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ABSTRACT

In the expanding field of the Internet of Things (IoT), wireless channel estimation is a significant
challenge. This is specifically true for low-power IoT (LP-IoT) communication, where efficiency and
accuracy are extremely important. This research establishes two distinct LP-IoT wireless channel
estimation models using Artificial Neural Networks (ANN): a Feature-based ANN model and a
Sequence-based ANN model. Both models have been constructed to enhance LP-IoT communication
by lowering the estimation error in the LP-IoT wireless channel. The Feature-based model aims
to capture complex patterns of measured Received Signal Strength Indicator (RSSI) data using
environmental characteristics. The Sequence-based approach utilises predetermined categorisation
techniques to estimate the RSSI sequence of specifically selected environment characteristics. The
findings demonstrate that our suggested approaches attain remarkable precision in channel estimation,
with an improvement in MSE of 88.29% of the Feature-based model and 97.46% of the Sequence-
based model over existing research. Additionally, the comparative analysis of these techniques with
traditional and other Deep Learning (DL)-based techniques also highlights the superior performance
of our developed models and their potential in real-world IoT applications.

Keywords Wireless Channel Estimation · Low-Power IoT · Deep Learning · Neural Networks

1 Introduction

The Internet of Things (IoT) has introduced a new phase of interconnectedness, allowing various objects to communicate
and interact with one another through wireless networks [1]. In such interconnected environments, accurate channel
estimation is critical, especially in the context of LP-IoT applications [2]. Wireless channel estimation is essential for
ensuring resilient communication, particularly in LP-IoT applications where limited resources require both efficiency
and accuracy. Traditional approaches for channel estimation, such as Least Squares (LS) and Maximum Likelihood
(MaxL), often need to catch up in accurately capturing the intricate features of wireless channels in real-world situations,
especially under diverse conditions [3]. This gap prompts a shift towards more adaptable and intelligent wireless
channel estimation solutions for LP-IoT networks. In this context, Machine Learning (ML) has increasingly been
recognised as a potential solution for wireless channel estimation. Recent studies such as [4] and [5] have explored
the use of ML in predicting channel characteristics with promising results, highlighting the superior performance of
ML over conventional methods. In another study [6], the author demonstrated the effectiveness of Supervised ML
(SML) for RSSI-based indoor localisation in IoT applications, underscoring the benefits of leveraging the benefits
of ML over traditional estimation methods. The researchers are also investigating the DL, advanced ML for channel
estimation in IoT [7] [8]. ANNs are the simplest techniques of DL-based methods. Implementing ANN-based models is
considered accurate and resource-efficient in most applications, particularly suitable for LP-IoT environments. Although
DL-based techniques have proved promising results in channel estimation in IoT, the high computational costs of
these methods are a major concern. Therefore, these approaches require further improvement in channel estimation to
increase accuracy and reduce computational resources.

Building on this foundation, this research focuses on developing and evaluating two specific ANN-based estimation
methodologies designed for LP-IoT wireless channels: the Feature-based ANN model and the Sequence-based ANN
model. The Feature-based approach leverages the extraction and learning of complex patterns inherent in raw RSSI data
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and estimates the future RSSI. On the other hand, the Sequence-based model selects a sequence of RSSI measurements
using specific features to estimate upcoming channel conditions, hence improving the accuracy and efficiency of
the estimation. By providing a comparative analysis with existing techniques, we underscore the potential of our
ANN-based estimation approaches to improve the LP-IoT wireless communication systems substantially. The following
are the main contributions to the field of wireless channel estimation LP-IoT devices:

• developed two distinct ANN-based models, namely the Feature-based and Sequence-based ANN models for
wireless channel estimation in LP-IoT networks, signifying improvement in LP-IoT channel estimation.

• Collected empirical data utilising two LP-IoT devices, which were subsequently consolidated and engineered
to assist with developing these models.

