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Abstract—We propose greedy Capon beamformer (GBF) for
direction finding of narrow-band sources present in the array’s
viewing field. After defining the grid covering the location search
space, the algorithm greedily builds the interference-plus-noise
covariance matrix by identifying a high-power source on the grid
using Capon’s principle of maximizing the signal to interference
plus noise ratio (SINR) while enforcing unit gain towards the
signal of interest. An estimate of the power of the detected
source is derived by exploiting the unit power constraint, which
subsequently allows to update the noise covariance matrix by
simple rank-1 matrix addition composed of outerproduct of the
selected steering matrix with itself scaled by the signal power
estimate. Our numerical examples demonstrate effectiveness
of the proposed GCB in direction finding where it perform
favourably compared to the state-of-the-art algorithms under
a broad variety of settings. Furthermore, GCB estimates of
direction-of-arrivals (DOAs) are very fast to compute.

Index Terms—Beamforming, MVDR beamforming, direction
finding, source localization, greedy pursuit

I. INTRODUCTION

C
OMMON to most direction finding (DF) methods is the

need to estimate the unknown array covariance matrix

Σ = cov(x) ≻ 0 of the array output x ∈ CN . For example,

the commonly used conventional (delay-and-sum) beamformer

[1] and the standard Capon beamformer (SCB) [2] require an

estimate of Σ to measure the power of the beamformer output

as a function of the direction-of-arrival (DOA). In addition,

many high-resolution subspace-based DOA algorithms (such

as MUSIC [3] or R(oot)-MUSIC [4]) compute the noise or

signal subspaces from the eigenvectors of the array covariance

matrix and exploit the fact that signal subspace eigenvectors

and the array steering matrix span the same subspace. Array

covariance matrix is conventionally estimated from the array

snapshots via the sample covariance matrix (SCM). However,

the SCM is poorly estimated when the snapshot size is small

and adaptive beamformers (such as SCB) that are based on

SCM are not computable when N < L. Sparse methods for

DOA estimation [5] provide a remedy for these issues.

We assume that K narrowband sources are present in the ar-

ray’s viewing field. Let x denote the array output of N -sensors,

and a(θ) ∈ CN denote the array manifold, where θ denotes

the generic location parameter in the location space Θ. For

example, a(θ) = (1, e−·1·2πd

λ
sin θ, . . . , e−·(N−1)·2πd

λ
sin θ)⊤

for Uniform Linear Array (ULA), where λ is the wavelength,

d is the element spacing between the sensors and θ ∈ Θ =
[−π/2, π/2) is the DOA in radians. For an arbitrary steering

vector in the array manifold we use notation a, dropping the

dependency on θ. The output of a beamformer is defined by

y = wHx,
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where w is the beamformer weight vector that depends on

θ through steering vector a. Ideally, the beamformer weight

w = w(θ) is chosen such that the beamformer will null the

interferences and noise while allowing the signal of interest

(SOI) at θ to pass undistorted. The objectives of beamforming

can be formulated as [1], [6], [7]:

(A) to recover the signal of interest

(B) to estimate the locations of the K signals impinging on

the array.

The latter objective is achieved by estimating the array output

power distribution

P (θ) = E[|wHx|2] = wHΣw

over a fine grid {θ}Mm=1 covering Θ, i.e., allowing θ (and hence

a in the design of the beamformer weight w) vary through

the location space Θ. In this manner a spatial power spectrum

can be constructed and locations of the signals can be found

as peaks in the spectrum.

In this letter, we propose greedy Capon beamformer (GCB)

that greedily selects the next high-power source (not yet de-

tected) using Capon beamforming principle and subsequently

updates the interference-plus-noise covariance matrix. The ap-

proach is computationally light; it does not require computing

the eigenvalue decomposition (EVD) as needed by MUSIC or

R-MUSIC nor inverting the SCM as in SCB (i.e., L > N
is not required). There are similar sparsity and covariance

based DOA estimation methods, e.g, [8]–[14] or review in

[5], which are primarily iterative algorithms constructed using

some optimization principles. Our simulation studies illustrate

that the proposed GCB performs favourably against these

state-of-the-art (SOTA) methods.

