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Abstract. Recognizing animal activities (AAR) holds a crucial role in
monitoring animals’ health and well-being. Additionally, a considerable
audience is keen on monitoring their pets’ well-being and health status.
Insight into animals’ habitual activities and patterns not only aids vet-
erinarians in accurate diagnoses but also offers pet owners early alerts.
Traditional methods of tracking animal behavior involve wearable sen-
sors like IMU sensors, collars, or cameras. Nevertheless, concerns, in-
cluding privacy, robustness, and animal discomfort persist. In this study,
radar technology, a noninvasive remote sensing technology widely em-
ployed in human health monitoring, is explored for AAR. Radar enables
fine motion analysis through Microdoppler spectrograms. Utilizing an
off-the-shelf FMCW mm-wave radar, we gather data from five distinct
activities and postures. Merging radar technology with Machine Learn-
ing and Deep Learning algorithms helps distinguish diverse pet activities
and postures. Specific challenges in AAR, such as random movements,
being uncontrollable, noise, and small animal size, make radar adoption
for animal monitoring complex. In this study, RayPet unveils different
challenges and solutions regarding monitoring small animals. To over-
come the challenges, different signal processing steps are devised and
implemented, tailored for animals. We use four types of classifiers and
achieve an accuracy rate of 89%. This progress marks an important step
in using radar technology to observe and comprehend activities and pos-
tures in pets in particular and in animals in general, contributing to our
knowledge of animal well-being and behavior analysis.

Keywords: FMCW radar, Machine Learning, signal processing, Animal
Activity Recognition (AAR), Deep Learning

1 Introduction

Recently, recognizing different activities and postures using a variety of sensors
gained a lot of attention. Initially, the healthcare sector became interested in hu-
man activity recognition (HAR) to monitor the elderly living alone and patients
[1]. Later, researchers investigated animal activity recognition (AAR) to gain
enough knowledge about the well-being of animals without manual vision-based
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scoring systems [2]. Activity recognition (AR) is usually done using vision-based
and sensor-based systems [3]. Users often disregard vision-based systems due to
privacy issues. Furthermore, vision-based systems are susceptible to variations in
ambient light and environmental conditions. This vulnerability diminishes their
robustness when considering their application in animal farming scenarios[4].
Among sensor-based systems, wearable sensors are primarily utilized in both
HAR and AAR. However, studies show constantly wearing a sensor can be irri-
tating and stressful, especially for animals [4].

Considering all these challenges and concerns, radar, as a non-invasive sens-
ing technology, has recently been utilized for different applications in human
health monitoring, especially HAR. Feng Jin et al. (2019) used millimeter waves
(mm-waves) frequency modulated continuous waves (FMCW) radar to build
Doppler maps and spectrograms to detect different behaviors in patients using
deep convolutional neural network (CNN) [5]. Singh et al. (2019), in Radhar
collected quite an extensive dataset from different human activities and used
pre-processed point clouds (PCs) from mm-wave FMCW radar to differentiate
between various types of activities [6]. They used the voxelization technique
prior to classification and achieved around 90% accuracy in recognizing five dif-
ferent human activities. Other researchers have utilized PCs collected from radar,
Palipana et al. (2021) and Yu et al. (2022), for gesture and activity recognition,
respectively.

Although radar has been widely utilized in different applications for human
health monitoring, it has rarely been used in animal health monitoring. Animals
present additional challenges as compared to humans, there are many random
movements and noises, which may make the processing steps more complex and
decrease the system’s accuracy[4]. With this in mind, a few researchers tried to
apply radars to animals in different applications. Henry et al. (2018) used 24 GHz
FMCW radar to detect sheep’s position and motion [9]. Fioranelli et al. (2019)
used FMCW radar working at 5.8 GHz to collect raw data, from micro-Doppler
signatures, and perform lameness detection in ruminants, including dairy cows
and sheep [10]. Finally, Wang et al. (2020) investigated the vital sign detection of
pets (dogs and cats) using ultra-wideband (UWB) radar. However, the data was
collected while animals were at rest and not doing their routine activities and
postures [11]. Even though there are limited studies on animals using FMCW
radar, it sounds promising and has some potential for animal health monitoring
applications [4].