• Performed a comparative analysis of our suggested models with current research, traditional, and other
DL-based techniques, proving the superior performance of our models with the sophisticated percentage
improvement in estimation error.

Figure 1: A block-based representation of the ANN-Based estimation process in LP-IoT systems.

2 System Model and Problem Formulation

This section describes the system model employed in this article for LP-IoT wireless channel estimation and articulates
the research problem formulation.

2.1 System Model

We begin developing the ANN-based channel estimation models for LP-IoT networks by collecting real-time channel
data in an indoor environment. To collect the real data, we set up two LP-IoT devices, one acting as a transmitter and
the other as a receiver in an indoor laboratory setting. The RSSI was then measured as the wireless channel metric in
LP-IoT communication in environment modes for the model’s development. The data collection was organised in three
main scenarios (explained in Section 4): aggregated, prepossessed, and prepared for the model’s development. Next, we
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Figure 2: Visual representation of ANN-based LP-IoT estimation models.

developed two models based on ANN by analysing the RSSI as a wireless channel metric. These ANN models have
been designed to estimate the RSSI in a dataset that presumably represents RSSI in an indoor IoT (Internet of Things)
laboratory environment. The first model was developed utilising the environment features as input data for estimating
the RSSI. Next, we developed the sequenced-based model in which we also utilised the aggregated data. However, we
categorised it based on the environmental conditions, such as LoS and NLoS, varying receiver’s location, and varying
receiver’s distance from the transmitter. Finally, we trained and evaluated both models and compared them with the
traditional and DL-based estimation techniques. Table 1 represents the randomly selected data from the main datasets
to visualise the data arrangements.

2.2 Problem Formulation

In LP-IoT networks, the conventional wireless communication model is expressed by the equation y = hx+ n. Here, h
represents the wireless channel between the LP-IoT transmitter and receiver, x represents the transmitted signal, and n
denotes the noise in the system. The goal is to calculate the LP-IoT wireless channel gain in dBm, represented as RSSI
and indicated as y = |h|. In the succeeding part, we will now move into a detailed development of our specifically
developed models for the LP-IoT channel estimation.

3 ANN Model Development

3.1 Feature-based ANN Model

3.1.1 Phase I - Data Preparation

Initially, we constructed the Feature-based model by aggregating the data from all three experimental scenarios and
consolidating it into a unified spreadsheet. Subsequently, the environmental conditions derived from these experimental
scenarios were incorporated into an ANN model as input features for future RSSI estimation. The input features
consist of the distance, denoted as s, the Line-of-Sight (LoS) or Non-Line-of-Sight (NLoS) status, denoted as c, and the
category determined by the location and distance between the transmitter and receiver, represented as g. The distance
ranges from 0.1m to 3m. The LoS is indicated by the number ‘0’, while NLoS is marked by ‘1’. In the third feature,

the fixed location is L1, categorised as ‘0’. The location varies from L2 to L12 and is categorised as ‘1’. The location
and distance vary from L13 to L40 and are labelled as category ‘2’ in the data spreadsheet. Table 1 outlines data
arrangement in the spreadsheet, which was employed as the input feature set for the Feature-based ANN model. In
Table 1, the sequence column is disregarded at this stage because it has been employed in the Sequence-based model.

3.1.2 Phase II - Model’s Construction

In the construction of our Feature-based ANN model, we designed it with four distinct layers: the Input Layer denoted
as IL, two Hidden Layers labelled as HL1 and HL2, and the Output Layer as OL. The IL receives the three primary
input features: the distance s, the LoS and NLoS condition c, and the variable incorporating distance and location g.
The HL1 and HL2 are equipped with 64 neurons each and play a pivotal role in eventually processing the inputs to
yield the estimated RSSI at the OL. Throughout each layer, we applied the Rectified Linear Unit (ReLU) decision
function to facilitate decision-making processes within the model. To assess the model’s effectiveness, we undertook
training sessions to observe its behaviour, followed by an evaluation using the remaining dataset. To accomplish this,
we split the data into training and testing sets. The training set of 80% and 20% data was reserved for evaluating the
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Table 1: A representation of the randomly selected data from the main aggregated data, representing the sequence used
in Sequence-based ANN model.

