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ABSTRACT
As solar power continues to grow and replace traditional energy sources, the need for
reliable forecasting models becomes increasingly important to ensure the stability
and efficiency of the grid. However, the management of these models still needs to
be improved, and new tools and technologies are required to handle the deployment
and control of solar facilities. This work introduces a novel framework named Cloud-
based Analysis and Integration for Data Efficiency (CAIDE), designed for real-time
monitoring, management, and forecasting of solar irradiance sensor farms. CAIDE is
designed to manage multiple sensor farms simultaneously while improving predictive
models in real-time using well-grounded Modeling and Simulation (M&S) method-
ologies. The framework leverages Model Based Systems Engineering (MBSE) and an
Internet of Things (IoT) infrastructure to support the deployment and analysis of
solar plants in dynamic environments. The system can adapt and re-train the model
when given incorrect results, ensuring that forecasts remain accurate and up-to-
date. Furthermore, CAIDE can be executed in sequential, parallel, and distributed
architectures, assuring scalability. The effectiveness of CAIDE is demonstrated in
a complex scenario composed of several solar irradiance sensor farms connected to
a centralized management system. Our results show that CAIDE is scalable and
effective in managing and forecasting solar power production while improving the
accuracy of predictive models in real time. The framework has important implica-
tions for the deployment of solar plants and the future of renewable energy sources.

KEYWORDS
Complex Systems, Discrete Event System Specification, Deep Learning, Solar
Irradiance, Parallel and Distributed Simulation

1. Introduction and related work

Solar energy has become increasingly important in recent years due to its potential to
reduce greenhouse gas emissions and mitigate climate change. It can help to reach the
promise of net zero emissions by 2050 (Bouckaert et al., 2021). Solar Photovoltaic (PV)
systems are a popular and promising source of renewable energy, which is growing at
the highest rate in the European Union (EU) (EU Solar Energy Strategy , 2022). How-
ever, production can be variable and intermittent due to weather and other factors.
This variability can make it challenging to integrate solar energy into the grid, as it
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can lead to grid instability and even blackouts. Accurate forecasting models for PV
power are necessary to address this issue. Current models use weather data and other
information to predict the output of solar PV systems in real-time, allowing grid oper-
ators to better manage the variability of solar energy and maintain grid stability. With
accurate forecasting models, grid operators can anticipate changes in solar output and
adjust their operations accordingly, minimizing the risk of blackouts and other dis-
ruptions (H.-T. Yang, Huang, Huang, & Pai, 2014). Furthermore, accurate forecasting
models can help optimize the use of solar energy and maximize its economic benefits.
For example, energy traders can use these models to make more informed decisions
about buying and selling solar energy. In contrast, utility companies can use them to
plan and optimize their renewable energy portfolios. Ultimately, accurate forecasting
models for PV power can help accelerate the transition to a more sustainable and
resilient energy system (Zhang, Kleiber, Florita, Hodge, & Mather, 2018).

Most modern PV models are based on accurate predictions of what are called base
models. They anticipate the amount of energy produced, starting with either the cor-
responding initial state (classic models) or with a training/inference data window
(heuristic models). The current methods explored in the field can be grouped as Nu-
merical Weather Prediction (NWP), image-based, statistical, and Machine Learning
(ML). They can also be classified based on their characteristics, meaning whether a
method takes into account spatio-temporal features or not, is deterministic or prob-
abilistic, considers exogenous inputs (other inputs such as physical variables) or just
its data features, etc. (D. Yang, 2019). For instance, Arbizu-Barrena et al. (Arbizu-
Barrena, Ruiz-Arias, Rodŕıguez-Beńıtez, Pozo-Vázquez, & Tovar-Pescador, 2017) fo-
cus on the cloud index to forecast solar irradiance with the aid of an NWP. Ayet and
Tandeo (Ayet & Tandeo, 2018) aim to forecast solar irradiance based on geostation-
ary satellite images. ML approaches are recently gaining attention: Alzahrani et al.
(Alzahrani, Shamsi, Dagli, & Ferdowsi, 2017), for example, employ Long Short-Term
Memory (LSTM) networks for high-resolution forecasting (100Hz) in a single location,
obtaining high levels of precision. The family of models published by (Prado-Rujas,
Garćıa-Dopico, Serrano, & Pérez, 2021) comprises several Artificial Neural Networks
(ANNs) for solar irradiance forecasting, where the scenario is not bound to the spe-
cific number of available sensors or their distribution, and constitute a more resilient
approach since algorithms can recover from sensor failures. These features, such as
flexibility and robustness, are paramount for developing a more general prediction
framework and are discussed in Section 2.2.

The utilization of base models, which are integrated into generic software tools such
as RatedPower (RatedPower software tool , 2023), PVsyst (Kumar, Rajoria, Sharma,
& Suhag, 2021), or Helioscope (Milosavljević, Kevkić, & Jovanović, 2022), has been
instrumental for companies to plan, design, and optimize the PV plant engineering
process, thereby maximizing profitability. These base models are adept at studying
specific aspects of complex systems or predicting isolated variables within the entire
system.

However, the research detailed in this paper shows that relying solely on base models
is insufficient for capturing the dynamic and interconnected nature of solar irradiance
sensor farms. Its vision embraces a system of systems architecture, which is referred
to as an integrative model. This model transcends the traditional base models and
associated Graphical User Interfaces (GUIs) by modeling the entire ecosystem, in-
cluding sensors, forecasting models, servers, domain expert actions, analysis services,
and more. Success stories in other research domains, such as flood detection (Basha,
Ravela, & Rus, 2008), water treatment (Risco-Mart́ın et al., 2023), and healthcare
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Figure 1.: Big picture of the proposed integrative model.

(Henares, Risco-Mart́ın, Ayala, & Hermida, 2022), underscore the efficacy of such
integrative approaches. Figure 1 illustrates the conception of the integrative model
proposed, which is designed to manage the complexities of deploying and operating
multiple solar irradiance sensor farms, each interconnected with a centralized manage-
ment system. By incorporating both real and virtual replicas of sensors, the framework
facilitates a comprehensive analysis of PV solar production possibilities and ensures
the robustness and adaptability of the predictive models within a dynamic environ-
ment.

Consequently, the data generated by the sensors can also be synthetic or authentic.
This complex system can be conceptualized first by using a scalable complex model,
where, through a well-structured Modeling and Simulation (M&S) methodology, all the
aforementioned base models can be easily integrated. Following an Internet of Things
(IoT)-based architecture, solar irradiance is monitored at the edge layer by a set of
sensors that continuously send data to the server at the fog layer. There, domain
experts can analyze data, run some tests, or schedule the execution of predictive
models. A cloud layer also exists, where authorities can compare different reports and
make high-level decisions. The power of the cloud layer can also be used to train
predictive base models, ensuring the scalability and durability of the system.

