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Abstract

The Newton-Raphson method stands as the ur-root-finding technique. In this
study, we propose a parameterized variant of the Newton-Raphson method,
inspired by principles from physics. Through analytical and empirical valida-
tion, we demonstrate that this novel approach offers increased robustness and
faster convergence during root-finding iterations. Furthermore, we establish
connections to the Adomian series method and provide a natural interpreta-
tion within a series framework. Remarkably, the introduced parameter, akin
to a temperature variable, enables an annealing approach. This advance-
ment sets the stage for a fresh exploration of numerical iterative root-finding
methodologies.

Keywords: Newton-Raphson, Adomian method, Cohomological quantum
field theory, Basin entropy

1. Introduction

Root-finding algorithms are important to solve equations, a fundamental
task in quantitative theoretical science. Root-finding and fixed-point iter-
ations are intricately connected, serving as essential tools in various fields
such as optimization and algorithm development. The emergence of deep
learning has introduced complex, high-dimensional root-finding challenges,
particularly in optimizing architecturally intricate neural networks, driving
the need for further advancements in root-finding techniques.
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Despite their historical roots predating calculus, root-finding algorithms
continue to evolve, with well-known methods like bisection, regula falsi,
Newton-Raphson, and secant methods (Press, 2007). Notably, the Newton-
Raphson method stands out as a powerful iterative approach for root find-
ing (Ypma, 1995).

Research efforts persist in exploring hybrid methods, parallelized tech-
niques, and symbolic and numerical hybrids, all aimed at enhancing effi-
ciency, convergence, robustness, and global optimization. Physical analogies
have long been important in numerical analysis, with simulated annealing as
a paradigmatic example. Can root-finding also be phrased in a physically
motivated setting?

This paper is organized as follows: In Section 2, we provide a physical
perspective on the Newton-Raphson method, highlighting its limitations and
proposing solutions. Section 3 delves into the development of a parameter-
ized variant of the Newton-Raphson method, elucidating its iterative imple-
mentation and demonstrating superior convergence and robustness through
practical examples. Finally, Section 4 explores the connection between the
revised Newton-Raphson method and the Adomian decomposition method,
extending the novel approach to incorporate principles from annealing in
physics for further computational improvement.

2. Physical approach to finding roots

We now rederive the Newton-Raphson method from a novel perspective
from physics, naturally extending it into an enhanced version.

2.1. New perspective of the Newton-Raphson method

Suppose that we have a scalar function f(x) with a single variable x,
aiming to determine a root, xroot, such that f(xroot) = 0. Then, we consider
an integral,

Z ≡
∫

dx exp

[
− 1

2g2
f(x)2

]
, (1)

where g is a scale parameter. This simple representation of f(x) is intended
for clarity, yet it can be readily extended to encompass vector functions
with multiple variables. We provide the mathematical justification for this
form based on cohomological quantum field theory in Appendix A. For any
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function h of x, we expect that in the limit g ↓ 0,

⟨h⟩ ≡ 1

Z

∫
dx h(x) exp

[
− 1

2g2
f(x)2

]
→ h(xroot), (2)

where xroot is a minimum or a root of f, assuming a unique root or a unique
minimum. In particular, the expectation value of h(x) = x itself should be
an estimate of xroot.

The systematic approach to analyzing Eq. (2) in the limit g ↓ 0 is by
using Laplace’s approximation for the integral. In brief, this approximation
requires us to find x∗ such that f(x∗)f ′(x∗) = 0, and then do a Taylor
expansion about x∗, evaluating the integral as an integral over fluctuations
about x∗.

For the purposes of finding roots of f, this is pointless as we have no idea
where the root might be. Attempting to localize the integral at an arbitrary
specific value x0 using a Taylor expansion leads to

Z ≡
∫

dx exp

[
− 1

2g2

(
f(x0) + f ′(x0)(x− x0) + . . .

)2
]
. (3)

Defining a fluctuation variable δ ≡ x− x0 with f0 ≡ f(x0) and f ′
0 ≡ f ′(x0),

Z =

∫
dδ exp

[
− 1

2g2

(
f0 + f ′

0δ + . . .

)2
]
. (4)

Then, we can find a better stationary point by varying

1

2g2

[
f0f

′
0δ +

1

2
(f ′

0δ)
2

]
, (5)

which is stationary when
δ = −f0/f

′
0. (6)

Since (up to higher order derivatives) this defines the expectation value of δ,
it follows that the estimate for the root of f given by this is

xroot ≈ ⟨x⟩ = x0 − f0/f
′
0, (7)

which is the Newton-Raphson update.
As the basic assumption of the Laplace approximation is that the initial

starting point is a stationary point of f 2 so that the expectation value of
fluctuations vanishes, this attempt to expand the integral about an arbitrary
value x0 tells us that for a consistent Laplace approximation, we need to
replace x0 → x0 − f0/f

′
0, and start over.
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2.2. Inconsistency in the Newton-Raphson method

Laplace’s approximation holds true only when we expand around a sta-
tionary point. As noted, the presence of a non-zero right-hand side in Eq. (6)
indicates that this condition does not hold for arbitrary x0. However, there
is another problem with our approach. We assumed that the linear approx-
imation was actually solving the equation of interest, namely f(xroot) = 0,
but all we really solved was

fL(x) ≡ f0 + f ′
0(x− x0) = 0. (8)

This becomes apparent when we substitute the value x0 → x0+δ into Eq. (4),
as the term f 2

0 /2g
2 also undergoes modification, although it did not con-

tribute to the variational equation, Eq. (5). Only if the corrections to Eq. (6)
are of order g and higher with δ = −f0/f

′
0 = O(g) and f

′′
0 ≡ f

′′
(x0),

f(x0 + δ) ≈ f0 + f ′
0δ +

1

2
f

′′

0 δ
2 = O(g2), (9)

which is higher order in g. This result implies that the Laplace approx-
imation is näıvely self-consistent. However, it is important to note that
f0/f

′
0 = O(g) ⇔ f0/g = O(f ′

0). For an arbitrarily chosen point x0, there is no
assurance of such a relationship between f0 and f ′

0, as g must be as small as
possible for the Laplace approximation to be valid. Hence, we deduce that
the genuine expansion parameter is f0/g, and Eq. (6) must be amended.

