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ARTICLE INFO ABSTRACT

Keywords: Blind deconvolution (BD) has been demonstrated as an efficacious approach for extracting
Blind deconvolution bearing fault-specific features from vibration signals under strong background noise. Despite
Quadratic convolutional neural filter BD’s desirable feature in adaptability and mathematical interpretability, a significant challenge
Frequency linear neural filter persists: How to effectively integrate BD with fault-diagnosing classifiers? This issue arises
Classifier-guided signal processing because the traditional BD method is solely designed for feature extraction with its own optimizer
Bearing fault diagnosis and objective function. When BD is combined with downstream deep learning classifiers, the

different learning objectives will be in conflict. To address this problem, this paper introduces
classifier-guided BD (ClassBD) for joint learning of BD-based feature extraction and deep
learning-based fault classification. Firstly, we present a time and frequency neural BD that
employs neural networks to implement conventional BD, thereby facilitating the seamless
integration of BD and the deep learning classifier for co-optimization of model parameters.
Specifically, the neural BD incorporates two filters: i) a time domain quadratic filter to utilize
quadratic convolutional networks for extracting periodic impulses; ii) a frequency domain linear
filter composed of a fully-connected neural network to amplify discrete frequency components.
Subsequently, we develop a unified framework to use a deep learning classifier to guide the
learning of BD filters. In addition, we devise a physics-informed loss function composed of
kurtosis, I, /1, norm, and a cross-entropy loss to jointly optimize the BD filters and deep learning
classifier. Consequently, the fault labels provide useful information to direct BD to extract
features that distinguish classes amidst strong noise. To the best of our knowledge, this is the
first of its kind that BD is successfully applied to bearing fault diagnosis. Experimental results
from three datasets demonstrate that ClassBD outperforms other state-of-the-art methods under
noisy conditions. We have shared our code at https://github.com/asdvfghg/ClassBD.

1. Introduction

Rotating machinery, such as aero engines, pumps, and wind turbines, plays an indispensable role in various
industrial applications. However, the components that support the rotation, particularly rolling bearings, are susceptible
to damage due to long working hours in high temperature, high speed, and other harsh conditions [1, 2]. The damage
of bearings, i.e., cage fracture and race crack, causes unexpected machinery failures and leads to costly downtime
and even catastrophic outcomes. Therefore, timely and accurate diagnosis of bearing faults is of great importance
for ensuring the sound and reliable operations of rotating machinery [3]. Nevertheless, one of the major challenges
in bearing fault diagnosis is that the measured vibration signals are often contaminated by background noise arising
from complex transmission paths (mechanical transmission systems) and environmental sources (coupled vibration
source from multiple machines). These noises substantially obscure and distort key information that is important for
discriminating faults in rotating machinery. Hence, developing effective methods for extracting fault-specific features
from noisy signals has emerged as an active research topic.

Presently, methodologies for signal denoising fall into two distinct categories: data-driven methods and signal
processing methods. Despite the significant advances made by data-driven methods in recent years, these models fall
short in transparency, which hinders their utility in decision-making processes [4—8]. On the other hand, a plethora
of signal processing approaches with rigorous mathematical foundations have been proposed for extracting fault-
related features. These include, but are not limited to, wavelet transform (WT) [9-12], variational mode decomposition
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(VMD) [13, 14], singular value decomposition (SVD) [15, 16], spectral kurtosis (SK) [17-19], cyclostationary
analysis [20, 21], and blind deconvolution (BD) [2, 22, 23]. Among them, the BD method possesses some unique
advantages due to its adaptability and lack of constraints on bandwidth or center frequency (filter’s maximum gain
frequency), and these features make BD an ideal tool for extracting repeated transient impulses [24]. Hence, we
concentrate on the exploring the BD-based method for fault diagnosis in this paper.

In essence, the BD method recovers the input signal features from the output signals when both the system and
the input signals are unknown [25]. In other words, BD only uses the measured signal to reconstruct the fault source
signal by estimating the transmission path function. When processing vibration signal, BD optimizes an adaptive
finite impulse response (FIR) filter to recover the repeated transient impulses, which are regarded as the informative
features for bearing fault classification [2]. A key issue in BD is how to design an objective function to effectively
characterize the fault impulsive signatures, such as sparsity and cyclic periodicity. For example, Wiggins [26] proposed
the first of its kind in BD coined as the minimum entropy deconvolution (MED) in 1978 for non-stationary signal
denoising. MED used kurtosis [27] as the objective function to search for an optimal inverse filter. However, kurtosis
is only sensitive to outliers, and it thus fails to distinguish between random impulses and cyclic impulses [28]. As a
result, many other objective functions are subsequently developed to capture cyclic information, such as the maximum
correlated kurtosis deconvolution (MCKD) [21], the multipoint optimal MED adjusted (MOMEDA) [29], the second-
order cyclostationarity blind deconvolution (CYCBD) [23], and the adaptive cyclostationarity blind deconvolution
(ACYCBD) [3]. These methods share a common goal in attempt to address the extraction of bearing fault-related
characteristics from vibration signals in the presence of complex noise.