In this paper, a new framework called Cloud-based Analysis and Integration for Data
Efficiency (CAIDE) that enables real-time monitoring and prediction of solar energy
for PV sensor plants is introduced. This approach aims to ensure the reliability and
scalability of infrastructure design and deployment while providing high-performance
real-time services, such as outlier detection, complex forecasting, and training algo-
rithms for model accuracy. This is achieved using model-driven technologies and an
infrastructure based on IoT. Three main topics in the sustainable management of solar
irradiance monitoring and prediction using model-driven technologies are addressed:
(i) providing a robust interface to manage different solar irradiance sensor farms si-
multaneously, (ii) vertical scalability by modeling the entire structural pyramid from
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sensors to authorities, and (iii) horizontal scalability, which allows for the addition of
more sensors and farms with the support of parallel and distributed simulation.

The framework is built upon a conceptual layer, using formal models and synthetic
data to prove the feasibility of the entire architecture. To this end, the virtual struc-
ture and modular behavior of CAIDE are defined, which is capable of carrying out
initial synthetic experiments through Discrete Event System Specification (DEVS)
(Zeigler, Muzy, & Kofman, 2018), a well-known M&S formalism. Actual data can
feed the framework, and virtual sensors can be replaced by physical ones following an
incremental Model Based Systems Engineering (MBSE) procedure.

Overall, our main contributions are as follows:

• The CAIDE framework: The CAIDE framework has been developed, which
serves as an integrated platform for studying and analyzing solar irradiance data.
By combining various models and techniques, CAIDE promotes collaboration
and synergy among different aspects of solar energy research.

• Development of a predictive solar irradiance model: This work focuses
on modeling solar irradiance within the CAIDE architecture. To this aim, the
modeling of irradiance maps, which involves advanced techniques for spatial
modeling of solar irradiance, is addressed. Additionally, the beneficial features
that integrating such a model brings are explored.

• Outlier detection, data analysis, and report generation: Detection of
outliers in solar irradiance data is performed using the Prophet model (Toharudin
et al., 2023). While primarily designed for time series forecasting, the Prophet
model also proves to be effective for outlier detection. Furthermore, an analysis
subsystem within the CAIDE architecture has been developed, which is vital for
examining the stored information and generating comprehensive reports.

This paper is organized as follows. Section 2 presents the foundational technologies
used to design the integrative model. Section 3 offers the architecture of the framework,
based on a well-known M&S formalism and able to perform parallel and distributed
simulations. Section 4 elaborates on the main elements of the implemented predictive
support and analysis subsystem. Section 5 illustrates the simulations performed to
test the previously formulated hypotheses and shows the results obtained in a hybrid
scenario, fed with real monitoring and synthetic data. Finally, Section 6 draws some
conclusions and introduces future research lines.

2. Background

The integrative framework must be able to run scalable simulation scenarios based on
the template provided in Figure 1. To build the integrative model, a M&S formalism
named DEVS (Zeigler et al., 2018) has been selected. DEVS offers several distinct ad-
vantages over other M&S methods like Petri Nets or Timed Automata, particularly for
the development of complex, data-driven systems like CAIDE. Firstly, DEVS provides
a clear and rigorous formalism for modeling discrete event systems, which is essential
for ensuring the correctness and verifiability of the simulations. Its modular and hier-
archical structure facilitates the decomposition of complex systems into manageable
components, promoting reusability and maintainability. Moreover, DEVS inherently
supports parallel and distributed simulation, allowing for scalable and efficient execu-
tion across various computational environments, from edge devices to cloud servers.
Additionally, the well-defined separation of model and simulator within the formalism
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enhances the flexibility to adapt to changes in system requirements or configurations.
In this regard, the DEVS Application Programming Interface (API) used to implement
CAIDE has been xDEVS (Risco-Mart́ın, Mittal, Henares, Cárdenas, & Arroba, 2022).
This library includes repositories for C, C++, C#, Go, Java, Python, and Rust that
provide equivalent DEVS interfaces. In particular, CAIDE uses the xDEVS/Python
module of the project. xDEVS provides support to use virtual or real-time. Addition-
ally, it can manage sequential, parallel, or distributed simulations without modifying a
single line of code in the underlying simulation model (Risco-Mart́ın, Henares, Mittal,
Almendras, & Olcoz, 2022).

Around the DEVS specification of CAIDE, some predictive, training, outlier detec-
tion, and analysis services have been built. These services work over a base predictive
model from the family of Deep Learning (DL) models published in (Prado-Rujas,
Garćıa-Dopico, et al., 2021). For the sake of completeness, the following foundational
technologies and concepts from which CAIDE has been developed are introduced: the
DEVS formalism and xDEVS, and the required features of the DL-based method used.

2.1. The DEVS formalism

The simulation framework presented in this article is based on the ground foundations
of parallel DEVS.

Parallel DEVS is a formal method used to model discrete event systems utilizing
set theory (Zeigler et al., 2018). It is comprised of atomic and coupled models that
can communicate with other models through input (X) and output (Y ) ports. Each
atomic model has a state (S) that is associated with a time advance function ta, which
determines the duration of the state.

Once the time assigned to the state has passed, an internal transition is triggered,
and an internal transition function (δint : S → S) is executed, producing a local state
change (δint(s) = s′). At that time, the results of the model execution are spread
through the output ports of the model by activating an output function (λ).

Furthermore, external input events (received from other models) are collected in
the input ports. An external transition function (δext : S × e×X → S) specifies how
to react to those inputs, using the current state (s), the elapsed time since the last
event (e) and the input value (x) (δext((s, e), x) = s′). Parallel DEVS introduces a
confluent function (δcon((s, ta(s)), x) = s′), which decides the next state in cases of
collision between external and internal transitions.

Coupled models are created by linking two or more atomic or coupled models
through explicit couplings. This feature enables the use of networks of systems as
components in larger coupled models, resulting in hierarchical and modular designs.

In summary, the DEVS formalism offers many advantages for analyzing and design-
ing complex systems, including completeness, verifiability, extensibility, and maintain-
ability.

Once a system is described according to DEVS theory, it can be easily implemented
using one of the many DEVS M&S engines that have come into existence in the last
decades.