One approach to addressing both problems at the same time is to seek
an enhanced integrand, often referred to as an effective action in analogous
contexts within physics. Typically, such an effective integrand is computed
by taking short distance scale fluctuations into account, leading to an inte-
grand governing longer distance fluctuations but necessarily dependent on g.
For instance, Lepage and Mackenzie (1993) demonstrated the reordering of
strong-coupling terms to derive an improved effective action in lattice gauge
theory. However, in our scenario, where only a single integral is involved,
such a strategy cannot be directly applied. Nonetheless, we can explore the
possibility of identifying a conceptually similar effective equation to refine
the Laplace approximation, particularly in cases where the Taylor expansion
employed to derive Eq. (6) becomes invalid.

f0/f
′
0 has the dimensions of length so fluctuations about x0 are naturally

considered big or small relative to this length scale. Two clues towards finding
such an effective variant of Eq. (6) are the following:
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• When an exact stationary point for the Laplace approximation is not
used, the leading correction to the logarithm of the integral is singular
in a power of g.

• As mentioned above, the term f(x0)
2/2g2, which did not contribute

to Eq. (6), becomes influential in determining the next approximate
stationary point of the Laplace approximation.

The consequences of f0/f
′
0 not being small can be estimated readily. Consider

the next term in the Taylor expansion,

f(x0 + δ) = f0 + f ′
0δ +

1

2

f
′′
0

f ′
0
2 (f

′
0δ)

2. (10)

Using this equation, we vary f(x0+δ)2/2g2 with respect to the dimensionless
variable ∆ ≡ f ′

0δ/g. Note the power of g in this definition, included so that
the condition for validity of the Laplace expansion becomes ∆ ≪ 1. The
variation gives (

1

g
f0 +∆+

1

2

f
′′
0

f ′
0
2 g∆

2

)(
1 +

f
′′
A

f ′
0
2 g∆

)
. (11)

Ignoring the second derivative, this implies ∆ = −f0/g. This is the standard
Newton-Raphson update. For the validity of the Laplace approximation,
∆ ≪ 1, so we see again that f0/g is the effective expansion parameter.
However, if we include the second derivative terms and estimate ∆ from the
resulting quadratic equation, we find that

∆ ≈ −1

g
f0−

1

2g
f 2
0

f
′′
0

f ′
0
2 , (12)

which implies that including nonlinearities, with higher derivative terms in
the function f for example, cannot be accommodated in the Laplace approx-
imation for arbitrarily small f0/g in a consistent manner.

2.3. Correcting the Newton-Raphson method

Given the inconsistency in the Newton-Raphson method, an improved
effective version of Eq. (12) is needed that gives a consistent order by order
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expansion in f0/g, but still gives exactly the same formal stationary point
equation for ∆. We begin with a clue by observing

1

g2
f(x0 − f0/f

′
0) ≈

1

2

f 2
0

g2
f

′′
0

f ′
0
2 ∝

(
f0
g

)2

. (13)

This motivates us to formulate an effective stationary point equation,

∆ = −1

g
f0 −

1

g2
f(x0 + g∆/f ′

0) ≈ −1

g
f0 −

1

g2
f(x0 − f0/f

′
0) + . . . . (14)

The presence of the second nonlinear term with the lower power of g now
becomes influential in determining the consistency of the Laplace approxi-
mation, a role absent in the contribution of the term f(x0)

2/2g2 in Eq. (6).
Another insight into the lower power of g is that as g increases, f0/g dimin-
ishes, aligning with the strong coupling limit in physics parlance (Svaiter,
2005), consequently reducing the impact of the additional term in Eq. (14).
This term which becomes more important as g ↓ 0 is enforcing the initial ul-
tralocal exact equation: f(x) = 0. The original Newton-Raphson linear term
is more important in the strong coupling limit and because it incorporates
the derivative of f, and not just the value of f, it corresponds to a ‘hopping
approximation’ to the actual equation of motion. In the Newton-Raphson
scenario, the Laplace approximation necessitates further corrections beyond
the linear expansion of f(x)2/2g2 in integral evaluation. Hence, the inclusion
of the additional term with the lower power aims to balance the update of
the stationary point between the weak and strong coupling evaluations of the
integral.

To see that the power of g is now exactly correct in a formal expansion,
we use the linear Taylor expansion and get

1

g2
f(x0 + g∆/f ′

0) ≈
1

g2
(f0 + g∆) (15)

and inserting this expression back into Eq. (14), we get

∆ = −1

g

(
1 +

1

g

)
f0 −

1

g
∆ ⇔ ∆ = −1

g
f0. (16)

In other words, the effective equation of motion, when g is small, recapitu-
lates Eq. (6). Finally, we accomplish both objectives of (i) having a leading
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correction singular in a power of g and (ii) ensuring the term f(x0)
2/2g2 plays

a significant role in the Laplace approximation. By substituting ∆ = f ′
0δ/g

with δ = x − x0, the effective stationary point equation of Eq. (14) can be
expressed as follows:

1

g
f(x) + f0 + f ′

0(x− x0) = 0. (17)

This stationary equation can also be understood more intuitively. Con-
sider the modified form of the partition function in Eq. (4) as follows:

Z =

∫
dx exp

[
− 1

2g2

(
αf(x) + (1− α)fL(x)

)2
]
, (18)

where fL(x) ≡ f0 + f ′
0(x − x0) represents the linear Taylor approximation

of f(x) at x = x0. This interpolation between f(x) and fL(x) encapsulates
three essential properties:

• Setting α = 1 recovers the original partition function.

• It closely resembles the original partition function when fL(x) ≈ f(x)
is a valid approximation.

• The term αf(x) serves as a “tadpole” that diminishes as x approaches
xroot.

With a few algebraic manipulations and redefined parameters in Eq. (18),
we obtain

Z =

∫
dx exp

[
− 1

2g̃2

(
α̃f(x) + fL(x)

)2
]
, (19)

where g̃ ≡ g(1−α) and α̃ = α/(1−α). Subsequently, the stationary equation
leads to:

α̃f(x) + f0 + f ′
0(x− x0) = 0. (20)

Aside from coefficient differences, this equation mirrors Eq. (17). As we
will demonstrate, the coefficient acts as a control parameter, rendering this
distinction insignificant.
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Figure 1: Improved convergence to roots: Comparison between Newton-Raphson method
and the revised method. The Newton-Raphson method progresses from an initial point
x0 to x1, determined as the solution of fL(x1) = f0+ f ′

0(x1−x0) = 0, whereas the revised
method advances x0 to x(β), found as the solution of βf(x) + fL(x). The separation
|x(β)− x0| adjusts, either increasing or decreasing, to enhance convergence towards xroot,
contingent upon the relationship between f(x(β)) and f0: (a) when they share the same
sign, or (b) when they have opposite signs.