Among different animals, monitoring small animals presents heightened chal-
lenges [4]. In RayPet we focus on small animals and the challenges associated
with their monitoring. To do so, we have chosen to concentrate on a readily ac-
cessible category of small animals: pets. This approach allows us to uncover and
resolve the unique monitoring challenges associated with them. Furthermore, it’s
prudent to monitor the well-being of pets, particularly because they often spend
a long time alone at home. Therefore, AAR serves as a valuable indicator of pets’
welfare by quantifying the frequency and duration of their activities. While some
wearable sensors like belts and collars are already available, wearing them can
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cause distress to small animals and has its own concerns and challenges, as dis-
cussed earlier. As a result, we use a non-invasive mm-waves FMCW Radar as a
remote sensing method for AAR.

In this article, our exploration delves into the application of AAR through
the use of FMCW mm-wave radar. Our investigation centers on key research
questions that have emerged in this domain. These questions encompass discern-
ing the distinctions between HAR and AAR, unveiling the complexities linked
to recognizing small animal activities and postures, and formulating strategies
for designing and executing signal preprocessing steps aimed at resolving these
differences and challenges. As far as our current understanding goes, we are
pioneering the application of mm-wave FMCW radar for AAR. Our goal is
to uncover challenges associated with employing FMCW mm-wave radar for
small animal activity and posture recognition. Subsequently, by addressing both
animal-related issues and challenges pertaining to point cloud sparsity, quantity,
and quality, we formulate viable solutions. Therefore, in RayPet, by focusing on
pets, we gather the raw data points, execute necessary implementations, and
devise pre-processing methods aimed at enhancing the acquired dataset to opti-
mize performance for our classification algorithms. In this study, we investigate
different trade-offs in pre-processing methods and tailor processing techniques
like Noise Removal to the requirements for AAR and its challenges. Finally, we
compare our results with Radhar [6], which is designed for HAR, to indicate and
emphasize the effectiveness of the approach for animals.

The rest of the paper is organized as follows. In Section II, we give a brief
overview of mm-wave FMCW radar and propose our designed system model.
Section III describes the signal pre-processing steps, including Noise Removal,
Data Aggregation, and Voxelization. Section IV explains the designed setup
for data collection, signal pre-processing parameters and trade-offs, and models
and algorithms used for classification. Later on, in Section V, the output of our
algorithms is evaluated and discussed, considering different signal pre-processing
blocks. Finally, Section VI concludes the paper and reviews some opportunities
to improve the designed system.

2 System Model

2.1 Overview of FMCW Radar

Echolocating mammals inspire the concept of radars. Echolocating mammals
send sound waves away and listen to the reflection to localize different objects and
detect their distances. Radars, similarly, send electromagnetic waves away and
listen to reflected signals of the object/ subject. In FMCW radar, the transmitted
sinusoidal signal’s frequency linearly changes over time, and it contains multiple
chirps in each frame, as depicted in Figure 1. The figure shows that the frequency
is swept between fmin to fmax. We call fmax − fmin = BW , the sweeping
bandwidth (BW). The received chirps are the delayed version of the transmitted
chirps. τ also indicates the delay between the transmitted and received chirps.
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τ = 2×d
C , in which d is the distance of the object from radar (d = τ

2C ) and C is
the light speed.

Fig. 1. Frequency changes in transmitted and received chirps in FMCW radar.

Beat frequency or fb is the frequency difference between the transmitted and
received chirps. The output of radar is called intermediate frequency signal (IF
signal) with fb as its frequency, which is generated after combining the trans-
mitted and received signals. Later, this signal will be sampled and processed to
achieve point clouds of the object. To achieve x, y, z coordinates, different pro-
cessing steps like range FFT, Velocity FFT, constant false alarm rate (CFAR),
and angle FFT should be implemented [12]. The radar capability in distinguish-
ing between two different objects are shown by range resolution (∆R), which
can be calculated as follows:

∆R =
C

2BW
. (1)

It is worth mentioning that we are using Texas Instruments (TI) FMCW
mm-Wave radar. Mm-waves signals work in the range of 30 to 300 (GHz), and it
has various advantages. For instance, it has a higher attenuation than the other
frequency ranges lower than 30 GHz, which helps the user experience isolated
private sensing. Furthermore, its shorter wavelength facilitates the creation of
compact antenna patches, allowing for monitoring intricate and detailed activi-
ties within a confined space.

