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Abstract—This paper presents an adaptive anchor pairs se-
lection algorithm for UWB (ultra-wideband) TDOA-based (Time
Difference of Arrival) indoor positioning systems. The method
assumes dividing the system operation area into zones. The
most favorable anchor pairs are selected by minimizing the
positioning errors in doorways leading to these zones where
possible users’ locations are limited to small, narrow areas. The
sets are determined separately for going in and out of the zone to
take users’ body shadowing into account. The determined anchor
pairs are then used to calculate TDOA values and localize the
user moving around the apartment with an Extended Kalman
Filter based algorithm.

The method was tested experimentally in a furnished apart-
ment. The results have shown that the adaptive selection of
the anchor pairs leads to an increase in the user’s localization
accuracy. The median trajectory error was about 0.32 m.

Index Terms—adaptive systems, CNN, positioning, UWB

I. INTRODUCTION

Indoor positioning is a rapidly developing field both in the
case of conducted research and available commercial solutions.
In the literature, there are multiple ultra-wideband (UWB)
based solutions presented, which allow the potential users to
obtain positioning results of high, decimeter-level accuracy.

Such high accuracy is usually obtained under specific Line-
of-Sight (LOS) propagation conditions and for a vast number
of anchor nodes. In most real scenarios, the infrastructure
is limited, and the environments are cluttered with obsta-
cles, making the system operate in Non-Line-of-Sight (NLoS)
conditions most of the time. Maintaining high positioning
accuracy requires implementing additional methods.

Most of the methods proposed in the literature consist in
detecting measurement results obtained under NLOS condi-
tions and mitigating their negative impact on accuracy by
introducing appropriate corrections [1]. The efficiency of such
methods depends on accuracy of assumed NLOS bias statistics
[2]. Estimating them requires lengthy measurements which
results, due to complex nature of indoor environments, may
not be transferable between various system deployment sites.
A possible solution is to use one of the alternative anchor se-
lection methods. Such methods are used to select measurement
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results, for which the obtained positioning accuracy would be
best in terms of accuracy and reliability.

The following paper presents an anchor pairs selection
method for Time Difference of Arrival (TDOA) positioning in
UWB-based systems. The most favorable pairs for location in
different zones of the system deployment area are established
during a calibration routine by minimizing the positioning er-
rors around doorways, where the user’s location is known due
to constraints imposed by narrow passages. The calibration is
performed using historical data comprising user locations and
corresponding UWB Time of Arrival (TOA) measurements.

II. BACKGROUND AND RELATED WORKS

Most of the time, localization systems deployed in indoor
environments localize the users based on measurement results
obtained in NLOS propagation conditions. The NLOS condi-
tions can be caused by the stationary obstacles present where
the system is installed (e.g., walls, pieces of furniture) and the
user’s body. The problem is illustrated in Fig. 1.

The user moves through the environment and changes
her/his orientation regarding the anchors comprising the sys-
tem infrastructure. It creates NLOS conditions, which would
be hard to mitigate due to multiple factors causing the delays.
For example, the anchor might be located in a different room
than the user, and through-wall propagation would delay the
signal. When the user faces away from the anchor, there is an
additional delay caused by body shadowing.

The delay introduced by the body shadowing depends on
the degree to which the user’s body covers the tag. The study

Fig. 1. The NLOS delays introduced in indoor user localization scenario



presented in [3] has shown that the introduced UWB ranging
delay rises sharply when the tag becomes wholly covered.
In scenarios where the user’s body only partially blocks the
path between the tag and the anchor, the delays are usually
moderate.

One way to reduce the impact of the introduced delays is
to determine the most favorable measurement results set for
each scenario (user’s facing and the area, where he is located),
and use only the results from selected anchors.

There are several approaches used for anchor selection in
indoor positioning scenarios. The first is to choose only the
anchors which are deemed to work in LOS conditions. It can
be done using NLOS detection methods, which usually require
prior training and calibration, or by establishing a criterion
for anchor selection e.g., choosing the anchors based on the
received signal strength or an estimated distance to the tag [4].
It assumes that for the anchors close to the tag, the probability
of them being covered by an obstacle is low, which is not
always accurate in a complex indoor environment.