Among them, xDEVS (Risco-Mart́ın, Henares, et al., 2022) offers an excellent alter-
native to parallelize or distribute simulations in the Cloud, following a microservices
architecture and containerization. As a result, any DEVS model can be parallelized
or distributed by assigning resources (threads or processes) to different transition and
output functions as parallel or distributed functional programming.
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2.2. Non-Functional Features when forecasting solar irradiance

As discussed in Section 1, anticipating the amount of solar energy that can be produced
in a given area is fundamental. In the scenario studied, two solar farms, each with a
variable number and distribution of irradiance sensors are managed. Therefore, the
deployed forecasting framework must be flexible and robust concerning different sensor
configurations. These characteristics are commonly known as Non-Functional Features
(NFFs) (Prado-Rujas, Serrano, Garćıa-Dopico, Córdoba, & Pérez, 2021).

In this work, a DL-based forecasting model from a previous work (Prado-Rujas,
Garćıa-Dopico, et al., 2021) is incorporated into the CAIDE framework. Appendix A
discusses the main aspects of the forecasting model. Once trained, the model can be
deployed on the corresponding fog server, allowing one to run asynchronous predictions
at any moment. The model can also be trained in the cloud layer with new data
accumulated by the system, allowing one to update its weights over time when needed.

Thanks to the forecasting process, the model gains the following NFFs:

• Flexibility: Ability to adapt to a variable number of sensors on both the input
and the output. This feature implies that if new sensors are installed in any
farm or existing ones are removed, the framework can absorb these changes (see
Appendix A).

• Robustness: Ability to recover from missing data due to sensor failure and
continue producing reliable predictions. This NFF is elaborated in Appendix A.

• Portability: Ability to maintain the same forecasting architecture among differ-
ent solar farms after retraining it. Therefore, the structure of the model can re-
main the same across farms even with different sensor arrangements, facilitating
scalability and maintainability. This property is further discussed in Section 4.1.

These NFFs are paramount for the described scenario since they allow for the de-
velopment of an independent and equivalent model for each farm, even with different
numbers of sensors and spatial configurations. Furthermore, updating the model when
needed provides a tool for maintaining reasonable levels of accuracy on each farm for
the foreseeable future.

3. System architecture and design

CAIDE’s model divides the proposed framework for sensor farm management into the
three classical IoT layers: edge, fog, and cloud. In this case, as Figure 1 depicts, the
edge layer includes all the irradiance sensors connected to the Internet while generat-
ing data. The data generated by these sensors are sent to the next layer for further
processing. The fog layer is an intermediate layer between the edge and the cloud. This
layer includes devices with computing power and storage capabilities to perform basic
data processing and analysis. The fog layer is responsible for processing data in real-
time and reducing the amount of data that needs to be sent to the cloud for further
processing. The cloud layer includes cloud servers and data centers that can store and
process large amounts of data. The cloud layer performs complex data analytics and
machine learning tasks that require significant computing power and storage capacity.

While Figure 1 has already illustrated the general picture of the architecture of
the framework, Figure 2 depicts its DEVS structure, which is described below. The
high-level architecture of CAIDE is described instead of formally describing the DEVS
structure and behavior of all its atomic and coupled models, which is detailed inside
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the CAIDE source code1. The reader is referred to Section 2 to better follow this
section through the DEVS formalism.

Figure 2 depicts the root coupled model. The components included in this coupled
model are a simulation file, F farms, and the cloud.

The simulation file atomic model is a singular source that reads from a text file all
events that are injected into the simulation process through its output port out. Each
entry in this file has a time mark indicating the virtual instant in which this event will
be triggered, the associated command type, and the arguments that each command
needs. As a result, this file replicates the set of external events that could happen
in a real-world scenario. The simulation file is an integral part of the discrete event
simulation model. It serves as an atomic model that dictates the sequence of events
and commands that drive the entire simulation process. This includes the activation
and deactivation of sensors, the triggering of services such as outlier detection and
forecasting, and the scheduling of model training. The simulation file essentially acts
as a representation of the operator’s instructions, which are crucial for the dynamic
behavior of the simulation. As the excerpt of Figure 2 illustrates, it always begins
and ends with the triggering of the initialization and finalization of the simulation
experiment (see ACTIVATE and PASSIVATE commands).

The farm coupled model represents a set of solar irradiance sensors located in a
geographical area of the Earth and with a control station to monitor and control the
facility. This coupled model has an input port, which receives the events sent by the
simulation file atomic model, and two output ports that send raw data collected by

1https://github.com/jlrisco/caide
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the sensors to the cloud, as well as augmented or fixed sensor data through outlier
detection or data analysis services. The farm coupled model contains several atomic
models:

• A set of S solar irradiance sensor atomic models. All are located in the edge layer
of our IoT architecture. The atomic model incorporates a set of parameters to
mimic the behavior of an actual sensor, like delay, minimum and maximum val-
ues, precision and noise distributions, etc. As a result, these software components
simulate the behavior of real-world sensors. They are designed to read data, ei-
ther from a file containing historical or synthetic data or from real-time data
streams, and then send this data to the appropriate services within the CAIDE
framework. These services could include data processing, outlier detection, fore-
casting, and other analytical tasks. The atomic sensor models are not just passive
data readers; they can also incorporate additional functionalities such as simu-
lating sensor noise, delays, and failures to create a more realistic representation
of sensor behavior.

• A set of atomic models in charge of executing services. Three services have been
deployed: one to detect and fix outliers, another to perform inference of the
selected predictive algorithm, and the last to perform data analysis and report.
They all follow the same atomic model template. Currently, the services are
executed as part of the fog layer, i.e., as local processes (to the control station
or fog server) because, as will be shown in Section 5, they do not need high
computational resources. However, this can be modified at any time by adding
more computing resources in the fog layer or externalizing some services to the
cloud.

• An atomic model representing the server located at the control station, named fog
server. Firstly, it receives simulation commands from the simulation file atomic
model, which tells the server when to start reading data, execute an outlier
detection service, an inference, etc. Sensor data are received through the ei input
ports when the simulation begins. When a data set is received, it is stored in the
local database and sent to the cloud atomic model through the f output port.
On the other hand, when a service request is received from the simulation file,
it is propagated to the corresponding atomic model. Fixed or predicted data are
stored in the local database and sent to the cloud atomic model through the f̂
output port.

Finally, the cloud atomic model is located in the cloud layer. It receives all the data
from the different farms (raw and estimated, i.e., fixed or predicted) and stores them
in the cloud database. As in the fog server, the cloud atomic model can run heavier
services, such as performing big data analyses, including data stored on all farms,
or training services to update current inference models. In any case, these actions are
always commanded by the atomic model simulation file. In this particular case, atomic
models dedicated only to run services are not included because these services are always
installed on virtual machines and called from a monolithic external transition function,
i.e., they have a distributed architecture in nature and do not need to be encapsulated
as DEVS models.