3. Iterative root-finding

The revised stationary Eq. (17) serves as an iterative root-finding method.
This section elucidates its enhanced convergence, robustness, and interpre-
tation as an iterative algorithm.

3.1. Iterative algorithm

Defining β ≡ 1/g, we rewrite the stationary Eq. (17):

βf(x(β)) + f0 + f ′
0(x(β)− x0) = 0 (21)

to find x(β), in place of Eq. (6). Once we get to Eq. (21), we can completely
ignore the origins of this equation so the numerical coefficient that we have
not determined can simply be absorbed into the definition of the abstract
parameter β.

Here, we consider intuitively how this new approach works. Equation (21)
incorporates the complete function f, not just the linear Taylor expansion
approximation and therefore makes sense even when δ = x(β) − x0 is not
small since, for β large, it dominates the other terms in Eq. (21) to move δ
towards xroot, as we show geometrically below. If f(x(β)) and f0 have the

8



same sign, increasing β will result in |x(β)− x0| becoming larger, while the
opposite sign will lead to a smaller separation between x0 and x(β). This will
help the iterative process (x0 → x(β)) converge faster (Fig. 1). For any value
β ̸= −1, if there is a fixed point, x∗, with a non-singular gradient, we have

(β + 1)f(x∗) = 0 ⇔ f(x∗) = 0. (22)

The intermediate values of x(β) may vary with β, potentially causing shifts
in the basins of attraction as β changes (refer to Section 3.5 for further
elucidation). Nonetheless, the fixed point remains a root of f , unaffected
by β, a fact that can also be demonstrated through cohomological quantum
field theory (Appendix A).

We now explicitly present the revised iterative method as an alternative
to the Newton-Raphson method. Using Eq. (21), let x(β) be defined as the
solution of

x(β) = N(x0)−
βf(x(β))

f ′
0

(23)

with N(x) ≡ x − f(x)/f ′(x). At a fixed point, f(x∗) = 0, all β dependence
vanishes. As we expect based on our discussion above, the fixed point is a
root of f : x∗ = xroot. At β = 0, the infinite temperature limit, this is clearly
the Newton-Raphson iteration, and does not have any x(β) on the right hand
side. For β > 0, it could also be solved by inserting this definition of x(β)
into the right hand side repeatedly. At the first order, we get

x(β) = N(x0)−
βf(N(x0))

f ′
0

. (24)

A fixed point of this equation does not immediately imply that the fixed
point is a root of f , because as it stands this is not the original Eq. (23). A
fixed point here implies only that f(x∗)+βf(N(x∗)) = 0. Now this equation
is satisfied when x∗ is a root, xroot, of f, but the reverse implication is not
necessarily true, unless this continues to hold as we vary β continuously.

Let us rewrite the first order equation as

x(β) = x1 − βf1/f
′
0

= (1− β)
(
x0 − f0/f

′
0

)
+ βx1 − βf1/f

′
0

= x̃0 − f̃0/f
′
0, (25)

where we denote x1 ≡ N(x0) = x0 − f0/f
′
0 and f1 ≡ f(x1), and define

x̃0 ≡ (1− β)x0 + βx1 and f̃0 ≡ (1− β)f0 + βf1. Comparing this update with
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Figure 2: Improved iteration to roots: Comparison between Newton-Raphson method and
the revised method. In the Newton-Raphson method, the progression from an initial point
x0 to x1 = x0 − f0/f

′
0 with a slope f ′

0. The revised method can be interpreted to provide
an interpolated point, (x̃0, f̃0), between (x0, f0) and (x1, f1), where fi ≡ f(xi). Then, the
next iterated point x̃1 is determined by a linear function crossing (x̃0, f̃0) with the same
slope f ′

0. The convergence behavior depends on the relationship between f0 and f1: (a)
when they share the same sign, or (b) when they have opposite signs.

the Newton-Raphson form in Fig. 2, we see that the function pair (x0, f0)
determining the next estimate is replaced in our approach with the pair
(x̃0, f̃0), but with the same slope, f ′

0. In other words, the line going from
(x0, f0) to (x1, 0) with slope f ′

0 is translated to a parallel line going from
(x̃0, f̃0), to (x(β), 0) to find the next estimate of the root, x(β). Geometrically,
this makes the next step in the iteration larger or smaller depending on the
relative signs of f0 and f(x(β)), as discussed above.

Were we to repeat this process, we would get

x(β) = N(x0)−
βf

[
N(x0)− βf(N(x0))

f ′
0

]
f ′
0

. (26)

and so on. Each order in β has one more function evaluation and is higher
order in β. It turns out that either of these definitions of iterative determi-
nation of x(β) gives exactly the same fixed point structure, which exhibits a
fractal nature. A fixed point value that is a fixed point of both these versions
will in fact be a root. Henceforth, we proceed with the simplest choice:

xn+1 = N(xn)−
βf(N(xn))

f ′(xn)
. (27)
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3.2. Convergence

We demonstrate that there is actually a benefit of this β dependent re-
formulation in terms of root-finding performance. The Newton-Raphson
quadratic convergence, close to a root, xroot, is demonstrated by Taylor ex-
panding

f(x) ≈ f ′(xroot)(x− xroot) +
1

2
f

′′
(xroot)(x− xroot)

2. (28)

Then inserting this Taylor approximation into the Newton-Raphson update
of xn+1 = N(xn), we have the expected quadratic convergence

xn+1 − xroot ≈
1

2

f
′′
(xroot)

f ′(xroot) + f ′′(xroot)(xn − xroot)
(xn − xroot)

2. (29)

Similarly, for our β dependent update, we get

xn+1 − xroot ≈
1− β

2

f
′′
(xroot)

f ′(xroot)
(xn − xroot)

2, (30)

exactly in line with the intuition we gave above. Of course, the number of
iterations is never zero so, more precisely, this only shows that the conver-
gence at β = 1 is faster than quadratic. See Homeier (2004, 2005) for the
significance of cubic convergence. Here we see that for problems where the
first derivative at the root is finite, we should use the largest value of β for
which a fixed point exists. However, as we shall show explicitly in the case
of f(x) = x1/3, a fixed point with β = 1 may not exist.