RSSI
(dBm)

Distance
(0.2m - 3m)

Condition
(LoS/NLoS)

Location
(L1 to L40) Sequence

-67.4 3 LoS L1 [3,0,0]
-65.2 3 NLoS L1 [3,1,0]
-67 3 LoS L2 [3,0,1]
-57 3 NLoS L2 [3,1,1]
-40 0.2 LoS L13 [0.2,0,2]
-47 0.2 NLoS L13 [0.2,1,2]
-57 1.8 NLoS L29 [1.8,1,2]

model’s performance on unseen data. Figure 1 represents the configuration of the Feature-based ANN estimation model.
A generalised mathematical representation of the constructed Feature-based model is described as follows:

M(s,c,g)
output−−−→ γ̂, (1)

where M(s,c,g) denotes the Feature-based ANN model, with input features distance as s, condition as c, and the
category as g. The γ̂ represents the estimated RSSI as output. The output γ̂ in equation 1 can be expanded as:

γ̂ ←− δk(γ
′′
k )←− δj(γ

′
j)←− γi (2)

where γi represents the input from IL to HL1, whereas γ′
j and γ′′

k denotes the output at HL1, and HL2, respectively.
The symbol γ̂ represents the final estimated output at OL. The variables i, j, and k indicate the number of neurons at
IL, HL1, HL2 respectively. The i contains three input features s,c, and g. The ReLU decision function integrated into
the interconnected layers of the Feature-based ANN model is represented by δj and δk.

3.1.3 Phase III - Model Training

To minimise errors in the constructed forward propagation model, backpropagation is required. For this, we used
NAdam optimiser with a learning rate of 0.001. We ran 1800 epochs to reduce the estimation error. The Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) were used as the loss function, also called the model’s evaluation
metrics. These metrics are essential for assessing the model’s performance by calculating the discrepancies between
the estimated and the actual values. Specifically, MSE is a straightforward statistic that computes the average squared
difference between estimated and actual outcomes. The RMSE is obtained by calculating the square root of the MSE.
The model’s parameters were adjusted during the training phase to minimise the MSE loss function. The loss values
were recorded for each epoch to monitor the training progress. After obtaining the minimum MSE during training, we
calculated the RMSE. The mathematical expression of MSE and RMSE is depicted as follows:

MSEγ =
1

N
(γ − γ̂)2, (3)

where N represents the total number of data samples, γ denotes the collected RSSI, and γ̂ denotes the estimated RSSI.
The numeric training and testing results can be found in table 2. The RMSE can be expressed as:

RMSEγ =

√
1

N
(γ − γ̂)2. (4)

3.2 Sequence-based ANN Model

3.2.1 Phase I - Data Preparation

This model is designed to estimate future RSSI values in a time series based on prior observations using the selected
sequence of RSSI data. For this, we prepared the data to pick a sequence based on the distance, environment condition,
varying location, and the distance between the transmitter and receiver (as explained in Section 3.1.1). For the data
preparation, we can see the data arrangement and the created sequence using the three columns ‘Distance’, ‘Condition’,
and ‘Category’ in the datasheet. We pick a series of RSSI values by selecting the arranged environment features such as
[2,1,2]. Then, the selected sequence of a given length of RSSI values is trained and evaluated to estimate the next RSSI
values in the time series manner. This unique model is extendable to new features based on distance, condition, and
category by making suitable adjustments in the environment features.
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3.2.2 Phase II - Model’s Construction