2.2 Overview of System Design

In this article, RayPet aims at processing and using FMCW mm-wave radar’s
point clouds (PCs) for activity and posture recognition in dogs. The architec-
ture of our system contains two main blocks, namely signal pre-processing and
classification, and multiple sub-blocks, shown in Figure 2. Point cloud represen-
tation, which is collected by radar and is the input of our system, consists of
different reflected points from the object or scene area. The point cloud repre-
sentation contains information like (x, y, z) coordinates, velocity, and intensity of



RayPet 5

Fig. 2. System overview and pre-processing blocks.

the points. Although radar IF signal goes through multiple steps before prepar-
ing these PCs, there are still some issues and challenges in the quality of the
collected PCs. First, the limited number of Pcs collected by radar and its spar-
sity can decrease the quality of the point cloud representation. Second, PCs are
vulnerable to different factors, like multi-path propagation, scene area, environ-
mental effects, interference, etc., which can significantly degrade the quality and
accuracy of PCs. Third, the quality of PCs in animal activity recognition (AAR)
is lower as compared to human activity recognition (HAR). That is because, in
AAR, we have many random movements done by animals that can be irrelevant
to the performing activity, like wagging the tail in dogs.

All these challenges may ultimately lead to a decrease in the system’s overall
performance. As a result, we designed different signal pre-processing sub-blocks
in our system to cope with these challenges. It is worth mentioning that we tai-
lored these pre-processing steps to suit the unique needs and characteristics of
the animals. In Figure 2, the overview of the proposed and designed system to
cope with these challenges is depicted. As shown in Figure 2, the collected PCs
first go through the noise removal step, in which filtering, clutter removal algo-
rithms, and Density-based spatial clustering of applications with noise (DBScan)
are applied. Subsequently, it goes through the data aggregation step. Then, the
data will be voxelized to prepare for input into the classifiers. Later on, window-
ing techniques are applied to the voxelized point cloud. Finally, the data is fed
into the classifiers to distinguish among activities and postures. In the following,
we elaborate on these signal-processing steps and their use cases.

3 Signal Pre-processing

In this section, we will examine various pre-processing steps designed to enhance
the quality of PCs while considering animal-specific features. As was mentioned
earlier, the quality of the PCs collected from an animal is less than HAR appli-
cations due to various reasons like sparsity of the PCs, random body movements
in animals, etc. As a result, we designed and implemented multiple signal pre-
processing blocks to improve the point cloud representation quality to some
extent.
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3.1 Noise Removal

This block primarily aims to eliminate noisy points, decrease sparsity, eliminate
outliers, and remove scattered points from static objects. To do so, we designed
different signal pre-processing sub-blocks, which will be discussed in the follow-
ing.

Filtering To reduce the number of noisy points appearing in the point cloud
representation, we first collect the point cloud representation of the scene area
without the object. Doing so makes it easier to apply a filter and detect noisy
points in the point cloud representation of each specific animal activity.

Static Clutter Removal Static clutter removal is a signal processing method to
eliminate unwanted points (noise) and clutters from the dataset, especially when
the noise remains stationary over time. Ultimately, the static clutter removal al-
gorithm identifies and filters out the noisy points without any remarkable changes
or motion over successive chirps or frames. The critical point in static clutter
removal algorithm implementation is to evaluate the temporal consistency of
PCs and distinguish between static clutter and the dynamic object. Note that
even if the posture or behavior we are looking into is almost static, we notice
changes in living creatures over time. Assuming noise (from the static objects)
remains stationary while relevant objects exhibit motions, static clutter removal
can clean the data set and eliminate the static noisy points from the PC. By
doing so, we have fewer points resulting from sensor inaccuracy or background
interference, etc., and we prepare a better dataset for our classifiers.

DBScan Density-Based Spatial Clustering of Applications with Noise (DBScan)
is a clustering algorithm that groups points based on their density rather than
considering predefined cluster shape. DBScan identifies core points with sufficient
neighboring points within a specified distance (eps) and expands clusters by
linking neighboring core and border points. In the end, it forms different clusters
with various numbers of points. Points not belonging to any cluster are marked
as noise or outliers. In some studies, researchers detect the main cluster and
remove outliers together with all other clusters [7]. However, due to the small
size of animals, there is a high chance we remove clusters related to legs or head,
which can involve unique patterns of PCs for each specific activity or posture.
Considering this, we only use DBScan to remove outliers and noisy points to
prevent losing information. Outliers can be resulted from background noises or
random irrelevant movements in the dog, for example, tail wagging which has
nothing to do with the ongoing activity or posture. Different parameters should
be set for DBScan, like Epsilon (eps) and minimum points in each cluster. Note
that we applied DBScan on each frame collected PCs and performed parameter
fine-tuning using a grid search to set the required parameters.