The other approach consists in a preliminary analysis of
the theoretical bounds of localization accuracy using Cramer-
Rao Lower Bound (CRLB) [5]. The studies have shown
that the CRLB depends on the localized object’s location
and the employed set of anchor nodes [6]. Unfortunately,
because CRLB analysis is applicable in scenarios where the
measurement results are unbiased, it would be hard to use it
in most indoor conditions.

The last group of methods depends on localization error
minimization [7]–[9]. They consist in localizing the tag based
on multiple measurement sets and choosing the best one by
comparing the results with the ground truth. This approach
yields good results, but its use requires prior system calibration
either by manual measurements or using a robotic platform.

The method proposed in the paper adopts the above ap-
proach. The presented research is a continuation of works
described in [9], where the best anchor sets were determined
through minimization of a moving robot positioning errors.
The conducted experiments have shown that using the pro-
posed solution results in a significant improvement in local-
ization accuracy. However, that method has two significant
drawbacks. First of all, the calibration routine requires using
a robotic platform with self-location abilities. Otherwise, the
data would need to be collected manually, which is a time-
consuming process. Secondly, the calibration is performed for
a robot rather than a system user, and thus, the results do not
take body shadowing into account.

The method proposed in the paper solves the above prob-
lems. The calibration is performed based on the data gathered
during routine system operation and therefore accounts for
additional disturbances caused by the user’s body.

III. PROPOSED METHOD

A. Method concept

The concept of the proposed anchor selection method is pre-
sented in Fig. 2. The proposed method divides the environment
into zones and determines the most favorable anchor pairs sets
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Fig. 2. The proposed method’s concept

Fig. 3. Cost metrics

for each of them. In a typical scenario, the user uses the system
as usual, and after some time, e.g. at the end of the day, the
system uses the gathered data to recalculate users locations
using different sets of TDOA values and choose the ones,
which allow localizing the user with the highest accuracy.

The positioning accuracy for each anchor set is done by
comparing the obtained results against environmental con-
straints imposed on the possible user’s locations by narrow
doorways leading to the zones. In the proposed method, the
results accuracy is rated based on the cost function:

cost(TDOAs) =

n∑
i=1

hi + vi (1)

Where n is the total number of points used for accuracy
evaluation and hi and vi are distances presented in Fig. 3.
The hi and vi distances are projections of vectors between
positioning results and reference points, which are equally
distributed on the door axis and represent the user’s location
when moving through the doorway.

The accuracy analysis is performed for both door transition
directions. Two anchor pair sets corresponding to opposite
user headings are determined, which helps to reduce body
impact on positioning accuracy. In some situations, there will
be several anchor sets for a single zone (e.g., zone 1 will have
four anchor sets assigned - one for each user heading).



B. Door detection

The proposed method requires knowledge of door locations.
In the case of small spaces, where the number of doors
is limited, this information can be manually extracted from
construction plans. However, it would be best to automate the
process. In the proposed method, door detection is performed
automatically using a Single Shot Detector based on RetinaNet
[10] architecture with ResNet50 v1 FPN feature extractor. The
architecture of the proposed solution is presented in Fig. 4.

The network takes 640x640 pixel images containing oc-
cupancy grid maps of the environments as an input. The
resolution of the grid map should be 5 cm. The image passes
through feature extraction layers, and then doors are detected,
and their bounding boxes are estimated.

In our study, we have used transfer learning. The feature
extractor weights were obtained from the Tensorflow model
garden, and we fine-tuned only the classification and regres-
sion networks using a custom training set containing random
grid maps. The grid maps were generated using Python scripts
in such a manner that each image contained at least two
doorways. The doorways were of different widths (from 0.6
to 0.8 m), and the grid maps were noisy to make them
more similar to the LiDAR obtained ones. Exemplary training
images with doors marked are presented in Fig. 5.