However, a fundamental challenge of applying BD to bearing fault diagnosis remains unresolved: How to effectively
integrate BD with fault diagnosing classifiers? Existing BD methods often assess BD performance by examining the
recovered signals, but only a few works have attempted to integrate BD and convolutional neural networks (CNN)
for end-to-end fault diagnosis [30]. Combination of BD and classifiers fails to yield optimal performance and even
exerts a detrimental effect on the classification task. The main reason is that BD and the classifier operate in two
separate optimization spaces, which possess distinct optimizers (filter’s optimizer vs CNN’s optimizer) and divergent
optimization objectives (BD objective function vs cross-entropy loss function). This leads to a lack of consistency
during training. For instance, BD may enhance the cyclic impulse of the fault signal, but at the same time, it may
diminish the differences between various fault severities. Therefore, there is a need for a unified framework that can
coherently and efficiently integrate BD and classifiers.

In this paper, we propose a novel framework that uses neural networks to perform both BD and classification.
First, we employ a neural BD to process the raw vibration signal. Established upon the multi-task neural network blind
deconvolution (MNNBD) [31], we replace the conventional BD filters with neural networks. The neural BD gives
rise to two advantages: i) It implement multi-channel and multi-layer filters by using convolutional kernels as adaptive
filters, while the conventional BD filters are usually single-channel; ii) It employs the optimizer of convolutional neural
networks (CNNG) to find the optimal filter coefficients, while the conventional BD methods rely on less-efficient matrix
operations [23, 26] or particle swarm optimization (PSO) [32, 33]. Moreover, such neural BD can be easily integrated
with deep learning classifiers to achieve co-optimization of weight parameters.

Our proposed BD framework includes two neural network modules: a time domain quadratic convolutional
filter and a frequency domain linear filter (we use the term “filter” to remain consistent with the terminology in
the field of signal processing and BD). The former with two layers of symmetric quadratic convolutional neural
networks (QCNN) [34, 35] excels in extracting periodic impulses in the time domain. The latter composed of a fully-
connected neural network filters signals in the frequency domain post-Fast Fourier transform (FFT), thus enhancing the
capability to filter the signal’s frequency components. Furthermore, inspired by advances in physics-informed neural
networks [36—38], we introduce a unified framework ClassBD to integrate BD and deep learning classifiers. ClassBD
transforms conventional BD, typically an unsupervised learning problem, into an supervised learning task using fault
labels. This guides BD in extracting class-distinguishing features amidst noise. Our threefold pipeline includes neural
BD as a plug-and-play module in the first layer of deep learning classifier, a physics-informed loss function optimizing
both BD filters and classifiers, and an uncertainty-aware weighing loss strategy balancing the three loss components
during training. Our contributions are summarized as follows:

1. We introduce a plug-and-play time and frequency neural blind deconvolution module. This module comprises
two cascaded components: a quadratic convolutional neural filter and a frequency linear neural filter. From a
mathematical perspective, we demonstrate that the quadratic neural filter enhances the filter’s capacity to extract
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periodic impulses in the time domain. The linear neural filter, on the other hand, offers the ability to filter signals
in the frequency domain and it leads to a crucial enhancement for improving BD performance.

2. We develop a unified framework — ClassBD — to integrate BD and deep learning classifiers. By employing a
deep learning classifier to guide the learning of BD filters, we transition from the conventional unsupervised
BD optimization to supervised learning. The fault labels supply useful information in guiding the BD to extract
class-distinguishing features amidst background noise. To the best of our knowledge, this is the first BD method
of its kind to achieve bearing fault diagnosis under heavy noise while providing good interpretability.

The rest of the paper is organized as follows. Section 2 introduces some background knowledge of blind
deconvolution in signal processing and quadratic neural networks. Section 3 is the proposed method in detail. In Section
4, we conduct computational experiments in two public and one private datasets. Section 5 analyzes the properties of
the proposed method. Section 6 is the conclusions.

