostic framework
applicable to different self-supervised learning approaches.
For a fair comparison with baselines, we selected SimCLR,
designed for wearables [10], as the primary self-supervised
method. This selection aligns with DARLING and Set-
SimCLR, which are also presented based on contrastive learn-
ing. To maintain consistency, all baseline models utilize a net-
work architecture identical to ADAPT2, ensuring compatibility.

We implement ADAPT2 based on additional self-supervised
learning methods, further showing its generalizability. We
incorporate two other self-supervised learning approaches pop-
ular in HAR: CPC [9] and Multi-Task Learning [11]. Note
that we do not extend ADAPT2 to be built on DARLING
and Set-SimCLR. DARLING mainly offers an intra-domain
negative sampling method, a concept we already integrate
within ADAPT2 but with a different approach, focusing on
creating small tasks for meta-learning. As for Set-SimCLR, it
requires the training of a separate set encoder, which requires
an additional training component to ADAPT2, deviating from
our framework’s design.

To implement the backbone networks corresponding to the
self-supervised learning methods, we used 1D convolutional
neural networks (CNN) followed by a projection head of a
fully connected layer. Our network design, including the archi-
tectures and hyperparameters, aligns with established practices
in the prior assessment study [7]. Specifically for CPC, we uti-
lized the latest state-of-the-art version designed for HAR [9].
We conducted a grid search to optimize the hyperparameters
for each baseline. For pre-training, we explored learning rates
from {1e-4, 5e-4, 1e-3, 5e-3}, batch sizes from {64, 128, 256},
with specific values of {1024, 2048, 4096} for SimCLR-based
methods, and weight decays from {0, 1e-4}. During fine-
tuning, we used a fixed learning rate of 0.005 for the linear
evaluation protocol and a reduced learning rate of 0.001 for
end-to-end fine-tuning, which exhibited superior performance.
We trained models with 100 epochs for pre-training and 20
epochs for fine-tuning using Adam optimizer. We utilized
parameters within the same range as the baselines for learning
rate and weight decay for meta-learning. We searched for the
task-specific learning rate from {1e-3, 5e-3, 1e-2} and the
inner iteration steps for pretext replay from {10, 20, 30}. We
kept the number of domain-specific tasks fixed at eight and
multi-conditioned tasks at four. The task size was set to 128 for
our evaluation. Note that meta-learning requires larger epochs
for convergence than conventional training as fewer parameter

updates happen inside an epoch; we set 5K epochs for meta-
learning training. We implemented the methods using PyTorch,
and the training was performed on NVIDIA TITAN Xp GPUs.

E. Evaluation Protocol and Metric

We employed the leave-one-domain-out setting [14]. For
each domain in the dataset, we designate it as the target
domain for fine-tuning and testing purposes while utilizing
all other domains for pre-training. We conduct evaluations in
this manner for each domain, rotating through each one as
the target domain and then averaging the results. We select
few-shot (e.g., 1, 2, 5, 10) samples for fine-tuning, and then
evaluate the performance in the same target domain. We set
two fine-tuning protocols: linear evaluation and end-to-end
fine-tuning. We consider linear evaluation the basic method
for fine-tuning, which uses the pre-trained encoder as a frozen
feature extractor and exclusively trains a following linear
classification layer. All experiments using ADAPT2 used the
linear evaluation protocol. As ADAPT2 involves the pretext
replay step refining the encoder parameters, we further use
end-to-end fine-tuning protocol for baseline methods by fine-
tuning the entire network without freezing the encoder. It is for
a comparison in a fair setting when encoder parameter update
is allowed in both cases. The evaluation is performed with five
random seeds, and we report the average value and standard
deviations. To measure performance, we utilize the macro-
averaged F1-score as our evaluation metric. This metric is
chosen due to its ability to handle the class imbalance present
in the data.

F. Results

1) Integration With Different Self-Supervised Learning
Methods: Table I depicts the evaluation against various self-
supervised learning methods, SimCLR, CPC, and Multi-Task
Learning. Fine-tuning is performed with ten-shot samples, and
ADAPT2 frameworks are implemented on each baseline for
a fair comparison. ADAPT2 consistently enhances F1-scores
across different self-supervised learning methods: 8.8%p for
SimCLR, 7.1%p for CPC, and 4.1%p for Multi-Task Learning
on average. The level of improvement varies depending on the
self-supervised learning method, indicating that the impact of
domain shift is different among self-supervised learning meth-
ods. We explore this topic further in our subsequent analysis
(see §IV-F5). Nevertheless, ADAPT2 consistently outperforms
all methods as a flexible framework. Furthermore, we observe
that the best-working base method varies across datasets.
For example, SimCLR excels in ICHAR, while Multi-Task
Learning performs better in DSA. This variability highlights
ADAPT2’s method-agnostic versatility, allowing flexible inte-
gration with the most effective self-supervised learning method
for specific applications.