We conducted numerical validation to assess the convergence order across
a range of nonlinear functions. The convergence order was estimated using
the following formula:

qn =
log(|xn+1 − xn|/|xn − xn−1|)
log(|xn − xn−1|/|xn−1 − xn−2|)

. (31)

In Table 1, we present the average of qn as xn approached the roots of the
functions. As expected, we observed quadratic convergence for Newton-
Raphson and cubic convergence for β = 1. Notably, we encountered anoma-
lous convergence in the case of the function f6(x) = sin(x), which exhibits
vanishing curvature with f

′′
6 (xroot) = 0. Additionally, we noted linear con-

vergence near a doubly degenerate real root for f5(x).
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Function β = 0 β = 1
f1(x) = (x2 − 1)(x2 + 1) 2.00 3.01
f2(x) = x3 − 1 2.00 3.01
f3(x) = x12 − 1 2.00 2.98
f4(x) = (x2 − 4)(x+ 1.5)(x− 0.5) 2.00 2.97
f5(x) = (x+ 2)(x+ 1.5)2(x− 0.5)(x− 2) 2.00 2.99
f6(x) = sin(x) 2.99 5.05
f7(x) = (x− 1)3 + 4(x− 1)2 − 10 2.00 3.01
f8(x) = sin(x− 1.4)2 − (x− 1.4)2 + 1 2.00 3.01
f9(x) = x2 − ex − 3x+ 2 2.00 2.98
f10(x) = cos(x− 3/4)− x+ 3/4 2.00 3.02
f11(x) = (x+ 1)3 − 1 2.00 3.01
f12(x) = (x− 2)3 − 10 2.00 3.02

f13(x) = (x+ 5/4) e(x+5/4)2 − sin(x+ 5/4)2

+3 cos(x+ 5/4) + 5 2.00 3.02

f14(x) = e(x−3)2+7(x−3)−30 − 1 1.97 2.98
f15(x) = x+ x2 sin(2/x) 2.00 3.00

Table 1: Estimation of the convergence order near the roots of various nonlinear functions
for β = 0 and β = 1. The estimator qn = log(|xn+1 − xn|/|xn − xn−1|)/ log(|xn −
xn−1|/|xn−1 − xn−2|) converges as xn approaches a root. For β ̸= 1, the convergence is
of order 2 for all the functions tested (except for the function f6(x)). The estimation has
been averaged over 5000 trajectories with random starting points within a radius of 0.1
from a known root.
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3.3. Cube root function

The cube root is an analytically solvable problem which is not amenable to
the Newton-Raphson algorithm. In fact, for f(x) = x1/3, we get f(x)/f ′(x) =
3x. It follows that

xn+1 = N(xn) = −2xn, (32)

which clearly does not converge. For our β dependent update, Eq. (27), we
have N(x) = −2x, and so f(N(x))/f ′(x) = (−2x)1/3/(x−2/3/3) = −21/3 · 3x.
Therefore, Equation (27) implies

xn+1 = xn

(
−2 + 3 · 21/3β

)
. (33)

For convergence we must have

| − 2 + 3 · 21/3β| < 1, (34)

which requires
1

3 · 21/3
< β <

1

21/3
. (35)

Moreover, the swiftest convergence occurs at βmin = 22/3/3. It is worth not-
ing that β = 0 (corresponding to the Newton-Raphson method) and β = 1
(associated with Adomian’s method, which will be further discussed in the
subsequent section) do not fall within the range of convergent values. These
observations regarding the strong-coupling approach to root determination
of the cube root function are empirically validated in one of the examples.
Remarkably, by tuning β to this particular value, convergence becomes seem-
ingly independent of the initial point in this instance. This surprising con-
vergence is indicative of a more interesting role for β in the size of the basins
of attraction to a given root as we shall show in Section 3.5.

3.4. Numerical results

We now explicitly compare the convergence rates of the revised Newton-
Raphson method. Specifically, the original Newton-Raphson method corre-
sponds to the case of β = 0 in the parameterized Newton-Raphson method.
To conduct the comparison, we tested various types of nonlinear functions in
Table 1, some of which were adopted from Weerakoon and Fernando (2000).
The new iterative method demonstrates a reduction in the average compu-
tational cost due to fewer iterations required (Fig. 3).
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(a) (b)

(c) (d)

Figure 3: Computational gains of the parameterized Newton-Raphson method. (a) The
average number of iterations for convergence is estimated with varying convergence mar-
gins ε in |xn − xroot| < ε. The function f7(x) = (x − 1)3 + 4(x − 1)2 − 10, listed in
Table 1, is considered for root-finding iterations with β = 0 or 1. (b) Computational
gains, η ≡ 1−⟨Niter(β = 1)⟩/⟨Niter(β = 0)⟩, for the fifteen nonlinear functions in Table 1.
Here the convergence margin ε = 10−10 is used. (c) Average number of iterations depend-
ing on β for f7(x). (d) Computational gains η for the fifteen functions with varying β.
Functions with positive gains are colored in green, whereas functions with negative gains
are colored in red.

In our analysis, we established a convergence criterion to count the num-
ber of iterations needed for convergence, defined as |xn−xroot| < ε for a given
root xroot with a margin ε. Figure 3(a) displays the number of iterations,
Niter, required for the function f7(x) to converge to its roots under various ε
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values. Regardless of the convergence margin ε, our method (β = 1) consis-
tently outperforms the original Newton-Raphson method (β = 0). For small
ε, our method demonstrates faster convergence behavior, characterized by
the cubic rather than quadratic convergence discussed in Section 3.2.

To systematically compare performace, we quantify the computational
gain as follows:

η ≡ 1− ⟨Niter(β = 1)⟩
⟨Niter(β = 0)⟩

, (36)

where ⟨Niter(β)⟩ represents the average number of iterations for a fixed β
and ε. We then compared the computational gains η for the fifteen nonlin-
ear functions listed in Table 1. With a convergence margin of ε = 10−10,
our method demonstrates significant computational gains across the fifteen
functions, with only three functions exhibiting negative gains. We will ad-
dress strategies to mitigate this discrepancy by further tuning β later in
Section 4.2.

Since the parameterized Newton-Raphson method can take any value for
β, including β = 0 or 1, we further examine the dependence of convergence
on β. As illustrated in Fig. 3(c), the average number of iterations decreases
monotonically as β changes from 0 to 1, although this trend is accompanied
by large dispersion resulting from different initial points x0 for iterations. We
also explore the computational gains associated with different values of β.
While the gains generally show a slight increase with β, this trend is neither
monotonic nor universal. The green curves represent functions with positive
gains, while functions with negative gains are depicted in red. Two of the
red curves extend off the chart due to anomalous root-search behavior. It is
worth noting that the rightmost endpoints at β = 1 correspond to the gains
observed in Fig. 3(b).