The simulation file in CAIDE enables the handling of various events, each serving
a specific purpose within the framework:

• CMD_ACTIVATE_SENSORS: This event triggers the activation of sensors at a spec-
ified timestamp, along with the destination data center, farm, and database for
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sensor data storage. When received by the respective sensors (refer to Figure
2), they are automatically activated according to the predefined timing pattern
stored in the database, considering the physical characteristics defined within
the atomic models (such as delay, error, saturation statistics, etc.).

• CMD_PASSIVATE_SENSORS: Similar to the previous event, this event deactivates
the sensors instead of activating them. It follows the same format, including the
timestamp, destination data center, farm, and database.

• CMD_FIX_OUTLIERS: The Outlier Service atomic model, shown in Figure 2, re-
ceives this event to perform outlier detection and repair. Along with the corre-
sponding timestamp, it includes the destination sensor and the time interval to
label the outliers. Additionally, an interpolation method (e.g., linear, quadratic,
cubic, spline) can be specified for replacing outliers if desired.

• CMD_RUN_PREDICTION: Invoking the prediction subsystem, this event is also
managed by the Inference Service atomic model in Figure 2. It includes the
event timestamp, destination farm, predictive horizon, and input and output
databases. As previously mentioned, the prediction is executed for all sensors
within the destination farm.

• CMD_TRAIN_MODEL: This event triggers the training subsystem in the cloud layer
in Figure 2. Along with the event timestamp, it includes the training interval and
the input database. CAIDE provides the flexibility to externalize this service,
allowing the framework to run the training service on the local host or on an
external computer as a distributed simulation environment.

• CMD_GENERATE_REPORTS: This service is designed to generate fog and cloud re-
ports. The fog reports target domain experts and farm operators, providing
detailed insights. On the other hand, cloud reports are intended for political au-
thorities, offering high-level interpretations and aiding in decision-making based
on coarse-grained information.

These events within the CAIDE framework enable efficient control and coordination
of various processes, ranging from sensor activation and outlier detection to prediction
generation, training, and report generation. The modular and versatile nature of these
events enhances the adaptability and usability of the CAIDE framework for specialized
users and stakeholders in the solar energy domain. CAIDE has been implemented
using xDEVS (Risco-Mart́ın, Mittal, et al., 2022), a cross-platform DEVS simulator.
As in xDEVS, CAIDE can use virtual or real-time simulation. It can run sequential,
parallel, and distributed simulations, or a combination of them, without modifying
a single line of code in the underlying simulation model presented in Figure 2. The
xDEVS simulation engine, which forms the backbone of this framework, is designed
to facilitate the distribution and parallelization of models across various computing
nodes. This allows for the seamless addition of multiple farms, each with its own
set of sensors and control systems, without the need for rewriting simulation files
when adapting to different hardware configurations. Additionally, the training phase
of the predictive models is optimized for Graphics Processing Unit (GPU) execution,
providing the necessary computational power to handle extensive datasets and complex
algorithms. This externalization of the training process to GPUs ensures that the
CAIDE framework can scale effectively during this critical phase.
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4. Inference, training, outliers detection and analysis systems

The following sections describe and elaborate on the models of the CAIDE architecture
that are directly related to the inference and training of the predictive solar irradiance
models, the detection of outliers, and the generation of data reports.

4.1. Modeling solar irradiance

Several physical variables can be considered when attempting to model solar irradi-
ance using ground sensors. Global Horizontal Irradiance (GHI) is the total shortwave
radiation a horizontal surface receives, which units are W/m2. Therefore, it is a good
proxy for the amount of solar energy received on a surface. Different sensors, such as
pyranometers, can be deployed on solar farms to record GHI measurements over time.
Once a fair amount of data is collected, it can be used to train a model that forecasts
short-term estimates of the energy produced in the plant. Nevertheless, before doing
so, the data must be carefully processed. First, outliers should be removed or fixed (as
will be discussed in Section 4.2). Second, part of the missing data can be fixed using
imputation methods, such as interpolation into mesh-grids (see Appendix A). Sensors
usually record data with fine temporal resolutions (e.g., seconds or even milliseconds).
Such resolutions can benefit data imputation by grouping consecutive measurements
into a coarser temporal granularity (e.g., minutes or hours, which can suffice depend-
ing on the application). Furthermore, it is a common practice to standardize the data
when working with neural networks, as described by Eq. 1:

x̂ =
x− µ(X)

σ(X)
, ∀x ∈ X, (1)

where µ(X) refers to the mean value of the setX, σ(X) refers to the standard deviation
of X, and x̂ is the standardized peer of x.

The inference and training services cover all these aspects when
CMD_RUN_PREDICTION or CMD_TRAIN_MODEL commands are received, respectively.
They perform almost the same steps for every considered timestamp:

(1) Read the current solar irradiance values of each sensor.
(2) Standardize them based on Eq. 1.
(3) Interpolate into mesh-grid, even if some sensor readings are missing.
(4) Stack together the last nx mesh-grids obtaining X .
(5) Feed X into the model as described in Appendix A, obtaining Y.
(6) The training service additionally updates the model’s weights based on the

loss function.
(7) Reverse the interpolation on Y to obtain predictions for every sensor.
(8) Undo the standarization based on Eq. 1.
(9) Store the forecasted solar irradiance values.

(10) If true values are available, the inference service calculates error metrics.

The training service can be launched from scratch or for a pre-trained model. In the
latter case, the grid operator can specify the temporal interval and number of epochs
used to update the model, as discussed in Section 3. Assuming a pre-trained model is
available, it could be the basis for forecasting solar irradiance in a similar region (size
and weather-wise). Therefore, the training service facilitates the model’s portability
from one farm to another.
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4.2. Outlier detection

Outlier detection is a critical feature in the application of predictive modeling for solar
irradiance sensor farms due to several reasons (Boukerche, Zheng, & Alfandi, 2020):

• Solar irradiance data is susceptible to various sources of noise and errors, in-
cluding sensor malfunctions, environmental obstructions (like bird droppings or
foliage coverage), and atmospheric anomalies (Sisodia & Mathur, 2019). Out-
liers can significantly distort the data quality, leading to inaccurate forecasts
and suboptimal decision-making.

• Predictive models, particularly those based on machine learning, are sensitive to
the quality of the input data. Outliers can skew the training process, resulting
in models that do not generalize well to new data (Hodge & Austin, 2004).
By detecting and addressing outliers, it is ensured that the models learn the
underlying patterns without being influenced by anomalous data points.

• For solar farms, operational decisions such as maintenance scheduling, grid in-
tegration, and energy trading rely heavily on accurate forecasts. Outliers can
lead to overestimation or underestimation of solar irradiance, which in turn can
cause financial losses, grid instability, or inefficient use of resources (Gandhi et
al., 2024).

• In some cases, outliers may indicate actual extreme events, such as sudden drops
in irradiance due to solar eclipses or drastic weather changes (Clark, 2016).
While these are not errors to be corrected, detecting such outliers is crucial for
implementing safety measures and adjusting operational strategies accordingly.