II. CAPON BEAMFORMER

Let the array covariance matrix Σ be decomposed as

Σ = γaaH +Q (1)

where γ denotes the power of the SOI, a is the array steering

vector of the SOI at θ, and Q is positive definite (Q ≻ 0)

interference-plus-noise covariance matrix. It is assumed that

the noise is spatially white and K−1 uncorrelated directional

interfering signals are present. Then the matrix Q can be

expressed in the form

Q =

K∑

k=2

γkaka
H

k + σ2I

where σ2I is the noise covariance matrix (i.e., we assume

spatially white noise), ak = a(θk) is the steering vector of

the directional interference signal at θk, and γk > 0 is the

associated signal power (k = 2, . . . ,K). Without any loss of
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generality (w.l.o.g.) we will assume that all steering vectors

are normalized such that ‖ak‖
2 = N holds.

Capon beamformer minimizes the array output power sub-

ject to the constraint that the SOI is passed undistorted:

min
w

wHΣw subject to wHa = 1, (P1)

or equivalently, maximizing the signal to interference plus

noise ratio (SINR) at its output while enforcing a unit gain

towards the signal of interest:

max
w

γ|wHa|2

wHQw
subject to wHa = 1 (P2)

where γ designates the power of the SOI. Due to the first

formulation (P1), Capon beamformer is also often called

minimum variance distortionless response (MVDR) beam-

former. The solutions to power minimization problem (P1)

and SINR maximization (P2) are equivalent and the optimum

beamformer weight for both problems is given by

wopt =
Σ−1a

aHΣ−1a
=

Q−1a

aHQ−1a
. (2)

The equivalence of the solutions can be easily verified using

(1) and Sherman-Morrison formula for the inverse [15]. The

optimal power and SINR are then

Popt = wH

optΣwopt =
1

aHΣ−1a
, (3)

SINRopt =
γ|wH

opta|
2

wH
optQwopt

= γaHQ−1a. (4)

The next lemma relates the power γ of the SOI to the optimum

power and optimum SINR. This will be later used in proposed

GBF estimate the power of the detected signal.

Lemma 1. The power γ of the SOI at steering vector a is

given by

γ = wH

opt(Σ−Q)wopt = Popt −
1

aHQ−1a
(5)

where Popt is the optimum beamformer power (3).

Proof. Due to unit gain constraint one has that wH
opta = 1 and

since γaaH = Σ−Q from (1), we may write

γ = γ|wH

opta|
2 = wH

opt(γaa
H)wopt (6)

= wH

opt(Σ−Q)wopt (7)

= wH

optΣwopt −wH

optQwopt

= Popt −
1

wH
optQ

−1wopt

, (8)

where the last identity follows by recalling (3) and noting that

wH
optQwopt = (wH

optQ
−1wopt)

−1 = (SINRopt/γ)
−1, when the

latter form of wopt in (2) is invoked.

So far we have discussed the ideal situation, so assuming

that θ of SOI, and hence the steering vector a and the

covariance matrix Q are known exactly. These imply also the

complete knowledge of array covariance matrix Σ. Objective

(B) requires access to Σ which is unavailable in practise, and

commonly estimated by the SCM Σ̂, defined by

Σ̂ =
1

L

L∑

l=1

xlx
H

l = L−1XXH,

with L denoting the number of snapshots, xl representing the

lth snapshot and X = (x1 · · · xL) ∈ CN×L designating the

snapshot data matrix. Consider a grid {θ}Mm=1, θ1 < . . . < θM ,

of location parameters covering Θ, and let {am}Mm=1 denote

the corresponding steering vectors. Let A = (a1 · · · aM )
denote the associated steering matrix and θ = (θ, . . . , θM )⊤

the vector of location parameters. The standard Capon beam-

former (SCB) computes an estimate of the spatial power for

SOI at θi using

P̂SCB,i =
1

aHi Σ̂
−1

ai

, i = 1, . . . ,M. (9)

which is empirical (sample based) estimate of (3). Typically,

it is assumed that the grid resolution is fine enough so that

the true location parameters of the sources lie on or are in

close proximity to the grid. Then, given the knowledge that

K sources are present in the array output, Capon beamformer

chooses the DOA estimates as the K largest peaks of the

estimated spectrum. SCB algorithm proceeds as follows:

Input: Σ̂, K , A, θ.

1) Compute the beamformer output powers P̂SCB,i in (9).

2) Identify the indices of the K peaks in the spatial spec-

trum:

M = peaksK(P̂SCB,1, . . . , P̂SCB,M )

where M⊂ {1, . . . ,M} with |M| = K .