3.5. Basin entropy

For nonlinear functions with multiple roots, different initial points x0 ap-
proach different roots or attractors. Consequently, the set of initial points is
defined as the basin of an attractor. It is well known that the basin of attrac-
tors exhibits a fractal structure for the Newton-Raphson method. Here, we
investigate whether our iteration method alters the Newton-Raphson basin
of attractors. A remarkable characteristic of the basins resulting from the
numerical method is the intricate nature of the boundary between them. For
initial conditions located on this boundary, the uncertainty in the final root
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is maximized. This aspect could be perceived as a drawback of the method,
as a “poor” initial condition might result in convergence to any root of the
function. Nonetheless, for functions with unknown roots, our interest lies
in identifying all roots in principle. As we will explore in the next section,
this characteristic can also contribute to an enhancement in the speed of
convergence.

We investigate the impact of our method on the boundaries of the basins
generated by iterations from initial points. Upon initial inspection of the
basins for the function f2(x) = x3 − 1, a significant alteration in the bound-
ary between β = 0 and β = 1 becomes evident (Fig.4(a)). Formally, in
the complex plane, this boundary constitutes the set of points that never
converge to a root and forms a Julia set (Falconer, 2004). Furthermore, the
example illustrated in Fig. 4(a) exhibits the property of Wada, wherein a
single boundary simultaneously separates three basins. This property entails
a unique form of unpredictability, as a point on the boundary can ultimately
converge to any of the roots. Similar phenomena have been observed on
boundaries for other modified Newton methods dependent on parameters, as
discussed in Susanto and Karjanto (2009), where the modifications introduce
non-trivial transformations of the boundaries. Here, we provide quantitative
insight into these transformations.

The unpredictability of the final root for initial conditions near the bound-
ary can be quantified using the basin entropy (Daza et al., 2016). This metric
assesses the local entropy within boxes of side length l by initially estimating
the probability pi of each final attractor inside the box. With these esti-
mated probabilities, we compute the Gibbs (or Shannon) entropy of the box:
Sb = −

∑
pi log pi. The basin entropy is then calculated as the average of

the box entropy over a covering of the portion of the phase space studied.
In Fig. 4, we depict the evolution of the basin entropy for three functions

across the range of β values from 0 to 1. It is evident that unpredictability
consistently increases as β increases. While we cannot offer a rigorous expla-
nation for this phenomenon, we can provide heuristic arguments regarding
the emergence of new fractal structures in the phase space. One mechanism
contributing to the formation of fractal boundaries is the stretching and fold-
ing action of small areas. The roots of the derivative f ′(x) serve as sources of
instabilities in the Newton-Raphson method, as initial conditions near these
points can be dramatically dispersed. Subsequent iterations tend to bring
these points back towards one of the roots. Small variations in the initial
conditions near these roots can result in convergence to any of the roots,
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Figure 4: Newton fractals and basin entropy. Colors represent different basins of attractors
(roots). In particular, the colors in the basins of attraction have been shaded such that
darker colors correspond to longer iterations to converge to roots. The basins of three
functions are computed for β = 0 and β = 1: (a) f2(x) = x3 − 1, (b) f7(x) = (x − 1)3 +
4(x − 1)2 − 10, and (c) f15(x) = x + x2 sin(2/x). The corresponding basin entropy Sb

quantifies the unpredictability of roots depending on the values of β. All basin entropy
is computed for a grid of 3000 × 3000 initial conditions with a covering of boxes of size
20× 20.

characteristic of chaotic behavior.
We consider our new iterative method, expressed as xn+1 = N(xn) −

βf(N(xn))/f
′(xn), where N(x) = x− f(x)/f ′(x). When close to a singular
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xs, where f
′(xs) = 0, we can approximate a linear relation, f ′(x) ≃ c2δx with

c2 ≡ f
′′
(xs) and δx ≡ x−xs. Consequently, N(x) ≃ −c0/δx with c0 ≡ f(xs).

The amplitude of the next iteration, given by

xn+1 ≃ − c0
δxn

− βf(−c0/δxn)

c2δxn

, (37)

depends on the proximity to the singularity, δxn = xn − xs, and the value of
f(−c0/δxn). Generally, uncertainty increases near these points due to these
significant jumps. For complex functions, new structures emerge near the
singularity, visible as the blobs in Figs. 4(a), (b), and (c) for β = 1.

This rise in basin entropy signifies an enhanced mixing property in the
phase space, facilitating more thorough exploration of roots. The algorithm
can traverse a broader range of regions in the phase space before settling on a
local solution. A recent study implemented a deflated version of the Newton-
Raphson method (Cisternas and Concha, 2024), aiming to reveal additional
roots of a function by avoiding convergence to already known solutions. Sim-
ilarly, our parameterized Newton-Raphson method enhances root searching
efficiency in phase space due to the fractal nature of the boundary.

4. Link to the Adomian method

The self-consistent stationary Eq. (23) is reminiscent of the Adomian
method (Adomian, 1994; Rach, 2012). Notably, the Adomian method has
previously yielded an enhanced Newton-Raphson approach, corresponding
precisely to the scenario when β = 1 in our formulation. In this section, we
provide an overview of the Adomian method, establish connections between
our approach and the Adomian method, and extend the fixed β method to
an annealing approach with varying β.

4.1. Adomian method

We first give an extensive introduction to the Adomian method because
it may not be familiar to all readers. The canonical form for employing the
Adomian decomposition is given by

a = C + F (a), (38)
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where C is a constant and F (a) is a nonlinear function of the variable a.
Utilizing a series solution approach, we express:

a = a0 + a1 + a2 + · · · ,
F (a) = A0(a0) + A1(a0, a1) + A2(a0, a1, a2) + · · · . (39)

Equating terms between the two sides in Eq. (38) requires explicit choices
because there is no formal expansion parameter in the series. With specific
choices, this leads to the following relationships:

a0 = C,

a1 = A0(a0),

a2 = A1(a0, a1),

· · · (40)

where An represents the Adomian polynomial:

An =
1

n!