3.2 Data Aggregation

The number of collected points in each frame is usually limited by radar and
constant false alarm rate detection (CFAR) performance. The low number of
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points can result in poor performance and low accuracy in classifiers. With this
in mind, we implement data aggregation as an algorithm to increase the number
of collected points in each frame and end up with a better, cleaner point cloud
representation. In data aggregation, we aggregate the collected points from mul-
tiple frames with each other and form new frames. By doing so, we have more
points in each frame and a higher chance of getting a better result. Although
data aggregation can improve the quality of PCs collected in each frame signif-
icantly, it reduces datasets (as we have a constant number of voxels which will
be explained later). Therefore, there is always a trade-off that should be con-
sidered; decreasing the dataset size may lead to underfitting in the classifiers.
Furthermore, taking into account the frame duration, there exists a constraint
on the maximum number of frames we can aggregate. If the total duration of the
aggregated frames surpasses a predefined limit (determined by the movement of
objects and their speed), those aggregated frames may not pertain to the same
thing, rendering the entire approach ineffective.

3.3 Voxelization

Data collected in each frame contains several point clouds with different at-
tributed values. Consequently, the features utilized for classifiers exhibit varying
sizes and formats. As a solution, we employ the voxelization method on each
frame to ensure a consistent feature size, making it suitable for integration with
diverse classifier models. Voxelization is a data processing method that converts
three-dimensional data into a structured grid of voxels (cubes). We consider a
constant number of voxels m× n× p.

We should note that each data point obtained from the radar includes essen-
tial details such as its spatial position in three-dimensional space denoted by (x,
y, z) coordinates, its velocity, which describes the speed, and an intensity value
that reflects the strength of the radar signal returned by the point. The value of
the voxels can be determined based on the coordinates themselves, velocity, or
intensity. We put all these options to the test, and it turned out the coordinates
were the best option in terms of performance and accuracy. Therefore, in our
voxelization method, each cube or voxel is assigned a number if a point exists.
In non-voxelized data, every point within a 3D grid is assigned individual x, y,
and z coordinates. However, cubic elements are employed in the voxelized rep-
resentation of the same data, each capable of containing none, one, or multiple
points.

3.4 Windowing

Finally, windowing is applied to the voxelized representation of data before feed-
ing them into classifiers. Windowing helps us having a smoother transition over
the data set, building features for classifiers and maintaining the temporal con-
text of the original data. Considering all these, we apply windowing to preserve
the temporal changes during different activities and postures. We should note
that there is a limit to the window size considering each posture or activity



8 Ehsan Sadeghi et al.

duration. Also, there is always a trade-off between windowing parameters and
data size. We set W and SW , as window size and sliding window factor. Slid-
ing windows or overlapping windows can improve the temporal resolution of the
analysis. As the size of each voxel is m×n×p, the feature size fed to the classifier
has a shape of W ×m× n× p.

In the following, we explain our experiments and parameters in more detail
and put our proposed approach for AAR to the test.

4 Experiment

4.1 Radar Configuration and data acquisition

In this experiment, we used a commodity IWR1443 Evaluation Module (EVM)
which is a mm-wave FMCW radar [13]. IWR1443 EVM operates on 76 to 81
GHz frequency band (up to 4 GHz bandwidth) and has three transmitters (TX)
antennas and four receivers (RX) antennas, which enables calculating both az-
imuth and elevation angles which is useful for generating the PCs. As we dis-
cussed earlier, many parameters should be configured regarding the application.
In Table 1, the summary of the radar configuration used in this study is listed.
By implementing this setup, we can attain an approximate range resolution of
0.05 meters.

Table 1. Radar configuration

Parameters Values

No. of Samples 240
No. of chirps 16

Starting frequency 79.21 GHz
Frame duration 33.33 ms
Bandwidth (BW) 2439.8 MHz

Pulse repetition interval (PRI) 64.140 µ

Raw data should go through multiple steps to collect three-dimensional PCs
using IWR1443 FMCWmm-wave radar, including range map formation, doppler
map formation, angle estimation, and CFAR. To implement this, we used Robot
Operating System (ROS), an open-source framework that provides a collection
of software libraries and tools. It facilitated essential steps such as generating
point cloud data and visualizing these PCs in real-time.