After performing the data preparation method, we configured the Sequence-based ANN model in three layers: the Input
Layer (IL), the Hidden Layer (HL1), and the Output Layer (OL). From the series of selected RSSI data, the IL processes
one data point at a time. The HL1 comprises 64 neurons, while the OL generates a single estimation at each instance.
This structured approach allows the estimation of the LP-IoT channel data under different environmental conditions
individually. This model does not utilise the entire dataset; instead, it picks the sequence, rendering it a highly efficient
model. The generalised equation of the proposed approach can be mathematically expressed as:

Sγ(s,c,g)
selected sequence−−−−−−−−−→Msq

output−−−→ γ̂, (5)

where Sγ(s,c,g) represents the RSSI sequence selected by the different combinations of input features. The variables s,c,
and g denote the data’s specific features, such as distance, condition, and category. The γ indicates the corresponding
measured RSSI value the model aims to predict. Msq denotes the Sequence-based ANN model that processes the
selected sequence picked up by the input features, and γ̂ represents the estimated RSSI, the model’s output. The model
Msq can be expressed in its expanded version as:

γ̂ ←− δj(γ
′
j)←− γi, (6)

where γi represents the input data for processing, δj(γ′
j) denotes the transformation operation at HL1 with the ReLU

decision function, denoted as δj , and the γ̂ represents the estimated output at the OL.

3.2.3 Phase III - Model Training

We trained a Sequence-based ANN model, emphasising a lightweight and straightforward approach to selecting and
processing the features. We adopted the ADAM optimiser with a learning rate of 0.01 for our training process to
facilitate this. In the Sequence-based ANN model, the choice of ADAM over NADAM was deliberate as we aimed to
maintain the model’s simplicity and avoid unnecessary complexity. The ADAM has lower computational demands than
the NADAM. Furthermore, we implemented a dropout rate of 0.5 to mitigate over-fitting while preserving the model’s
ability to generalise from the training data. The training was extended until 200 epochs to achieve the minimum error
rate. Model’s performance is evaluated using MSE and RMSE equations 3 and 4 respectively.

4 Experimental Data Collection

The experimental framework was established in an indoor laboratory at Charles Sturt University. The experimental
test bed was designed to simulate real-world IoT communications using two Waspmote devices for transmitting and
receiving signals. The device setup and configuration can be found in our earlier research [9]. We measured RSSI as the
primary channel metric and analysed it to gauge wireless channel performance. We designed three scenarios to depict
the typical IoT wireless channel: LoS and NLoS environment conditions.

The first designed scenario examined the stationary devices at fixed distances to establish a baseline for signal strength
in unobstructed and obstructed arrangements, using common indoor items as physical barriers. Initially, the LoS setup
was arranged on a centre table with the transmitter and receiver at a fixed distance of 3 metres apart. This setting was
carried out to ensure a direct LoS and evaluate the basic communication performance in a controlled environment.
Consequently, the physical barriers were introduced to create an NLoS condition between the transmitter and receiver.
In the NLoS setup, the devices were placed on opposite sides of a standard wooden lecture table and equipped with
power points and a screen. This table was the obstructing medium, including an additional whiteboard and a chair.

The second scenario examined the impact of varying the receiver’s position within the laboratory to ascertain the
influence of location variability on signal transmission. To examine the LoS condition, We methodically positioned the
receiver at different locations on a specified table, all within a constant distance of 3 m. To simulate the NLoS condition,
we incorporated common laboratory objects such as a small CPU, a book, and a hand sanitiser, thus producing an
authentic NLoS environment. The receiver’s position was slightly adjusted across 11 distinct places within the setup
table to allow the influence of spatial dynamics on signal transmission. The third scenario expanded this study by
examining varying distances between the transmitter and receiver, considering both LoS and NLoS conditions. We set
up the LoS condition by measuring RSSI at an initial distance of 0.2 m between the transmitter and receiver. We then
systematically increased this distance by 0.1 m increments, up to a maximum distance of 2.9 m.