• As solar farms expand and the number of sensors increases, the likelihood of
encountering outliers also rises. A robust outlier detection mechanism is essential
for maintaining the scalability of the system, ensuring that the predictive models
can be applied across various farms with different sensor configurations and
environmental conditions.

Outlier detection is not just a data cleaning step but a fundamental aspect of en-
suring the reliability, accuracy, and robustness of predictive models in solar irradiance
applications (Boukerche et al., 2020). In this regard, CAIDE’s Outliers Service is
automatically activated when an event of type CMD_FIX_OUTLIERS is received. To ac-
complish this, the Prophet Python class is utilized within the atomic model’s external
transition function. Developed by Facebook’s Core Data Science team in 2017 (To-
harudin et al., 2023), Prophet is a powerful tool for time series forecasting that can
also be used for outlier detection.

Many different methods for outlier detection have been proposed such as Extended
Isolation Forest (Hariri, Kind, & Brunner, 2021) or RobustSTL (Wen et al., 2019).
Any of them could be used instead of the one chosen, due to the flexibility provided
by the framework, but Prophet was incorporated because it is especially suited to
deal with time series with heavy periodic implications like the ones in CAIDE (T.,
Bharamagoudar, G., & Totad, 2021). It also has simplicity, good performance, and
interpretability. In this case, outliers detection typically involves a small dataset, and
the Prophet training phase takes only a few seconds. This makes it ideal for repeated
outlier detection.

The Prophet class uses a decomposable time series model with three main model
components: trend, seasonality, and holidays.
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y(t) = g(t) + s(t) + h(t) + ϵt (2)

Prophet employs a piecewise linear trend model to capture the time series data
trend. The model assumes that a series of connected linear segments can approximate
the overall trend. On the other hand, Prophet models seasonal patterns using the
Fourier series. It captures periodic patterns, such as daily, weekly, or yearly cycles,
and can handle multiple seasonalities simultaneously. Finally, Prophet allows for the
effects of holidays or special events to be included in the time series. For mathematical
details on these components, the reader is referred to (Vishwas & Patel, 2020) and
(Toharudin et al., 2023).

Regarding outlier detection, Prophet does not provide a specific model for outliers.
Instead, it relies on identifying points where the observed values deviate significantly
from the predictions. The residual error term of the trend model ϵt represents the
discrepancy between the observed and predicted values. Significant errors suggest po-
tential outliers.

To perform outlier detection, one must follow several steps:

• First, to prepare data. The dataset must have two columns: a timestamp and a
numeric value representing the observed values.

• Then, to define the Prophet Python instance and fit the model with the previous
time series data, training the Prophet model and learning the underlying patterns
and trends.

• Next, to generate a set of future dates to make predictions that allow outlier
detection. In this case, the same timestamp set to fit the model is used.

• After, to invoke the predict method, passing the timestamp set defined in the
previous step and generating predictions based on the learned patterns.

• To identify outliers. To this end, the predicted values are compared with the
actual ones, calculating the difference for each data point. Outliers can be found
based on those differences by choosing a threshold.

• Finally, to replace the outliers using an interpolation method, for instance.

The effectiveness of outlier detection using Prophet depends on the data quality,
the chosen threshold’s appropriateness, and the time series characteristics.

4.3. Data analysis

The analysis subsystem is a crucial component of CAIDE, located within the fog and
cloud layers. Its primary function is to examine the information stored in the database
and generate comprehensive reports. These reports include various plots that help
visualize critical aspects of the simulation.

In the fog layer, a plot is produced for each sensor that contains measured data and
predictions triggered by the simulation file atomic model. Additionally, it performs a
comparative analysis by calculating the differences between predicted and actual val-
ues. If the error exceeds a predefined threshold, the fog server atomic model examines
these disparities and signals the cloud atomic model, triggering the training service.

The report generated at the cloud layer includes a tabular representation summa-
rizing the simulation results, including key statistical measures such as the arithmetic
mean and standard deviation of measured and estimated solar irradiance, among other
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(a) Sensors in the Oahu solar measurement grid.

(b) Almeŕıa’s synthetic grid.

Figure 3.: Farms location and sensors distribution.

variables. The report, detailed in Section 5, also features a map depicting the sensor
locations and a heat map highlighting the most productive areas.

Currently, CAIDE provides a set of preliminary reports to demonstrate its potential
utility. However, the variety and type of report depend on the domain experts and the
preferences of the decision makers. Some basic reports generated by CAIDE have been
included in the following use case scenario.

5. Use case

In this section, a simulation using two sensor farms is conducted: one based on real
monitoring data obtained from the Measurement and Instrumentation Data Center
(MIDC), specifically the Oahu Solar Measurement Grid (Sengupta & Andreas, 2010),
which consists of 17 sensors. These sensors are geographically distributed near the Hon-
olulu airport, as illustrated in Figure 3a. The second farm is synthetic and comprises 18
sensors located within a localized region in Almeŕıa, Spain. The coordinates and corre-
sponding irradiance data for these sensors have been generated using the PhotoVoltaic
Geographical Information System (PVGIS)2, depicted in Figure 3b. Consequently, the
simulated system encompasses 35 sensors distributed throughout the two farms.

An excerpt of the simulation file used to verify the correct behavior of CAIDE is
shown below. As can be seen, both sensor farms execute the same operations: moni-

2https://re.jrc.ec.europa.eu/pvg tools
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toring (with the activation and deactivation of the sensors), outlier detection, training,
prediction, and report generation. The timestamps of the input events of Oahu and
Almeŕıa are decoupled because data sources come from different moments in time. If
necessary, the training service can receive an Internet Protocol (IP) address because
it can be executed on another computer, different from the local host.

DATETIME;COMMAND;ARGUMENTS

2010-06-01 00:00:00;CMD_ACTIVATE_SENSORS;...;oahu.h5;

2010-06-27 00:00:00;CMD_TRAIN_MODEL;<ip>;...;Oahu;06-02;06-26;...

2010-06-27 01:00:00;CMD_RUN_PREDICTION;...;Oahu;06-27;...

2010-06-28 00:00:00;CMD_FIX_OUTLIERS;...;Oahu;ap1;06-27;linear;...

2010-07-01 00:00:00;CMD_PASSIVATE_SENSORS;...;Oahu;

2010-07-01 00:00:00;CMD_GENERATE_REPORTS;...;Oahu;06-01;07-01;...

2019-01-01 00:00:00;CMD_ACTIVATE_SENSORS;...;almeria.h5;

2020-03-27 00:00:00;CMD_TRAIN_MODEL;<ip>;...;Almeria;03-02;03-26;...