2) Comparison with Baselines: Table II shows the perfor-
mance of ADAPT2 compared with the domain generalization
and adaptation baselines. The experiment was based on ten-
shot fine-tuning. The bold font values indicate the highest
value in the same column. Overall, ADAPT2 consistently



TABLE I
F1-SCORES OF ADAPT2 BUILT UPON DIFFERENT SELF-SUPERVISED LEARNING METHODS.

RESULTS ARE COMPARED WITH THE BASE METHODS. THE HIGHEST AND COMPARABLE SCORES ARE HIGHLIGHTED IN BOLD.

Domain: User Domain: Position

Pre-train Fine-tune ICHAR HHAR PAMAP2 DSA Avg.

SimCLR [10] Linear eval. 0.745 ± 0.024 0.866 ± 0.008 0.549 ± 0.016 0.391 ± 0.006 0.638 ± 0.014

End-to-end 0.663 ± 0.028 0.836 ± 0.029 0.589 ± 0.046 0.253 ± 0.022 0.585 ± 0.031

SimCLR + ADAPT2 (ours) 0.836 ± 0.011 0.903 ± 0.004 0.639 ± 0.030 0.526 ± 0.019 0.726 ± 0.016

CPC [9] Linear eval. 0.765 ± 0.016 0.846 ± 0.005 0.379 ± 0.017 0.371 ± 0.005 0.590 ± 0.011

End-to-end 0.816 ± 0.013 0.849 ± 0.021 0.484 ± 0.026 0.352 ± 0.017 0.625 ± 0.019

CPC + ADAPT2 (ours) 0.826 ± 0.008 0.871 ± 0.005 0.527 ± 0.017 0.419 ± 0.008 0.661 ± 0.009

Multi-task [11] Linear eval. 0.716 ± 0.010 0.877 ± 0.003 0.630 ± 0.003 0.456 ± 0.004 0.670 ± 0.005

End-to-end 0.718 ± 0.019 0.865 ± 0.030 0.636 ± 0.015 0.378 ± 0.021 0.649 ± 0.021

Multi-Task + ADAPT2 (ours) 0.794 ± 0.015 0.891 ± 0.005 0.659 ± 0.016 0.578 ± 0.011 0.731 ± 0.012

TABLE II
F1-SCORES OF ADAPT2 AND BASELINE METHODS FOR 10-SHOT FINE-TUNING ACROSS FOUR DATASETS,

WITH THE HIGHEST AND COMPARABLE SCORES HIGHLIGHTED IN BOLD.

Domain: User Domain: Position

Pre-train Fine-tune ICHAR HHAR PAMAP2 DSA Avg.

SimCLR [10] Linear eval. 0.745 ± 0.024 0.866 ± 0.008 0.549 ± 0.016 0.391 ± 0.006 0.638 ± 0.014

End-to-end 0.663 ± 0.028 0.836 ± 0.029 0.589 ± 0.046 0.253 ± 0.022 0.585 ± 0.031

Set-SimCLR [24] Linear eval. 0.758 ± 0.010 0.814 ± 0.004 0.487 ± 0.011 0.283 ± 0.007 0.585 ± 0.008

End-to-end 0.747 ± 0.029 0.848 ± 0.016 0.573 ± 0.015 0.165 ± 0.012 0.583 ± 0.018

DARLING [23] Linear eval. 0.749 ± 0.019 0.831 ± 0.003 0.551 ± 0.012 0.399 ± 0.008 0.633 ± 0.011

End-to-end 0.656 ± 0.019 0.844 ± 0.026 0.580 ± 0.042 0.258 ± 0.024 0.584 ± 0.028

SimCLR + ADAPT2 (ours) 0.836 ± 0.011 0.903 ± 0.004 0.639 ± 0.030 0.526 ± 0.019 0.726 ± 0.016