In the initial setup, the experiment was carried out over a prolonged duration of more than three hours, allowing for
the acquisition of 10,000 samples for each condition. In scenarios 2 and 3, each specific location and distance were
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Figure 3: Visual representation of the results of Feature-based ANN model for LP-IoT wireless channel estimation.

tested for a short experimental period of around five minutes. During this period, the number of samples fluctuated
between 220 and 260, mostly due to occurrences of random packet loss. The total number of RSSI samples obtained by
aggregating data from all scenarios is 43163.While preparing the dataset for model implementation, we thoroughly
examined the data and performed the cleansing to identify and eliminate any empty entries.

(a) The results of selected Sequence using the features [0.5, 0, 2]. (b) The results of selected sequence using the features [0.5, 1, 2].

(c) The results of selected sequence using the features [1, 0, 2]. (d) The results of selected sequence using the features [1, 1, 2].

(e) The results of selected sequence using the features [2, 0, 2]. (f) The results of selected sequence using the features [2, 1, 2].

Figure 4: Visual representation of the results of Sequence-based ANN model for LP-IoT wireless channel estimation.
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Table 2: The comparison of Feature-based ANN model with traditional and other DL-based techniques.

Estimation Models Training Testing
MSE RMSE MSE RMSE

Feature-based ANN Model 5.91 2.43 5.30 2.30
Regression Model 8.62 2.93 8.62 2.93
RNN 7.48 2.72 6.72 2.59
LSTM 51.92 7.20 51.44 7.17

Table 3: Comparison of proposed Sequence-based ANN estimation model with other DL-based techniques for LP-IoT
channel estimation.

Training TestingSelected
Sequence MSE RMSE MSE RMSE

Training
Time(s)

Testing
Time(s)

Sequence-based ANN Estimation Model
[3, 0, 0] 0.27 0.52 0.19 0.43 1.022 0.0015
[3, 1, 0] 0.39 0.62 0.38 0.62 0.902 0.0013
[0.5, 0, 2] 0.90 0.95 1.43 1.19 0.739 0.0005
[0.5, 1, 2] 1.45 1.20 0.21 0.46 0.381 0.0004
[1, 0, 2] 0.94 0.96 1.57 1.25 0.422 0.0005
[2, 0, 2] 0.91 0.95 4.36 2.08 0.369 0.0009
[2, 1, 2] 2.86 1.69 0.35 0.59 0.360 0.0010

Recurrent Neural Networks (RNNs)-based Estimation Model
[3, 0, 0] 2.89 1.70 2.50 1.58 55.979 0.0013
[3, 1, 0] 1.32 1.14 1.79 1.33 59.129 0.0016
[0.5, 0, 2] 0.50 0.70 0.64 0.80 24.000 0.0052
[0.5, 1, 2] 0.68 0.82 0.18 0.43 28.050 0.0011
[1, 0, 2] 0.45 0.67 0.73 0.85 0.2474 0.0003
[2, 0, 2] 1.16 1.07 4.23 2.05 0.2506 0.0008
[2, 1, 2] 2.03 1.42 0.45 0.67 0.2701 0.0010

Long Short-Term Memory (LSTM)-based Estimation Model
[3, 0, 0] 21.93 4.68 21.30 4.61 151.55 0.4225
[3, 1, 0] 35.39 5.94 37.93 6.15 166.70 0.4226
[0.5, 0, 2] 0.50 0.70 0.64 0.80 31.840 0.1100
[0.5, 1, 2] 0.68 0.82 0.18 0.43 33.560 0.1200
[1, 0, 2] 0.46 0.68 0.74 0.86 5.77 0.4385
[2, 0, 2] 17.78 4.21 24 4.89 0.835 0.4386
[2, 1, 2] 7.83 2.79 6.54 2.55 0.863 0.4385

5 Performance Evaluation and Discussion

In this research, we implemented two models: A Feature-based ANN model and a Sequence-based ANN model. The
Feature-based ANN model integrates the LP-IoT environment features and estimates the RSSI based on these features.
The evaluation outcome of this model demonstrates a substantial performance improvement when compared to the
traditional Regression model and the other DL-based techniques, RNN and LSTM, throughout both the training and
testing phases.