2020-03-27 01:00:00;CMD_RUN_PREDICTION;...;Almeria;03-27;...

2020-03-30 00:00:00;CMD_FIX_OUTLIERS;...;Almeria;s01;03-23;03-29;...

2021-01-01 00:00:00;CMD_PASSIVATE_SENSORS;...;Almeria;

The local host has a 12th Gen Intel i7-1270P (16) @ 4.800GHz with 32 GiB RAM,
Intel Alder Lake-P GPU, and the Ubuntu 22.04.2 LTS x86 64 operating system. The
training service is executed on a Google Cloud Platform (GCP) remote virtual ma-
chine, an Intel Xeon (4) @ 2.199GHz with 16 GiB RAM, and a NVIDIA Tesla T4,
and the Ubuntu 22.04.2 LTS x86 64 operating system.

The simulation is executed from the local host with a few lines of code as follows:

Listing 1: CAIDE source code used to run the use case

coupled = SeveralFarms ( ”sim− f i l e . txt ” , [ ”Oahu” , ”Almeria ” ] )
coord = Coordinator ( coupled )
coord . i n i t i a l i z e ( )
coord . s imu la te t ime (INFINITY)
coord . e x i t ( )

Firstly, the coupled model depicted in Figure 2 is defined through a simulation
file with all input events and the name of the two sensor farms under study. Next,
the sequential DEVS coordinator is instantiated. Finally, the simulation is initialized,
launched, and finished. Next, all the results obtained after executing the simulation
file are summarized.

5.1. Monitoring results

An excerpt of the simulation file used to verify monitoring sensors’ correct behavior
is relevant, especially for operators and domain experts in charge of the farm and
with local operative decisions. CAIDE ensures the preservation of every record from
each sensor, which is stored locally at the fog layer and the cloud layer. However, it is
important to note that data is not transmitted to the cloud model in real time. Instead,
it is accumulated and saved in daily packets, simulating efficient data management and
transmission.

Figure 4 displays the monitoring results for two representative sensors, one from the
Oahu solar farm (sensor ap1) and the other from the Almeŕıa solar farm (sensor s01).
The data for sensor ap1 were recorded on June 27, 2010, a date selected due to the
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Figure 4.: Representative sensor data from Oahu and Almeŕıa farms. The remaining
sensors exhibit a similar profile.

high solar irradiance and potential data variability. This graph shows the irradiance
curves for sensor ap1, indicating the presence of some data loss and potential outliers
that will be examined later in the simulation. In contrast, the data for sensor s01,
which are synthetic and generated using the PVGIS tool, cover several days in March
and demonstrate a more consistent pattern without apparent data loss. Despite the
synthetic nature of the Almeŕıa data, outlier detection remains an essential step to
ensure the robustness of the predictive models.

Furthermore, the monitoring phase for both farms using CAIDE was isolated. The
simulation of the Oahu farm, with its 17 irradiation values per virtual second, processed
a total of 27,540,000 irradiation values and took approximately 167 wall-clock seconds
to complete, which corresponds to 164,910 values per simulated second. The simulation
of the Almeŕıa farm, with 18 irradiation values per virtual hour, processed a total of
315,792 irradiation values taking only 2 wall-clock seconds to execute. It means 157,896
values processed per second. The small difference in processing speed between the two
farms is attributed to the larger size of the Oahu database, which contains more data
and thus requires slightly more time for processing.

5.2. Outliers detection: results

The outlier service allows for both the detection and correction of irradiance measure-
ments that are not in the same range as the remaining values from the same sensor in
a time window. The results of the outlier detection for both sensor farms are presented
in this section.

In the process of outlier detection, the threshold for identifying outliers was deter-
mined by the confidence interval generated by the Prophet model, which was set to
99%. This means that any data point falling outside the 99% confidence interval was
considered an outlier. This approach is based on the assumption that the majority of
the data points will fall within the expected range of values, and those that do not
are likely to be anomalies. The choice of a 99% confidence interval is a conservative
strategy aimed at minimizing the risk of false positives, where legitimate data points
are incorrectly flagged as outliers. Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) were calculated to assess the model’s performance and to
provide a quantitative measure of the deviation of the predicted values from the actual
values. The detected outliers were then corrected using linear interpolation, which is
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Figure 5.: Oahu’s sensors farm: outliers detection and treatment.

a standard method for imputing missing or anomalous values in time series data. This
method assumes that the change between two data points is linear and can be used
to estimate missing values within the range of known data points.

For the Oahu sensor farm, the detection of outliers was performed on June 27, 2010,
and the selected sensor was ap1. The MAE for the Prophet model was 58.35 W/m2.
Figure 5 shows the outlier detection process followed. The first subfigure illustrates
the irradiance data monitored on that day. The second subfigure displays the Prophet
model prediction curve, with the light blue region representing the 99% confidence
interval based on historical data, and the points representing the actual irradiance
values. The third subfigure represents the detected outliers, depicted in orange as
colored circles (labeled as 1). There are a total of 2750 outliers detected. The fourth
subfigure displays the outliers fixed using linear interpolation.

For the Almeŕıa sensor farm, since the data is synthetic and uniform, several days
were selected to detect outliers, specifically from March 22, 2010, to March 29, 2010.
The sensor chosen for this analysis is s01. The MAE for the Prophet model was 134.93
W/m2, which is higher compared to the Oahu farm due to the modeling of multiple
days. Figure 6 depicts the same process as in Oahu. The first subfigure shows the
monitored data for those days selected during the monitoring phase. The second one
shows the Prophet’s prediction and the confidence interval versus real data. The third
one illustrates the detected outliers, represented as orange points. Only four outliers
were identified in this case. The fourth subfigure displays the outliers fixed using linear
interpolation.

As in the previous section, the outlier detection service was isolated in the sim-
ulation. It took 34 and 1 seconds to complete, respectively. As a result, the CAIDE

16



Figure 6.: Almeŕıa’s sensors farm: outliers detection and treatment.

outlier detection service provided by the Prophet Python class in identifying and fixing
outliers in the solar irradiance sensor data from both sensor farms is very effective.

5.3. Training service

In this case, the Deep Neural Network (DNN) is trained with data collected from the
Oahu and Almeŕıa sensor farms, as detailed in Section 4.1. A temporal granularity of 1
minute suffices for solar irradiance analysis. In the case of Oahu, this implies converting
the granularity from seconds to minutes by taking the average every 60 seconds. The
readings obtained with PVGIS for Almeŕıa are hourly, so the timestamps between
hours are forward-filled (see Figure 8). The DNN is trained with accumulated data for
5, 10, 15, 20, and 25 days, respectively. The training process is conducted on a remote
virtual machine specified at the beginning of this Section.