[
dn

dβn
F (a0 + βa1 + β2a2 + · · · )

]
β=0

. (41)

Here are a few initial terms:

A0(a0) = F (a0),

A1(a0, a1) = a1F
′(a0). (42)

We emphasize that there is no unambiguous way to compare terms between
the left and right hand sides of Eq. (40): For example,

a0 = C − ϵ,

a1 = ϵ− ϵ2 + A0(a0),

a2 = ϵ2 − ϵ3 + A1(a0, a1),

· · · (43)

for an arbitrary ϵ with |ϵ| < 1, also solves Eq. (38). Results on convergence
have been proved with hypotheses on the size of derivatives and it has been
noted that the decomposition must be chosen appropriately (Abbaoui and
Cherruault, 1994), as there is no canonical choice for the matching of terms.

Let us apply the Adomian decomposition to the root-finding problem,
f(x) = 0. Utilizing a linear approximation of f(x) in proximity to x gives:

f(x− a) = f(x)− af ′(x). (44)
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Rearranging this equation into the canonical form for Adomian decomposi-
tion yields:

a =
f(x)

f ′(x)︸ ︷︷ ︸
C

−f(x− a)

f ′(x)︸ ︷︷ ︸
F (a)

. (45)

By focusing solely on the zero-th order term, a0 = C = f(x)/f ′(x), we can
approximate a ≈ a0. Subsequently, with xn+1 = xn − a, this simplifies to:

xn+1 = xn −
f(xn)

f ′(xn)
, (46)

which is equivalent to the Newton-Raphson method.
Chun (2005) has expanded the analysis by considering an additional step:

f(x− a) = f(x)− af ′(x) +
1

2
a2f

′′
(x)︸ ︷︷ ︸

g(x,a)

. (47)

Once again, rearranging this equation, assuming f(x−a) = 0 at x−a, allows
it to be expressed in the canonical form for Adomian decomposition:

a =
f(x)

f ′(x)︸ ︷︷ ︸
C

+
g(x, a)

f ′(x)︸ ︷︷ ︸
F (a)

. (48)

This decomposition is certainly not unique (see Abbasbandy (2003) for an
alternative decomposition). This time, considering a ≈ a0+a1 up to the first
order, the Adomian decomposition provides:

a0 = C =
f(x)

f ′(x)
, (49)

a1 = F (a0) =
g(x, a0)

f ′(x)
=

f(x− a0)

f ′(x)
, (50)

where we utilized g(x, a0) = f(x− a0)− f(x) + a0f
′(x) = f(x− a0). Conse-

quently,

a ≈ a0 + a1 =
f(x)

f ′(x)
+

f(x− a0)

f ′(x)
. (51)
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Given that xn+1 = xn − a, this leads to

xn+1 = xn −
f(xn)

f ′(xn)
−

f

(
xn − f(xn)

f ′(xn)

)
f ′(xn)

= N(xn)−
f(N(xn))

f ′(xn)
, (52)

which corresponds to Eq. (26) in our formulation with β = 1.
The Adomian polynomial approach, when truncated to a specific number

of terms in ai, i ≤ m, offers a pathway to derive alternative root-finding it-
erations. Although the higher-order forms involve algebraic complexities,
these truncations result in progressively higher orders of convergence for
well-behaved functions. This observation led to Chun’s conjecture (Chun,
2005) that such truncations exhibit convergence orderm+2. Therefore, when
m = 0, it corresponds to the Newton-Raphson iteration, which demonstrates
quadratic convergence.

Let us revisit our self-consistent stationary Eq. (23):

x(β) = N(x0)︸ ︷︷ ︸
C

−βf(x(β))

f ′
0︸ ︷︷ ︸

F (x(β))

. (53)

This equation adheres to the canonical form of the Adomian method. One
notable distinction is the inclusion of the parameter β. In the limit of small
β, the so-called “high-temperature” limit, the second term can be regarded
as a perturbation. We now explore the high-temperature limit, and consider
a series solution:

x(β) = a0 + βa1 + β2a2 + . . . . (54)

Here, the nonlinear function F (x(β)) can also be expressed using the Ado-
mian polynomial in Eq. (41). When we truncate x(β) = a0 + βa1 to the first
order of β, we obtain:

a0 = N(x0)

a1 = −f(a0)

f ′
0

. (55)

This yields:

x(β) = a0 + βa1 = N(x0)−
βf(N(x0))

f ′
0

, (56)
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which corresponds to Eq. (24). Hence, our formulation can be interpreted
within the context of the Adomian method. However, the inclusion of the
auxiliary parameter β holds significant importance in the Adomian decom-
position. It ensures an unambiguous comparison between series and the
Adomian polynomial, providing an exact term-by-term mapping with cor-
rect orders of β. We note that there is no need to use Eq. (39) at all as we
can work directly with x(β) in our iteration, Eq. (56). Also noteworthy is
the fact that as we directly find x(β) fixed points, no derivatives of f beyond
the first are ever explicitly required in the iteration.

4.2. Annealing

Indeed, the physical intuition one gains in thinking of Eq. (53) as a high-
temperature expansion also suggests that one could anneal the temperature
as one iterates and improve the performance of the root-finding algorithm.
In our physical analogy, T ↑ ↔ β ↓ and β = 0 corresponds to the standard
Newton-Raphson update e.g. in Eq. (26). With the high temperature phys-
ical analogy in mind, it is natural to think of the original Newton-Raphson
update as the high temperature limit (β = 0) with the hopping term as
the relevant term because only the linear Taylor expansion of the function
is used, whereas the Adomian update is the low temperature limit (β = 1)
balancing the exact minimum encoded in the β dependent term with the
linear hopping term. As the temperature is decreased, the importance of the
ultralocal exact root should increase. While exploration over as broad an
area as possible is essential at the beginning, focusing on the root location
by gradually decreasing the temperature should help in getting to the actual
root. In fact, if we increase the inverse temperature from β = 0, which cor-
responds to Newton-Raphson, to a final value β after even one step, we find
that the total number of iterations needed decreases and the dependence of
the number of iterations on the final value of β becomes much smoother as
well. However, if β is ramped up too gradually, there is no benefit to be had
for most of the test functions we considered.

In the previous section we have shown that the singularity of the deriva-
tive are a source of instability. Initial conditions starting close to these points
have very long orbits before reaching a root. A possible way of attenuating
these jumps is to reduce the value of β for initial conditions close to the
singularity:

β(f ′(x)) = 1− 1

1 + γ|f ′(x)|k
=

γ|f ′(x)|k

1 + γ|f ′(x)|k
. (57)
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The behavior of the algorithm is the same as the classical Newton algorithm
at the singularity but has the benefit of the new method for all the successive
iterations.