Output: θ̂ = θM, the vector of K DOA estimates.

We use aM to denote a K-vector consisting of components

of an M -vector a corresponding to indices in set M ⊂
{1, . . . ,M} with |M| = K < M .

III. THE GREEDY CAPON BEAMFORMER

Our greedy Capon beamformer (GBF) for direction finding

proceeds as follows.

Initialize: Set Q = [tr(Σ̂)/N ] · I, M = ∅.
Main iteration: for k = 1, . . . ,K , iterate the steps below

1) Compute the beamformer output power estimates

P̂i = wH

i Σ̂wi, i = 1, . . . ,M,

where wi = Q−1ai/(a
H

i Q
−1ai) signifies the beam-

former weight for location θi.
2) Identify the indices of the k largest peaks in the spatial

spectrum:

K = peaksk(P̂1, . . . , P̂M ),

i.e., K ⊂ {1, . . . ,M} with |K| = k.

3) Choose the index that has the least coherence with

steering vectors that have been picked up so far:

ik = argmin
i∈K

(max
j∈M

|aHi aj |).

Thus ik is the index from set K representing the steering

vector aik that is the least coherent to steering vectors

aj , j ∈M, that has already been chosen.
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4) Update the set M←M∪ {ik} of chosen indices.

5) Estimate the signal power of chosen source as γk = P̂ik−
(aHikQ

−1aik)
−1, i.e., using equation (5) of Lemma 1.

6) Update the interference and noise covariance matrix as

Q ← Q + γkaika
H

ik
. Such rank-1 update allows to

compute the inverse covariance matrix Q−1 efficiently

using the Sherman-Morrison [16] formula1, yielding

Q−1 ← Q−1 −
γkΣ

−1aika
H

ik
Σ−1

1 + γkaHikΣ
−1aik

(10)

After main iteration loop terminates (i.e., after K iterations),

one obtains the index set M, which then identifies source

locations as θ̂ = θM as in SCB algorithm outlined in

Section II. The pseudo code is tabulated in algorithm 1.

Algorithm 1: Greedy Capon’s Beamformer for DF

Input : Σ̂ = L−1XXH, K , A, θ

Initialize: Q−1 = [N/ tr(Σ̂)]I, M = ∅
for k = 1, . . . ,K do

P̂i =
aHi Q

−1Σ̂Q−1ai

(aHi Q
−1ai)2

, i = 1, . . . ,M.

K = peaksk(P̂1, . . . , P̂M )

M←M∪ {ik} with ik = argmin
i∈K

(max
j∈M

|aHi aj |).

γk = P̂ik − (aHikQ
−1aik)

−1

Q−1 ← Q−1 −
γkQ

−1aika
H

ik
Q−1

1 + γkaHikQ
−1aik

Output : θ̂ = θM, the vector of K DOA estimates

IV. SIMULATION STUDY

Our simulation set-up is as follows. The array is ULA with

half a wavelength inter-element spacing and number of sensors

is N = 20. The grid size is M = 1801, and spacing is

uniform, thus providing angular resolution ∆θ = 0.1o. The

number of Monte-Carlo (MC) trials is 5000. We assume that

K independent source signals impinge on the array, where

the SNR of kth source is defined as SNRk = γk/σ
2, where

γk = E[|sk|2] is the signal power and σ2 is the variance of

spatially white noise term. The array SNR is defined as average

of source SNR-s as SNR (dB) = 10
K

∑K

k=1 log10 SNRk.

We compare the proposed GCB method against the Cramér-

Rao lower bound (CRLB), MUSIC [3], R-MUSIC [4], and

IAA(-APES) [10, Table 2], All methods, except R-MUSIC,

use a grid of DOA angles specifying the possible angular

resolution of the method. SCB was not included in the study as

it performed much worse than MUSIC and R-MUSIC. IAA

is sparsity-based iterative approach, and we set 500 as the

maximum number of iterations for IAA. We selected IAA to

our comparison as it was generally performing the best among

other similar sparse iterative approaches and it is relatively

fast to compute. In our set-up we have K = 4 sources at

1The Sherman-Morrison formula states that (A + uvH)−1 = A−1
−

A
−1

uv
H
A

−1/(1 + v
H
A

−1
u
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Fig. 1: RMSE versus SNR when L = 125 (top panel) and

L = 25 (bottom panel); N = 20, M = 1801 (∆θ = 0.1o),
θ = (−30.1o,−20.02o,−10.02o, 3.02o).