In the training phase, the Feature-based ANN model attains an MSE of 5.91 dBm and an RMSE of 2.43 dBm. Upon
evaluation, the model exhibits a slight reduction in error with MSE of 5.30 dBm and RMSE of 2.30 dBm. In contrast,
the traditional Regression model shows elevated error rates in both training and testing, with an MSE of 8.62 dBm
and RMSE of 2.93 dBm. These results indicate that the Feature-based ANN model possesses a robust generalisation
ability as compared to the traditional estimation approach. Subsequently, we evaluate this model in comparison to other
DL-based models, such as RNN and LSTM. The models also possess higher MSE and RMSE in the training and testing
phases than the Feature-based ANN model. Table 2 presents a comparative analysis that visually demonstrates the
superior performance of the Feature-based ANN model in comparison to traditional and other DL-based approaches.

Next, we acquired the results of the Sequence-based ANN model using sequences of different feature combinations,
such as [3,0,0], [3,1,0], [0.5,0,2], [0.5,1,2], [1,0,2], [2,0,2] and [2,1,2]. From Table 3, we can visualise the notable
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efficiency of our Sequence-based ANN model in comparison to the RNN and LSTM models using different selected
sequences. Specifically, using the sequence with features [3,0,0], the Sequence-based ANN model showed promising
results with an MSE of 0.27 dBm and RMSE of 0.52 dBm during its training phase. It further reduced the testing
error with an MSE of 0.19 dBm and RMSE of 0.43 dBm. Additionally, the training and testing time of 1.022 and
0.0015 seconds represents the minimal computational overhead. Conversely, the RNN-based model achieves an MSE
of 2.89 dBm and RMSE of 1.70 dBm during the training phase. However, there is a slight improvement in the testing
phase, with MSE 2.50 dBm and RMSE 1.58 dBm. Similarly, the LSTM-based model exhibits a stark decline in
performance, with an MSE of 21.93 dBm in training and 21.30 dBm in testing. Also, we noticed that the RNN
and LSTM models have a significantly higher computational cost during the training phase, with 55.979 seconds and
151.55 seconds, which reflect the inefficiencies in these models. Through this evaluation, we exemplify the robustness
of the Sequence-based ANN model with a minimal training period, in contrast to the traditional and other DL-based
techniques.

Lastly, we compare our developed models with the existing research. The findings demonstrate that our suggested
approaches attain remarkable precision in channel estimation, with the improvement of 88% of Feature-based model
with an MSE of 5.30 dBm, and 97% of Sequence-based model with an average MSE of six sequences of 1.15 dBm
over existing research in [10] with an average MSE of six datasets of 45.25 dBm. This comprehensive analysis shows
how our models outperform the traditional, DL-based, and other existing techniques. However, it also underlines the
importance of continued research in exploring hybrid models. The hybrid models, that combine several strategies may
enhance the estimation efficiency, particularly in handling the unpredictability and complexity of the LP-IoT wireless
channel.

6 Conclusion and Future Work

This research constructed and evaluated two ANN-based estimation models for LP-IoT wireless systems: the Feature-
based ANN and Sequence-based ANN models. The Feature-based model utilises three distinct features of the channel to
estimate RSSI. The Sequence-based model was designed to estimate future RSSI values using a sequence of past RSSI
measurements picked from the combination of three features. From the table 2, we illustrated the Feature-based model’s
remarkable accuracy and efficiency compared to traditional and other DL-based estimation methods such as RNN and
LSTM. Similarly, the results depicted in table 3 affirm the potential of the Sequence-based ANN model in enhancing
LP-IoT channel estimation, offering a significant improvement over DL-based approaches in terms of simplicity and
efficiency. For future research, the real-time adaptability of our models to diverse environmental conditions, such as
multi-room and multi-floor environments, along with improved scalability and computational efficiency, are the key
areas for investigation.
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