For instance, for the 25-day model, a dataset is compiled consisting of 1440 (the
number of minutes in a day) multiplied by 25 (the number of days in the training
period) and further multiplied by the number of sensors present in each farm (17 for
Oahu and 18 for Almeŕıa). This gives a total of 612,000 irradiance data points for Oahu
and 648,000 for Almeŕıa. These data points are then structured into a format suitable
for the DNN model used in our study. The resulting shape of the training dataset for
both farms is (35930, 10, 10, 10), where each entry represents a 10-minute sequence of
data across a 10x10 grid. This grid is designed to approximate the spatial distribution
of the sensors, capturing both the temporal sequence and the spatial layout of the
irradiance values.

Table 1 presents the standardized training errors (MAE and Mean Squared Error
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Oahu Almeŕıa
Days MAE MSE Time [s] MAE MSE Time [s]
5 0.2612 0.2028 308 0.1369 0.1033 304
10 0.2692 0.2127 613 0.1395 0.0970 601
15 0.2486 0.1948 911 0.1334 0.0899 912
20 0.2581 0.2059 1206 0.1134 0.0640 1201
25 0.2577 0.2085 1549 0.1097 0.0559 1504

Table 1.: Oahu and Almeŕıa sensor farms: training errors and execution time.

(MSE)) and the execution time for the Oahu and Almeŕıa sensor farms. The MAE
and MSE values show differences between the two farms. Whereas for Almeŕıa the
error decreases as more data is available, it remains stable for Oahu. This behavior is
likely caused by the more variable nature of the Oahu data, as Figure 4 shows. More
training data and epochs would presumably revert this situation. The training time,
measured in seconds, increases linearly with the size of the dataset, as expected.

As mentioned above, the CAIDE training service is executed on a Google Cloud
Platform virtual machine in the cloud, taking advantage of the xDEVS distribution
possibilities (Risco-Mart́ın, Henares, et al., 2022). The rest of the simulation is executed
on the local host. This approach emulates a real-time deployment scenario, where the
training process is externalized to the cloud to accommodate larger datasets without
impacting the performance of the local infrastructure. The externalization demon-
strates the scalability of the CAIDE framework in handling larger datasets and its
ability to train the DNN efficiently. The purpose of this work is not to extensively
analyze the performance of the DNN but to demonstrate the consistency and effec-
tiveness of the CAIDE framework.

The DEVS formalism inherently supports modularity and encapsulation, which are
crucial for integrating and replacing components within a simulation framework. In
the context of CAIDE, this means that the training algorithm, which is a core compo-
nent of the predictive modeling process, can be swapped with alternative algorithms
without necessitating changes to other parts of the system. This is possible because
DEVS-based models communicate through well-defined interfaces, characterized by
their input and output ports. As long as the new training algorithm can interact with
these ports by adhering to the DEVS I/O conventions, it can be seamlessly integrated
into the CAIDE framework. This modular design principle not only facilitates the
maintenance and upgrading of the system but also promotes the reuse of components
across different simulation scenarios, as shown in (Capocchi & Santucci, 2022).

The following section will discuss the forecasting results obtained by the trained
DNN models and evaluate their accuracy and reliability in predicting solar irradiance
in real-time scenarios.

5.4. Inference service

A command in the simulation file can also trigger the inference service. Once the
order is executed, the model reads the nx most recent observations of each sensor.
From there, it predicts a new set of solar irradiance values for the specified forecast
horizons.

Note that the number of daily predictions is restricted by the daily time window in
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which sensors collect data, the temporal size of the input tensor nx, and the farthest
prediction horizon h. For example, consider data collected daily from 5:00 to 20:00 with
nx = 10min and horizons h ∈ {1, 11, 31, 61}. Then, the first inference will consider data
from the interval [5:00, 5:09] as input to predict for instants {5:10, 5:20, 5:40, 6:10}.
Similarly, the last inference of the day will take as input observations from [18:50,
18:59] to forecast GHI at the timestamps {19:00, 19:10, 19:30, 20:00}. Practically,
predictions can be requested up to the last input interval [19:51, 20:00]. However,
the lack of observations after 20:00 implies that the error cannot be calculated in
those timestamps. The framework fixes as null observations between 20:00 and 5:00
to bypass this temporal limitation, which makes sense due to the absence of sunlight.
Furthermore, as explained above, multiple consecutive predictions can be requested to
the simulator at once, as long as the input window is available. This feature can help
evaluate the model’s performance on larger samples of predicted data. Consecutive
predictions could be backfed as inputs to the model for forecasting further horizons.
However, forecast accuracy will likely decline as predictions move further into the
future, as seen in the subsequent experiments.

The following paragraphs present the inference (forecasting) results using the pre-
vious 25-day trained model in CAIDE for both the Oahu and Almeŕıa sensor farms.
Inference is carried out for a full day on each sensor farm, specifically on June 27,
2010, for Oahu and March 27, 2020, for Almeŕıa. The inference time window covers
from 05:00 to 20:00 with a temporal granularity of 1 minute, resulting in a total of 901
daily observations for every sensor (15 hours of 60 readings, plus the last one at 20:00).
The inference process in CAIDE, including the generation of data and the simulation
of predictions, is performed on the local host. The execution time for the inference
process is 12 seconds for Oahu and 15 seconds for Almeŕıa, which is not significant
enough to require distributed execution.

Figure 7 depicts the forecast results for the Oahu sensor farm for each of the four
horizons considered (1, 11, 31, and 61 minutes), compared to the simulated values
for the ap1 single sensor. The MAEs for each horizon are calculated to be 62.57,
114.95, 139.62, and 172.43 W/m2, respectively. As expected, the error increases with
the predictive horizon, indicating the inherent uncertainty in longer-term forecasts.

Similarly, Figure 8 presents the forecast results for the Almeŕıa sensor farm for the
same four horizons. The MAEs for each horizon are 12.69, 23.21, 47.15, and 81.28
W/m2, respectively. These errors are relatively lower compared to the Oahu sensor
farm due to the synthetic nature of the data generated using the PVGIS tool. The
absence of variability and outliers in the Almeŕıa dataset contributes to the improved
accuracy of the forecasts.

The results of the inference process demonstrate the capability of the 25-day trained
model in CAIDE to provide accurate forecasts for both the Oahu and Almeŕıa sensor
farms. Higher errors observed in the Oahu forecasts highlight the challenges associ-
ated with real data, including variability and outliers. However, as highlighted above,
the CAIDE framework is designed with a formal M&S structure that is based on
the DEVS formalism, which inherently allows for the straightforward substitution of
predictive models. Consequently, if a predictive model needs to be replaced or up-
dated, the process is as simple as ensuring the new model conforms to the established
DEVS communication interfaces. This design choice significantly reduces the complex-
ity typically associated with integrating new predictive models, thereby streamlining
the adaptation process to meet evolving requirements or to incorporate advancements
in predictive methodologies.
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Figure 7.: Predicted and simulated values at each horizon for sensor ap1 on June 27,
2010.