DOAs θ1 = −30.1o, θ2 = −20.02o, θ3 = −10.02o and

θ4 = 3.02o. Note that all, except the 1st source, is off the

predefined grid. The SNR of the last 3 sources are −1, −2 and

−5 dB relative to the 1st source. We then calculated the DOA

estimate θ̂ = (θ̂1, . . . , θ̂K)⊤ for each MC trial, and report the

empirical root mean squared error (RMSE) ‖θ̂− θ‖ averaged

over all MC trials. The K sources are following complex

circular Gaussian distribution, sk ∼ CN (0, γk), k = 1, . . . ,K ,

unless otherwise noted.

RMSE versus SNR. Figure 1 displays the performance

when L = 25 (bottom panel) and L = 125 (top panel) and

SNR varies. The proposed GCB exhibits the best performance

across all SNR levels and sample lengths. At low sample size

(L = 25), the second-best performing methods is IAA but

its performance deterioritates and is similar to MUSIC and

R-MUSIC when L = 125. At very low SNR, the proposed

GCB has superior performance. For example, at SNR of −12
dB and L = 125, GCB has one order of magnitude smaller

RMSE (in degrees) than the state-of-the-art method IAA.

RMSE versus sample size L. Figure 2 displays the RMSE

w.r.t. to sample size L at SNR -9 (top panel) dB and −7
dB (bottom panel). At SNR of −7 dB, IAA and GCB attain

same performance, while GCB is superior to IAA when SNR

decreases. As L increases, MUSIC and R-MUSIC catch up

with sparsity based GCB and IAA methods, and for higher

SNR and sample sizes, they perform better than GCB or IAA.
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Fig. 2: RMSE versus L when SNR is −9 dB (top panel) and

−7 dB (bottom panel); N = 20, M = 1801 (∆θ = 0.1o),
θ = (−30.1o,−20.02o,−10.02o, 3.02o).

Coherent sources scenario. We generate non-Gaussian

sources with constant modulus which is more common setting

in communications applications. We generate kth source as

sk = γk exp(ϑk) where the phases ϑk, k = 1, . . . ,K
are independently and uniformly distributed in [0, 2π) while

power γk of the sources are as earlier. We set ϑ1 = ϑ4, i.e.,

source 1 and source 4 have identical phases, and are thus

fully coherent. We repeated previous simulation studies and

display the RMSE versus SNR when L = 125 and RMSE

versus sample size L when SNR is −9 dB in Figure 3.

When comparing Figure 3 to top panel plots of Figure 2 and

Figure 1, we can observe that the proposed GCB (as well as

IAA) is robust to assumption of uncorrelated sources. This

phenomenon is common to many sparsity based covariance

learning methods (see [17] for theoretical explanation). Again

GCB performs the best for all SNR levels and all sample sizes

L. MUSIC and R-MUSIC are not able to localize the 4 sources

due to coherence.

RMSE versus angle separation: We consider two sources

with varying angle separation δθ. The DOA of the 1st source

is θ1 = −30.02 (off-grid) and the other source θ2 = θ1 + δθ,

while SNR = −3 dB and L = 125. Figure 4 illustrates that the

sparse methods, GCB and IAA, are not able to identify close-

by sources as well as MUSIC an R-MUSIC when δθ ≤ 6o.

GCB has better performance over IAA when δθ ≤ 7o but

perform on par otherwise.
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Fig. 3: Correlated constant modulus sources scenario (source 1

and 4 are coherent). Top: RMSE versus SNR when L = 125.

Bottom: RMSE versus L when SNR is −9dB. N = 20, M =
1801 (∆θ = 0.1o), θ = (−30.1o,−20.02o,−10.02o, 3.02o).
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Fig. 4: RMSE versus δθ = θ2 − θ1 in two source scenario

when SNR is −3 dB, N = 20, θ1 = −30.02, M = 1801.

V. CONCLUDING REMARKS

We proposed greedy Capon beamformer that greedily se-

lects a high-power source using Capon SINR maximization

principle and spatial power spectrum. The power of the

selected source is estimated and subsequently the covariance

matrix is updated. The method is computationally light and

performed favourably against some SOTA methods.
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