4.2 Experimental setup and data collection

In this experiment, we collected data from a dog. The dog’s physical charac-
teristics include a weight of approximately 45kg, a height of 0.75 meters, and
a length of 1.10 meters. Given these attributes, the radar’s height was set at
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0.50 meters. Five different activities and postures, namely eating, lying, sitting,
standing, and walking, were performed at a distance of around 1.30 meters from
the radar. Compared to HAR, AAR presents additional challenges in maintain-
ing animals in specific positions for data collection. Furthermore, allowing the
animals to continue their regular daily activities throughout the recording is
crucial. To address this challenge, we adapted our data collection approach by
recording data in shorter intervals of 10 seconds (5 seconds for walking as it
takes shorter for the dog to pass radar beam width). Although this resulted in
a longer data collection procedure, it allowed us to accommodate the animals’
natural movements and behaviors more effectively. Ultimately, we managed to
record over 2200 seconds for all activities. For instance, in Figure 3, you can see
the dog while doing the eating activity.

Fig. 3. The experimental setup: The dog doing the eating activity in the scene area.

4.3 Pre-processing

As previously outlined in the pre-processing steps, the gathered data must un-
dergo various signal pre-processing stages to be prepared for classification. Ini-
tially, noise elimination was executed by implementing noise removal methods,
filtering, clutter removal, and DBScan. When configuring DBScan parameters,
we undertook assessments using different values that aligned with point density
and activities. Ultimately, through empirical analysis, we set the parameters eps
and the minimum number of points to (0.5, 2). By doing so, we eliminated a
significant portion of noise in our dataset.

Following this, the refined dataset underwent data aggregation via data ag-
gregation. We experimented with aggregating diverse frame quantities (2, 3, 4,
5). It is crucial to note that the increased number of concatenated frames may
potentially result in losing temporal changes. Furthermore, aggregating a larger
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number of frames into a single frame could potentially yield smaller datasets,
potentially leading to underfitting within the classifiers. In light of these con-
siderations, we opted to merge only two frames during the data aggregation
phase. This decision was made because, when merging more than two frames,
we observed a noticeable decrease in the overall system accuracy, which could
be indicative of underfitting. The new modified data set should now go through
voxelization. We explored varying voxel quantities in each dimension, consider-
ing the animal size and the scope of movement. However, the dimension used by
other studies on HAR (10× 32× 32) turned out to be best for our application.

Finally, for windowing we investigated different values for W and SW such as
(W=20, SW=4), (W=25, SW=5),(W=30, SW=10), and (W=45, SW=10).While
windowing undoubtedly enhances feature quality for classifiers, selecting appro-
priate windows and sliding window sizes hinges on various factors. For instance,
excessively enlarging the window size could result in a reduced number of train-
ing examples, potentially causing the loss of spatial and temporal changes within
the dataset. Within the set of activities and postures we are focusing on, there
are two activities and three postures. Activities are walking, dynamic motion,
and eating, which involves intricate movements around the neck and mouth.
Preserving the temporal dependency holds significant importance in accurately
capturing these two activities. Therefore, we select windowing and sliding pa-
rameters in a way to enhance the precision of our estimations for these actions
and elevate the overall accuracy. It is imperative to note that opting for a larger
window size may eventually result in a reduced number of available training
examples, potentially leading to underfitting. We visually illustrate this delicate
trade-off in a figure that will be properly explored in the upcoming discussion
section. Having thoroughly evaluated various window and sliding window sizes,
we determined that setting W=30 and SW=10 yielded enhanced performance.
Consequently, the classifier is presented with features structured and shaped in
the format of 30× 10× 32× 32.

4.4 Classifiers and Model Parameters

Prior to classification and activity recognition, we split our dataset into two
portions: 30% for testing and 70% for training. We employed four distinct classi-
fiers on our dataset to implement AAR. These classifiers include Support Vector
Machine (SVM) with Principal Component Analysis (PCA), Multi-layer Percep-
tion (MLP), Bidirectional Long Short-term Memory (Bi-LSTM), and Time Dis-
tributed Convolutional Neural Network with Bi-LSTM (TD-CNN+Bi-LSTM).
In the following, we delve into the details of these classifiers, the respective mod-
els, and the chosen classification parameters.