Let us now derive another annealing schedule from first principles. If
we define our new update as xn+1 = x̂n+1 − βf̂n+1/f

′
n, where x̂n+1 is the

Newton-Raphson update, f ′
n ≡ f ′(xn), f̂n+1 ≡ f(x̂n+1), and f̂ ′

n+1 ≡ f ′(x̂n+1),
then

f(xn+1)
2 ≈

[
f̂n+1 − β

f̂ ′
n+1f̂n+1

f ′
n

]2

, (58)

and we have

f(xn+1)
2 ≤ f̂ 2

n+1, if

∣∣∣∣∣1− β
f̂ ′
n+1

f ′
n

∣∣∣∣∣ ≤ 1. (59)

In other words, our update makes f 2(xn+1) smaller than the Newton-Raphson
update when βf̂ ′

n+1/f
′
n is small enough to justify the Taylor expansion of f

around x̂n+1. Now suppose we take

β ≡ 2f ′
n
2

f̂ ′2
n+1 + f ′

n
2
≥ 0, (60)

and then,

1− β
f̂ ′
n+1

f ′
n

=

(
f̂ ′
n+1 − f ′

n

)2

f̂ ′2
n+1 + f ′

n
2

. (61)

Therefore, the annealing schedule in Eq. (60) suggests an approach to setting
β depending on the derivatives of the function at the previous value of xn

and the Newton-Raphson update value x̂n+1. Equation (60) has appropriate
limits of 1 or 0 when f ′

n is large or small depending on the value of f̂ ′
n+1 of

course. When f ′
n is large and xn is proximate to roots, we expect the two

derivative values are close, so β ≈ 1 with |1 − βf̂ ′
n+1/f

′
n| ≤ 1. When it is

small at the singularity, however, β ≈ 0 with a finite derivative value f̂ ′
n+1.

Table 2 summarizes the results for fixed values of β, and for the two
annealing schedules: β1 as defined in Eq.(57) and β2 as defined in Eq.(60).
Both annealing schedules enhance the effectiveness of the β value near roots.
The mean number of iterations has been computed for a regularly spaced
grid and the best results have been highlighted in green and the worst in
red. There is no function for which the Newton-Raphson algorithm performs
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β = 0. β = 1. β1 β2

f1(x) = (x2 − 1)(x2 + 1) 10.6 15.2 9.6 6.4
f2(x) = x3 − 1 7.6 7.4 7.2 4.8
f3(x) = x12 − 1 29.7 68.8 23.3 19.6
f4(x) = (x2 − 4)(x+ 1.5)(x− 0.5) 6.4 5.1 5.9 4.2
f5(x) = (x+2)(x+1.5)2(x− 0.5)(x− 2) 22.1 16.4 21.3 14.1
f6(x) = sin(x) 5.3 4.5 5.3 3.5
f7(x) = (x− 1)3 + 4(x− 1)2 − 10 8.2 7.1 7.9 5.2
f8(x) = sin(x−14/10)2−(x−14/10)2+1 8.1 7.0 7.5 5.5
f9(x) = x2 − ex − 3x+ 2 4.8 3.9 4.8 3.2
f10(x) = cos(x− 3/4)− x+ 3/4 7.6 5.8 7.0 4.8
f11(x) = (x+ 1)3 − 1 7.5 7.1 7.1 4.8
f12(x) = (x− 2)3 − 10 7.8 8.1 6.4 4.8

f13(x) = (x + 5/4) e(x+5/4)2 − sin(x +
5/4)2 + 3 cos(x+ 5/4) + 5

12.1 9.3 7.5 7.7

f14(x) = e(x−3)2+7(x−3)−30 − 1 39.9 24.5 23.8 26.2
f15(x) = x+ x2 sin(2/x) 9.5 9.1 8.7 7.4

Table 2: Effect of annealing on iterative root finding. Average iteration numbers computed
over a regularly spaced grid with a resolution of 300 × 300. The algorithm terminates
when the iteration is within a convergence margin of ε = 10−10 from the roots. The first
two columns represent iteration numbers with a fixed β coefficient. In the third column,
coefficients γ = 0.1 and k = 6 for Eq. (57) are selected empirically to minimize the number
of iterations across a wide range of functions. The last column contains the results of the
annealing proposed in Eq. (60). In each row, the green color represents the smallest
iteration, while the red color represents the largest iteration for the given functions

better than the two annealing schedules, though it does perform better than
constant β = 1 for two functions with especially high root multiplicity. We
caution that the derived annealing schedule in Eq. (60) does require an ad-
ditional derivative evaluation. In the supplemental Julia scripts available at
https://github.com/awage/RootFinding, computations are provided for
all the standard test functions listed in Table 2.

5. Discussion

Root-finding is a technique that is central to many quantitative science
and engineering problems. This paper has investigated a new root-finding
approach that has the potential to offer several benefits: improved efficiency
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and enhanced numerical stability, broader applicability to complex nonlin-
ear functions that abound in real-world problems, and more thorough in-
vestigation of possible roots because of higher basin entropy, all while not
increasing the order of derivatives needed for application. More fundamen-
tally, the physical picture of the variation in the root basins of attraction as
the temperature is decreased and the cohomological field theory explication
of roots as transcendental cohomology classes are new contributions to the
theoretical underpinnings of numerical analysis and algorithms. We have
just scratched the surface of the applications of this technique, as is evident
from the connection we made to the Adomian method, which has been used
for solving nonlinear, and even stochastic, ordinary and partial differential
equations. This connection implies that our approach could be applied to all
these problem areas as well.

In particular, the homotopy analysis method (HAM) is a well-known
approach to solving nonlinear problems due to Liao (2003), motivated by
topological homotopy theory. HAM unifies the Adomian method and a host
of other numerical methods using an auxiliary parameter that constructs a
homotopy to handle the nonlinear nature of the problem. This so-called
convergence control parameter is then used to show convergence of a series
solution. As HAM can be combined with spectral or Padé approximation
methods, it would be interesting to see if HAM could be combined with our
approach, Eq. (21), to completely avoid a series expansion.

Acknowledgement

V.P. thanks Christopher Kim for helpful discussions. This work was sup-
ported by the Intramural Research Program of the National Institutes of
Health, NIDDK (V.P.), and by the Creative-Pioneering Researchers Program
through Seoul National University, and the National Research Foundation of
Korea (NRF) grant (Grant No. 2022R1A2C1006871) (J.J.)