ICHAR HHAR PAMAP2 DSA

Fig. 4. Average F1-scores of ADAPT2 and the baselines across different shot numbers (1, 2, 5, 10).

shows the highest F1 scores for all datasets, regardless of
the domain type. Set-SimCLR and DARLING occasionally
produce comparable scores; however, their enhancements are
inconsistent and lack overall improvement. This outcome
suggests that the baselines struggle to capture the domain-
specific features, given their reliance on a fixed encoder
pre-trained out-of-domain. End-to-end fine-tuning sometimes
boosts performance; its efficacy depends on the fine-tuning
dataset, leading to unpredictable performance enhancements.
We attribute this to the sensitivity of few-shot fine-tuning,
which is highly influenced by the data quality. End-to-end fine-
tuning does not help the baselines, as their design lacks the
adaptability of the encoder for few-shot adaptation. With an
average increase of 8.8%p in the F1-score, ADAPT2 works as
a robust domain adaptation method.

3) Generalization across Different Shot Numbers: We eval-
uate the generalizability of ADAPT2 across different fine-
tuning shot numbers. Fig. 4 illustrates the F1-scores for
ADAPT2 and the baseline methods, showcasing average im-

provements in the F1-score of 4.4%p, 15.5%p, 11.4%p, and
8.8%p across varying shot numbers (k ∈ {1, 2, 5, 10}). Fig. 5
presents results when ADAPT2 is built upon various self-
supervised learning methods, consistently demonstrating supe-
rior performance. This indicates the efficacy of our approach,
making it suitable for extreme data-scarce scenarios, such as
one-shot learning.

4) Effect of Self-Supervised Meta-Learning and Pretext
Replay: We conduct an ablation study to investigate the impact
of technical components within ADAPT2. These components
include self-supervised meta-learning for pre-training and pre-
text replay for domain adaptation. We compare the perfor-
mance of ADAPT2 with and without the components to assess
their contributions. We build ADAPT2 upon SimCLR, CPC,
and Multi-Task Learning and compare it to three variants:
(1) self-supervised learning without any ADAPT2 components
(baseline), (2) self-supervised learning with pretext replay
but no meta-learning, (3) self-supervised learning with meta-
learning but no pretext replay.
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Fig. 5. Average F1-scores of ADAPT2, built upon different self-supervised learning methods across different shot numbers (1, 2, 5, 10).

SimCLR CPC Multi-Task

Fig. 6. F1-scores of the ablation study. We compare ADAPT2 against 1) the baseline self-supervised learning method, 2) the baseline only with pretext replay,
and 3) the baseline only with meta-learning. Ten-shot fine-tuning is performed.

Fig. 6 illustrates the results of our ablation study, revealing
that each component has a varying impact depending on the
self-supervised learning method. For SimCLR, applying only
pretext replay to the base model results in a significant per-
formance drop. However, when meta-learning is incorporated,
ADAPT2 outperforms the setting without pretext replay. This
suggests that meta-learning is the key enabler for the domain
adaptation through pretext replay for SimCLR. Addition-
ally, SimCLR with meta-learning achieves outstanding results
compared with the baseline, indicating that self-supervised
meta-learning alone results in learning meaningful features.
We attribute this to the feature learning capability of meta-
learning [57], enabling the acquisition of meaningful common
features across domains for rapid adaptation.

In the case of CPC, pretext replay enhances the baseline
without meta-learning, while using only meta-learning yields
poor results. Yet, when pretext replay is applied to the meta-
learned model, performance significantly increases, exceeding
the improvement observed from the baseline. This suggests
that the adaptation step with pretext replay generally aids in
learning meaningful features, and our meta-learning signifi-
cantly amplifies this effect.

For Multi-Task Learning, pretext replay results in per-
formance degradation in the baseline, while meta-learning
improves it. Unlike SimCLR or CPC, the impact of pretext
replay on the meta-learned model is minimal. Pretext replay

ADAPT! after pretext replayADAPT! before pretext replayBaseline

Fig. 7. 2D UMAP visualizations of embeddings from CPC pre-trained
models. Embeddings are color-coded by class.

slightly improves performance in HHAR and PAMAP2 while
even slightly decreasing performance in DSA and ICHAR.
This indicates that user-specific adaptation does not provide
substantial benefits in the case of Multi-Task Learning. Impor-
tantly, meta-learning prevents pretext replay from significantly
decreasing performance due to overfitting.