SVM+PCA We begin with the initial classifier, namely the Support Vector Ma-
chine (SVM). The voxelized representation, initially structured as 30×10×32×
32, is flattened, resulting in a data dimension of 307200. Given the computational
inefficiency associated with such extensive features, we employed Principal Com-
ponent Analysis (PCA) to reduce the data’s dimensionality while preserving its
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variability. This endeavor led to a reduction from 307200 dimensions to 3000 di-
mensions. The radial basis function (RBF) served as the utilized Kernel function.
The implementation of SVM, coupled with PCA, was executed through Keras.
Subsequently, for the optimization of SVM hyperparameters (C and gamma),
we utilized GridSearchVC. Adam optimizer with a learning rate of 0.001 was
used to update the network’s parameters during training, aiming to reach the
optimal set of weights and biases.

MLP The Multi-Layer Perceptron (MLP) represents a form of artificial neural
network (ANN) characterized by multiple tiers of interconnected nodes or neu-
rons. In the context of this investigation, our focus lies on four fully connected
layers. Just as with the SVM, the voxelized representation of the data under-
goes flattening, thus giving rise to an input dimension of 307200. The realization
of this architecture involves the employment of both Keras and SKlearn. Ul-
timately, after undergoing 40 training epochs, the model exhibiting the lowest
validation loss is selected.

Bi-LSTM Comprising dual LSTM layers, the Bidirectional Long Short-term
Memory (Bi-LSTM) takes into account both past and future context when pro-
cessing sequences. In contrast, a conventional LSTM handles sequences in a
unidirectional manner. Bi-LSTM allows the network to capture past and future
information at each time step, potentially improving its ability to model complex
dependencies in the data. Considering this, Bi-LSTM can be a good approach for
capturing temporal dependencies in datasets representing an activity or posture.
To achieve this, we flatten the spatial dimension within the data (voxel repre-
sentation of 10× 32× 32 = 1024) and capture the temporal patterns (window/
time dimension). As a result, the input shape for the Bi-LSTM model, with 64
units in size and 64 hidden units, takes on the shape of (30 × 1024). Likewise,
we employed Keras and SKlearn to construct the classifier and employed the
Adam optimizer with a learning rate of 0.001 for training the classifier. Follow-
ing 40 training epochs, the model demonstrating the lowest validation loss was
identified and retained.

TD-CNN+Bi-LSTM Integrating a Time Distributed Convolutional Neural Net-
work (TD-CNN) with a Bi-LSTM constitutes a robust technique for processing
sequential data that incorporates both spatial and temporal attributes. As a
result, it is an adequate solution for categorizing diverse activities and postures
where both temporal and spatial variations play a pivotal role. In this instance,
the TD-CNN + Bi-LSTM model undergoes training utilizing the voxelized rep-
resentation, encompassing both temporal and spatial dimensions. Similarly, we
employ Sklearn and Keras to implement the classifier and employ the Adam op-
timizer with a learning rate of 0.001 for training purposes. The model exhibiting
the least loss is selected after completing 40 training epochs.
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5 Discussion

We fed voxelized representations of five distinct activities, as well as the flattened
version, into the four distinct classifiers. Prior to this, as previously mentioned,
we divided the dataset into separate training and test sets to prevent any data
leakage. The overall accuracy of SVM (PCA=3000), MLP, Bi-LSTM, and TD-
CNN+Bi LSTM were 41%, 78%, 79%, and 89%, respectively. To indicate the
significance of our work, we employed the approach outlined by Radhar [6] as
one of the pioneering and highly noted studies focusing solely on windowing and
voxelization for HAR. We then compared this method with our own in Figure
4. Evidently, our approach demonstrates a marked superiority over the alter-
native method. This performance gap underscores our consideration of diverse
challenges and physiological nuances in animals. In response, we devised a tai-
lored signal processing methodology, strategically incorporating specific steps to
address these factors comprehensively.

Fig. 4. Highlighting the efficacy of RayPet through comparison with Radhar.