Appendix A. Topological formulation of root-finding

We formulate a rigorous topological formulation of root-finding to show
that root-finding iterations are explicit representatives of the same cohomol-
ogy class. The derivation below is self-contained but we note that it is an
extension of cohomological quantum field theory (Witten, 1991).
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We introduce two anti-commuting variables, b and c, with the following
properties:

bc = −cb, b2 = 0, c2 = 0, (A.1)

and a Grassmann integration over these variables defined by∫
db1 = 0,

∫
dbb = 1,

∫
dc1 = 0,

∫
dcc = 1,

∫
dbc = 0,

∫
dcb = 0,

(A.2)
extended by linearity and all the standard properties of integration. We also
introduce an anti-commuting derivation, s, (called the BRST operator in the
physics literature) as follows:

sx = c, sc = 0, sb = λ, sλ = 0 (A.3)

where λ is a commuting variable for consistency with the fact that combi-
nations of anti-commuting quantities, in this case s and b, are commuting
quantities. It is trivial to verify that s2 = 0, which implies that s can be used
to define a cohomology theory.

Now we define a gauge fermion depending on a parameter g as follows:

Ψ = b(if(x)− g2λ/2) (A.4)

where f is the function for which we want to find roots. The action of s on
Ψ gives

sΨ = λ(if(x)− g2λ/2)− ibf ′(x)c (A.5)

where the negative sign of the second term arises when the derivation s anti-
commutes past b.

Consider the measure

dµ ≡ dxdλdbdc exp(sΨ)g/
√
2π. (A.6)

which is invariant under the action of s. If we integrate a general function
h(x, c, b, λ) with respect to this measure, the value of the integral will depend
on the parameter g. However, suppose that h satisfies sh = 0. Then a change
in g will lead to a change in the value of the integral of the form

δI =

∫
dµ(−scλ/2)h (A.7)
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but the invariance of the measure under the action of s allows an integration
by parts to give us

δI =

∫
dµ(cλ/2)sh = 0. (A.8)

Thus, for very specific functions that satisfy sh = 0, the value of their integral
does not depend on the parameter g.Moreover, if we change h to h+sk, where
k is an arbitrary function of the variables, we see by the same argument that
the value of the integral of h does not depend on k. Functions that satisfy
sh = 0 are called closed functions and functions that are of the form sk are
called exact functions.

These are the axioms that define a cohomology theory, and therefore
closed functions fall into equivalence classes, defined up to the arbitrary ad-
dition of exact functions.

How is this formal development relevant for finding roots? A formal
Laplace approximation to the measure gives the ‘equations of motion’

xroot : f(xroot) = 0, λ = 0, cf ′(xroot) = 0, f ′(xroot)b = 0. (A.9)

Thus, this measure is localizing at the roots of f. Integrating over λ in

Z =

∫
dµ exp(sΨ) (A.10)

gives

Ẑ =

∫
dxdbdc exp(−f(x)2/2g2 − icf ′(x)b) (A.11)

where we should now expect to use the λ equation of motion to verify that
s2 = 0. The striking thing about this expression is that if we make g small,
we see that any closed function will depend only on the value of x at which
f(x) = 0. Therefore, this formulation of our physical approach exhibits root-
finding as a mathematically rigorous cohomology theory. Any nontrivial
cohomology class in this problem will have to be a transcendental function,
since it is easily demonstrated that the cohomology class of any polynomial
function of the variables is guaranteed to be trivial.

Let us now demonstrate that the cohomology operator s can help us check
if an expression for a root of f(x) is, or is not, g independent. Consider the
formal series

xroot ≡ x− h(x)− h(x− h(x))− . . . (A.12)

27



where we have defined h ≡ f/f ′, and this is simply the series of corrections of
the Newton-Raphson algorithm. We claim that sxroot = 0. This is explicitly
verified as follows:

sxroot = c− f ′(x)

f ′(x)
c+

f(x)

f ′(x)2
c+ ... (A.13)

where the first two terms obviously cancel. This general pattern continues
because s acting on the nth term gives

s(xn − xn−1) =
f(xn−1)

f ′(xn−1)2
sxn−1 − sxn−1. (A.14)

As the previous n − 1 terms sum up precisely to sxn−1 because this is a
telescoping series, we have a cancellation. Since the equation of motion is
f(xroot) = 0, we see that if the series converges, it is a representative of the
cohomology class defined by the root.

In particular, some algebra shows that our β dependent variations on the
representative series also have the same type of telescoping structure:

s(xn − xn−1) =
f(xn−1)

f ′(xn−1)2

[
1 + β

(
f(x̂n−1)

f(xn−1)
− f ′(x̂n−1)

f ′(xn−1)

)]
sxn−1 − sxn−1.

(A.15)
where we have defined x̂n−1 ≡ xn−1 − h(xn−1). Thus, independent of β, this
defines a cohomology class. To see the promised simplification produced by
our choice of coefficient in Eq. (14), a little scrutiny reveals that if the series
is converging, the term f ′(x̂n−1)/f

′(xn−1) → 1, which leads to a cancellation
at β = 1, giving

s(xn − xn−1) =
f(x̂n−1)

f ′(xn−1)2
sxn−1 − sxn−1. (A.16)

As x̂n−1 is the Newton-Raphson iterate of xn−1, this suggests faster conver-
gence, provided of course that the assumptions made in this simplification
are valid. This cohomological explanation also removes any mystery in the
invariance of the roots no matter what value of g we use for approximating
the integral: we simply have to ensure that the expression for the root is a
closed function for the cohomology operator s. We show in section 3.2 that
the faster convergence suggested above can be explicitly demonstrated with
the usual derivation used to show the quadratic convergence of the Newton-
Raphson algorithm.

28



References

Abbaoui, K., Cherruault, Y., 1994. Convergence of Adomian’s method ap-
plied to nonlinear equations. Math. Comput. Model. 20, 69–73. doi:10.
1016/0895-7177(94)00163-4.

Abbasbandy, S., 2003. Improving Newton-Raphson method for nonlinear
equations by modified Adomian decomposition method. Appl. Math. Com-
put. 145, 887–893. doi:10.1016/S0096-3003(03)00282-0.

Adomian, G., 1994. Solving frontier problems of physics: The decomposition
method. Springer Science & Business Media.

Chun, C., 2005. Iterative methods improving Newton’s method by the de-
composition method. Comput. Math. with Appl. 50, 1559–1568. doi:10.
1016/j.camwa.2005.08.022.

Cisternas, J., Concha, A., 2024. Searching nontrivial magnetic equilibria
using the deflated newton method. Chaos, Solitons & Fractals 179, 114468.

Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D., Sanjuán, M.A.,
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