Fig. 7 visualizes the effectiveness of pretext replay when
combined with meta-learning, on a domain of ICHAR. We
plot 2D UMAP visualizations [58] of embeddings from CPC
pre-trained models, color-coded by class. Both CPC baseline
and ADAPT2 before pretext replay lack distinct class-based
clustering. It suggests that the models pre-trained out-of-
domain fail to grasp meaningful features in the target domain.
Meanwhile, ADAPT2 after pretext replay creates well-defined
clusters aligned with class boundaries, demonstrating that



pretext replay significantly enhances the model’s ability to
capture meaningful features within the target domain.

In summary, our self-supervised meta-learning effectively
supports pretext replay, enhancing target-domain performance
by training the model to learn general features that can be
rapidly refined into domain-specific features. Another finding
is that the level of improvement varies depending on the self-
supervised learning method. This observation leads us to hy-
pothesize that self-supervised learning methods are differently
affected by domain shifts, which we analyze further in the
following section (§IV-F5).

5) Domain Shift Effect of Different Self-Supervised Learn-
ing Methods: Our ablation study demonstrated varying ef-
fectiveness of pretext replay across different self-supervised
learning methods. To understand the discrepancies, we delved
deeper into how domain shifts affect different self-supervised
learning methods. We pre-trained models using CPC, Sim-
CLR, and Multi-Task Learning in a leave-one-domain-out
setup and then fine-tuned them in a novel domain. We term it
as an out-of-domain setting. For comparison, we established
an in-domain setting for baseline, where pre-training and fine-
tuning occur within the same domain. When moving from
in-domain to out-of-domain, the performance drop quantifies
each method’s vulnerability to domain shift. While our initial
motivational analysis (in §I) compared models pre-trained with
different data sizes (the out-of-domain setting had larger data),
this study ensures a fair comparison by equalizing the data size
across both in-domain and out-of-domain settings.

Fig. 8 illustrates the impact of domain shift on various
self-supervised learning methods. When models are fine-tuned
and tested on data that differ from their pre-training domain,
a common trend of performance decline is observed, high-
lighting the negative effects of domain shifts. However, the
level of this decline varies with the self-supervised learning
method. Specifically, models pre-trained with CPC show a
notable average drop of 19.15%p F1-score, whereas SimCLR
exhibits a 6.7%p decrease and Multi-Task Learning with a
more modest decline of 4.95%p.

This variability suggests that the impact of domain shift is
dependent on the self-supervised learning method employed
during pre-training. CPC’s predictive task—forecasting future
segments based on past segments—tends to be highly domain-
specific. For example, a model pre-trained with CPC on data
from a younger user group showing increasing activity levels
over time might not perform well on data from old users who
exhibit a decline in activity levels. With a different temporal
trend, the model’s predictive features may not generalize
across these domain variations. Conversely, Multi-Task Learn-
ing’s pretext task involves identifying the type of augmentation
applied to the data and is less domain-specific. In the previous
example, knowledge acquired from detecting augmentations in
one user group’s data could transfer more effectively to another
group, since recognizing augmented data characteristics (e.g.,
rotation) does not necessarily depend on user-specific trends.

These findings teach us two insights: (1) domain shift
negatively impacts the fine-tuning performance of pre-trained

TABLE III
COMPUTATIONAL OVERHEAD OF FEW-SHOT ADAPTATION (ADAPT) AND

FINE-TUNING (TUNE) FOR SELF-SUPERVISED LEARNING METHODS.

CPC SimCLR Multi-Task

Metric Adapt Tune Adapt Tune Adapt Tune
Time (sec) 179.20 84.03 36.05 61.80 18.76 62.33
CPU (%) 44.53 13.86 31.86 10.57 32.15 10.22
Mem (%) 9.54 16.28 4.84 7.26 4.28 6.16

models, and (2) the degree of this impact depends on the
pretext task’s sensitivity to domains. Our ablation study veri-
fies this, showing that the effectiveness of our pretext replay
varies across different self-supervised learning methods. While
we have assessed the domain shift effects on three popular
methods, our results underscore the necessity to investigate
various self-supervised learning methods.