Among the classifiers we put to the test, SVM exhibited the poorest perfor-
mance. That is because we flattened the voxelized representation before feeding
it into the classifier. By doing so, SVM is not utilizing any temporal or spa-
tial dependencies within the voxelized dataset representation. While the rest of
the deep learning classifiers exhibit superior performance compared to SVM,
it appears that MLP, in comparison to the others, displays a relatively weaker
performance. It is essential to highlight that even though MLP is trained us-
ing the voxelized representation, no prior presumptions regarding the temporal
and spatial dimensions within the data were incorporated into the MLP model.
Bi-LSTM performs slightly more effectively because it retains the temporal de-
pendencies within the dataset and sequences. Processing sequences in dual di-
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Fig. 5. Confusion Matrix

rections can capture both temporal dependencies and complex patterns present
within sequential data. Among our classifiers, TD-CNN + Bi-LSTM stands out
as notably superior to the rest. The combination of TD-CNN and Bi-LSTM al-
lows us to capture both spatial and temporal dependencies and patterns within
the dataset. This is essential in applications like activity or posture recognition
in which the PCs (spatial information) or pattern evolves over time. In Figure
5, we created the confusion matrix for our method using TD-CNN + Bi-LSTM,
which had an overall accuracy of 85%. The activities and postures of lying down
and sitting were frequently misclassified. This misclassification can be attributed
to the inherent similarity between these activities and postures and the lack of
adequate point cloud density for differentiation.

After testing the classifiers, the trade-off in choosing the right window and
sliding window size is worth investigating. As discussed previously, opting for
extended window sizes plays a pivotal role in preserving the intricate temporal
dependencies inherent in activities such as walking and eating. Figure 6 shows
that augmenting the window size, up to a limit of 30, contributes significantly
to the recall and accuracy of activities like walking and eating. What is more,
our system achieves its peak overall accuracy at a window size of 30. However,
exceeding this threshold by increasing the window size further results in a decline
in these metrics, possibly indicating the underfitting—as we discussed earlier.
Taking into account all these factors, a window size of 30 emerges as the optimal
choice for our system’s performance.

The study encountered several challenges and limitations that warrant discus-
sion. Firstly, voxelization resulted in expanded dataset dimensions, necessitating
increased computational resources for Deep Learning algorithm training. Sec-
ondly, acquiring training data for classifiers posed considerable difficulty in the
case of animals, given their tendency to refuse maintaining consistent postures
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Fig. 6. Navigating the Trade-off in Windowing and Sliding Window Sizes

or activities. Thirdly, even though we reduced animal-related noise side-effects
to a great extent, there are still some animal-specific traits and random move-
ments which cannot be indicative of any specific activity. A prime example is
observed in dogs when they wag their tails. Lastly, a significant challenge arises
from radar and hardware limitations, which impose constraints on the quantity
and quality of points that can be gathered via the radar system. Furthermore,
it is important to note that the density of the point clouds for AAR doesnot
align with that of HAR. At times, the sole distinguishing factor between various
postures or activities lies in the stance of the legs. Nevertheless, collecting a sat-
isfactory quantity of points reflecting off the leg area proves to be considerably
challenging due to limitations stemming from both the animal size and hardware
limitations.

In conclusion, two potential strategies could be implemented to enhance the
system’s performance in animal activity recognition. The first approach involves
leveraging micro-Doppler signatures to capture intricate movements. This tech-
nique could significantly enhance the system’s ability to detect fine motions and
behaviors. The second approach entails deploying multiple radars positioned at
different locations. This strategy offers spatial diversity, augmenting both the
quantity and quality of point cloud data. This, in turn, could lead to more ac-
curate and robust activity recognition results. Moving forward, RayPet is com-
mitted to exploring these avenues in forthcoming studies.

6 Conclusion

In animal sensing technologies, the prevailing methodologies often necessitate an-
imals to wear sensors continually, encompassing wearable options such as IMUs
or collars. However, RayPet takes a distinctive approach by leveraging FMCW
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radars—a noninvasive sensing technology—for various applications like activ-
ity and posture recognition. While radar technology holds immense potential,
its application to animals requires careful consideration due to the radar’s sen-
sitivity, the smaller size of animals compared to humans, and the prevalence
of random movements in animals. Throughout our study, we tried to answer
the mentioned research questions comprehensivly. In RayPet, we Unveiled and
discovered different challenges involved in applying FMCW mm-wave radar to
animals. As a solution, we developed and implemented distinct signal processing
methods, encompassing noise removal algorithms, data aggregation, windowing,
and voxelization. These procedures were crucial for effectively preprocessing and
refining datasets before feeding into the classifiers. This method proved partic-
ularly effective in accommodating even small animals like dogs. To underscore
the significance of our proposed system model and signal processing methods,
we rigorously tested our system and compared it with an outstanding method
specifically designed for HAR. Our evaluation encompassed five distinct activi-
ties, increasing of up to 12% in overall accuracy. Looking ahead, our radar-based
system model holds more promising potential with the incorporation of multiple
radars simultaneously.
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