Figure 8.: Predicted and simulated values at each horizon for sensor s01 on March 27,
2020.
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Figure 9.: Oahu’s preliminary generated reports.

5.5. Reports generation

The ability of CAIDE to generate reports as HTML web pages, providing valuable
insights and visualizations for the managers or decision makers of the power plant
facilities is now briefly highlighted. The reports include all the figures in this section,
allowing for interactive functionalities such as zooming, filtering, and data selection.
The Python libraries, such as the Plotly Python graphic library, make these function-
alities possible.

Figure 9 shows a small excerpt of the outliers detection report and the heatmap
generated by CAIDE. It is important to note that the example provided in this sub-
section represents a preliminary version of the reports generated by CAIDE. Further
enhancements and refinements can be made to tailor reports to the specific needs and
requirements of domain experts, managers, or decision makers.

6. Conclusion and future work

The worldwide demand for electricity is growing rapidly, surpassing the growth of
renewable energy production. Consequently, there is intense anticipation for significant
global expansion in renewable energy generation in the coming years. To facilitate
this growth, it is imperative to develop well-organized and resilient methodologies for
analyzing suitable geographic regions for power plant installations. M&S can play a
crucial role in this endeavor, offering a secure and cost-effective means of obtaining an
initial overview of the final deployment project. However, existing M&S approaches
are not comprehensive enough to address this specific challenge in an integrative way.

In this study, CAIDE has been presented. This innovative and integrative framework
facilitates real-time monitoring of solar irradiance sensor farms and enables decision-
making regarding the advancement of cutting-edge predictive models. CAIDE not only
detects outlier values and performs missing data estimation, but also incorporates new
functionalities, such as training the predictive model as an external service executed
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on a remote virtual machine and generating HTML reports to present simulation re-
sults. This framework is built upon the principles of MBSE and utilizes the DEVS
M&S formalism. Leveraging the IoT paradigm, CAIDE offers a scalable and reliable
infrastructure that supports incremental design and efficient management of multi-
ple farms. Additionally, the framework provides different resolution views tailored to
domain experts at the fog layer and authorities at the cloud layer, aligning with the
terminology of the IoT domain.

Future work includes improving the analysis subsystem, expanding its capabilities
by incorporating additional types of plots in the reports, such as time-series graphs or
scatter plots, to capture different aspects of the data. Advanced statistical analysis,
such as correlation analysis and regression models, could provide deeper insights into
variable relationships. Including trend and spatial analysis in the reports would provide
information on patterns over time and geographical influences on simulation outcomes.
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Figure A1.: Diagram that shows the DL-based model for solar irradiance forecasting
from end to end.

simulation of high-frequency solar irradiance. IEEE Journal of Photovoltaics, 9 (1), 124–
131.

Appendix A. DL-based forecasting model

As mentioned earlier, this article integrates a DL-based model into the CAIDE frame-
work, which was published in a previous work (Prado-Rujas, Garćıa-Dopico, et al.,
2021). This appendix summarizes the main aspects of the forecasting model. The
step-by-step forecasting process is depicted in Figure A1 and is as follows:

(1) The ground sensors record N solar irradiance observations at the current times-
tamp, which are arranged arbitrarily.

(2) Afterward, these data are transformed into a two-dimensional mesh-grid using
nearest-neighbor interpolation.

(3) This mesh-grid is stacked with previous ones, yielding a three-dimensional tensor.
This structure implicitly encapsulates the temporal and spatial aspects of solar
irradiance.

(4) Next, the last nx mesh-grids (denoted as X in Figure A1) are fed into the DNN
model.

(5) The model starts with C Convolutional LSTM (Conv-LSTM) layers, which use
convolutional structures both in the input and in the recurrent transitions.
Therefore, they can grasp both spatial and temporal features.

(6) Then, their output is flattened and fed into D fully-connected layers.
(7) The output tensor Y is obtained using a reshape operation and has the same

spatio-temporal structure as the input. The difference is that the temporal di-
mension encompasses the ny forecast horizons.

(8) Finally, the interpolation process is reversed. This step yields the ny ·N predicted
irradiance values corresponding to each horizon and sensor location.

The interpolation of individual sensor observations into the mesh-grid is the crucial
step that equips the forecasting framework with the NFFs discussed in Section 2. In
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this manner, the model effectively forgets about the specific sensors and their locations,
favoring a broader view of solar irradiance maps over the region of interest. In practice,
the selection of spatial resolution and mesh-grid position must be based on the number
and distribution of the sensors. Previous experiments suggest that for the interpolation
to work effectively, the sensors must cover at least 20% of the mesh-grid pixels and be
well-distributed.

Using mesh-grids favors flexibility and robustness, as seen in (Prado-Rujas, Garćıa-
Dopico, et al., 2021). Robustness refers to the ability of the model to recover missing
sensor observations. Experiments from the previous work indicated that the forecasting
error increases by only 10%, even if one in four sensors fails. Furthermore, the error
worsens by 25% or less when the number of failing sensors is increased to half of
the available ones. Therefore, these simulations indicate that the model can produce
reliable predictions even under such complications. Flexibility, as defined in Section 2,
is accomplished thanks to solar irradiance mesh-grids. When new sensors are added
to the network, they can improve the mesh-grid’s reliability during the interpolation
step. The only restriction is that the new locations must fall within the area covered
by the grid. Removing sensors can be done without redesigning the model as the shape
of the mesh-grid remains unchanged.
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Abbreviation List

ANN Artificial Neural Network.
API Application Programming Interface.

CAIDE Cloud-based Analysis and Integration for Data Efficiency.
Conv-LSTM Convolutional LSTM.

DEVS Discrete Event System Specification.
DL Deep Learning.
DNN Deep Neural Network.

EU European Union.

GCP Google Cloud Platform.
GHI Global Horizontal Irradiance.
GPU Graphics Processing Unit.
GUI Graphical User Interface.

IoT Internet of Things.
IP Internet Protocol.

LSTM Long Short-Term Memory.

M&S Modeling and Simulation.
MAE Mean Absolute Error.
MAPE Mean Absolute Percentage Error.
MBSE Model Based Systems Engineering.
MIDC Measurement and Instrumentation Data Center.
ML Machine Learning.
MSE Mean Squared Error.

NFF Non-Functional Feature.
NWP Numerical Weather Prediction.

PV Photovoltaic.
PVGIS PhotoVoltaic Geographical Information System.
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