6) Computational Overhead: Our primary goal is to enable
the practical deployment of pre-trained models to end-users,
particularly those with resource-constrained edge devices. To
this end, we assess the computational feasibility of ADAPT2

for mobile devices, focusing on its user-side operations: pretext
replay and fine-tuning to downstream tasks. Our few-shot
adaptation strategy is designed to minimize the computational
load during these stages. We performed on-device training
with a Samsung Galaxy S20 Ultra device equipped with 8
CPU cores and 12GB RAM to evaluate its effectiveness.
Our on-device training is implemented via Termux [59], a
Linux terminal emulator for Android, to execute PyTorch-
based training code. The training protocol follows the same
setting of our main evaluation in §IV-F2. The measurement
metrics are execution time in seconds and CPU and memory
consumption in percentage.

Table III presents the overhead from our pretext re-
play (Adapt) and fine-tuning (Tune), measured independently
across different self-supervised learning methods. Supported
by the few-shot setting, operations take minute-level overhead
inside the device. Notably, adaptation for SimCLR and Multi-
Task Learning was completed in under 40 seconds, consuming
less than 5% of memory, even smaller than the overhead of
fine-tuning. As a result, all user-side with ADAPT2 can be
performed within 2 minutes. While CPC’s adaptation is more
resource-intensive due to its complex network architecture,
it can still be completed within three minutes and use less
than 10% of memory. Our findings confirm that the end-
users can conduct all necessary operations of ADAPT2 on the
device—within a 2-minute window for SimCLR and Multi-
Task Learning, and under five minutes for CPC, which we
believe is manageable computational overhead.

V. DISCUSSION

A. Expansion for Varied Self-Supervised Learning Methods

Our findings underscore the impact of domain shift on
different self-supervised learning methods. We observed that
the improvement from our domain adaptation varies with the
type of self-supervised learning method applied. This suggests
a need for a deeper understanding of how domain shifts
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Fig. 8. Fine-tuning performance comparison between models pre-trained in-domain and out-of-domain settings. Ten-shot fine-tuning is performed for all
settings. Performance drops between the settings are shown in red.

affect various self-supervised learning approaches. Although
our results shed light on the domain shift effects for well-
established methods such as SimCLR, CPC, and Multi-Task
Learning, the behavior of numerous other self-supervised
learning methods [29]–[34] under domain shifts remains un-
explored. Addressing this as future work is an essential step
in the field.

B. Covering Wider Range of Domains

Our meta-learning task generation is currently crafted to re-
flect end-user environmental conditions as closely as possible,
by composing tasks by user and device domains. However,
the variability of real-world data calls for a more complicated
approach to task generation. For instance, pre-trained models
can be applied to an application with a different type of modal-
ity. Possible future work could involve integrating diverse data
modalities and user-specific contexts as domains, thus creating
meta-learning tasks that better capture the nature of real-world
applications. Moving forward, refining task generation will be
a priority to ensure our meta-learning approach remains robust
across real-world applications.

C. Application to Continuously Changing Environment

We designed our framework with a single domain adap-
tation step once pre-trained models are deployed to end-
users. However, data characteristics within a single domain
can change over time due to changing environments. This
implies that the adapted model might not perform optimally as
domain characteristics change continuously. We anticipate the
potential for domain adaptation through pretext replay in such
scenarios, as our adaptation step does not require user labels.
This allows us to continuously adapt the model using the
ongoing data stream from the user. Enhancing the efficiency
and effectiveness of this approach in such dynamic scenarios
is a direction for future work.

VI. CONCLUSION

We investigate the domain shift challenge in mobile sensing,
where models pre-trained via self-supervised learning are
fine-tuned to heterogeneous domains. To address the chal-
lenge, we propose ADAPT2, a framework that enables few-
shot domain adaptation for self-supervised models. Inspired
by the observation that models pre-trained on homogeneous
domains show superior performance, we refine the pre-trained
model to better fit the target domain by replaying the pretext
task on the target side. To facilitate few-shot adaptation

in this step, our self-supervised pre-training is performed
via meta-learning. Our evaluations, conducted across four
Human Activity Recognition datasets, indicate that ADAPT2

consistently outperforms established self-supervised learning
and domain generalization methods, achieving an average F1-
score improvement of 8.8%p. Moreover, ADAPT2 proves to be
computationally efficient, with the adaptation process being
able to be completed on a COTS smartphone in under a
few minutes. The findings validate ADAPT2 as a practical
framework that boosts the performance of pre-trained models
for end-users while ensuring minimal computational burden.
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