C. Positioning algorithm

The workflow of the proposed localization algorithm is
presented in Fig. 6. The algorithm consists of two steps.
First, the times of arrival values measured by the infrastructure
are used to calculate the TDOA values. The TDOA pairs to
be calculated are chosen in the feedback loop, in which the
current user location (with respect to the zone) and heading
are estimated. The obtained TDOAs are used to localize the
user using an Extended Kalman Filter-based algorithm.

IV. EXPERIMENTS

The experiments were conducted in a fully furnished, 48 sq
m apartment, which layout is presented in Fig. 8. The system
used in the study [11] consisted of 6 anchors and a tag worn
by the user on a lanyard. The test consisted of walking along
a test path and visiting all apartment rooms.

The data processing started with detecting the doors on the
occupancy grid map obtained with a LiDAR. The detector
was implemented using TensorFlow Object Detection API.
The results of door detection are presented in Fig. 7.

In the test environment, four doorways were detected. The
network detected doorways with proper door frames and other
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Fig. 4. Door detector architecture

Fig. 5. Training examples with doorway boxes marked
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Fig. 6. The proposed localization algorithm workflow

doorway-like narrow spaces, e.g., a passage to the kitchen
between a wall and a table (marked with 4 in Fig. 7).

Then, an extensive set of measurement data corresponding
to three hours of constant walking in the apartment was
simulated. The simulated measurements took into account the
delay resulting from through the wall propagation (0.3 ns per
traversed wall) and the one due to the user’s body shadowing
modeled based on the results presented in [3]. The simulated
data were used to establish the most favorable anchor sets for
each of the zones (listed in Table I).

The obtained pairs were then used to localize the user
walking along the test trajectory. Exemplary positioning results
obtained using the proposed method and one fixed TDOA pair
set are shown in Fig.8. The Estimated Cumulative Distribution
function of trajectory error, defined as the smallest distance of
positioning results from reference trajectory are presented in
Fig. 9.

The obtained results allow reconstruction of the user’s
trajectory with satisfying accuracy. Using different sets for
different areas makes it possible to localize the user in all
rooms accurately. In the case of using a fixed TDOA pair set, it
was impossible to maintain high accuracy in all of the spaces
(e.g., localization accuracy in the room on the left is much
lower). The mean trajectory error of the proposed method was
about 0.32 m which is, on average, about 0.4 m better than in
the case of using one set for the whole apartment, which is a
similar gain to the one reported based on simulations in [7].



Fig. 7. Door detection results marked on an LiDAR based occupancy grid
map

TABLE I
MOST FAVORABLE SETS OF TDOA PAIRS (BASED ON SIMULATED DATA)

zone anchor pairs

1↑ (1 2), (1 6), (3 5), (5 6)

1↓ (1 3), (1 6), (2 5), (3 4), (3 6), (4 5)

2→ (1 3), (1 6), (2 4), (3 6), (4 6)

2← (1 3), (1 5), (2 4), (3 6)

3↑ (1 4), (1 6), (2 3), (2 6), (3 5), (4 6)

3↓ (1 6), (2 3), (2 5), (3 5), (3 6), (4 6)

4→ (1 2), (1 3), (1 4), (2 4), (4 6)

4← (1 4), (1 5), (2 4), (2 6), (3 4), (3 5)

Fig. 8. Positioning results. The blue squares represent anchor positions. Gray
rectangles represent obstacles, which block the users movement (bed, couch
etc.).

V. CONCLUSIONS

The paper presents a novel method of TDOA pairs selection
intended for UWB systems. The method determines the most
favorable anchor sets by minimizing the localization error
obtained with different results combinations. Instead of ground

Fig. 9. Estimated Cumulative Distribution Function of trajectory error for
different sets of TDOA pairs

truth data, the method uses environmental constraints imposed
on possible users’ locations by narrow passages (e.g., doors).

The performed experiments have shown that the method
allows the system to maintain high accuracy in all covered
areas, which was not the case while using fixed anchors sets.

The method can be further developed by improving the door
detection network and including other narrow passages (e.g.,
created by furniture pieces and the walls) in the analysis.
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