2. Preliminaries

Table 1 presents some important symbols that will be used later in this paper.

Table 1
A list of mathematical notations and symbols.
Symbol Description
N Length of the input, constant
K Length of the filter (convolution kernel), constant (K < N)
x € R™N & x(n), n=1,---,N Input signal measured by sensors
d e RN Fault source signal
neR"N& n(n), n=1,---,N Additive noise
h, € RXK Transfer function in accordance to fault source
h, € Rk Transfer function in accordance to noise
f ERIXK Blind deconvolution filter
y eR*N& y(n), n=1,---,N Recovered signal after blind deconvolution
K@) Blind deconvolution objective function
W e R>*X& w(n), n=1,--,K Weight parameters of neural network
b Bias parameters of neural network
p() Impulse response of bearing fault
q(-) Periodic modulation signal
T Cyclic period, constant
R, Instantaneous autocorrelation function
x(n), n=1,---,N Signal after time domain filter
FC),FL) Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT)
X, f=1,-,N Signal after FFT (frequency domain)
Y(), f=1,-,N Signal after frequency domain filter (frequency domain)

ymn), n=1,---,N Signal after IFFT (time domain)

h(n), n=1,-,N Hilbert Transform (HT) of the signal in time domain
Hf), f=1,-,N Hilbert Transform of the signal in frequency domain

z(n), n=1,-,N Analytic signal (time domain)

ES(f), f=1,-,N Envelope spectrum (frequency domain)

L.L,L, Cross-entropy, 1,/1, norm and /,/1, norm loss functions
Q,ﬂ/,q(-) Generalized sparsity blind deconvolution objective function

2.1. Blind deconvolution

In the realm of non-stationary signal processing, deconvolution reverses the effects of convolution operations
performed by a linear time-invariant system on the input signal. A specialized form of this technique, known as blind
deconvolution (BD) or more accurately, unsupervised deconvolution, aims to utilize the output signal to recover the
input signal when both the signal transfer system and the input signal are unknown [25]. In the context of vibration
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signals associated with rotating machinery, the measured signals can be interpreted as the result of a convolution
operation between the cyclic fault impulses and the transfer path functions originating from the fault source to the
sensor [2]. From a mathematical perspective, given the measured signal x € R”, the fault source signal d € RV, and
the additive noise n € R", the signal transfer process can be defined as follows:

x=dx*xh;+nx*h,, ¢Y)

where h; and h, represent the transfer functions, and * denotes the convolution operation. Hereafter, bold-faced
symbols will be used to denote matrices.

The objective of BD is to extract fault-related features (cyclic impulses) from the measured signal. Towards this
goal, it aims to recover the signal y € R¥ that is closer to the fault source by constructing a filter f € RE:

y=xxf~d. 2)

However, due to the complexity of machinery systems, it is often impractical to accurately estimate the transfer
function and its frequency response. This challenge is further compounded by the presence of unpredictable noise.
Consequently, in the absence of prior information, such as an accurate fault impulse period, BD is considered as
an ill-posed problem. Given the non-stationary and periodic nature of the fault characteristics, a variety of sparsity
indexes have been proposed to function as optimization objective functions [23, 24, 29, 39]. A representative example
is kurtosis [27], which is utilized as the objective function in MED [26]:

Tl vm®
Ny

where y(n) denotes the output of the BD filter, and its length is equal to the input N.

Essentially, Kurtosis is a statistical quantity that assesses the data distribution. An increase in the kurtosis value
indicates a deviation from the standard normal distribution [27]. Intuitively, cyclic impulses emerge in the vibration
signals when the fault occurs, and the kurtosis value of vibration signal gets increased due to the presence of more
peaks (outliers). Consequently, maximizing kurtosis drives the adaptive filter to recover more impulses. Naturally, the
optimization objective is defined as follows:

3

max K(y)
! )
st y=x*f, fll, =1

Several effective optimization methods have been developed for BD, including matrix operations [23, 26], particle
swarm optimization (PSO) [32, 33], and backpropagation [40, 41]. Obviously, the performance of BD is strongly
influenced by the choice of optimization method.In recent years, considerable efforts have been made to identify more
general objective functions, design new filters, and devise more powerful optimization tools [2].

2.2. Quadratic neural networks

The concept of high-order neural networks, also known as polynomial neural networks, has its roots in the 1970s.
The Group Method of Data Handling (GMDH), which utilizes a polynomial network as a feature extractor, was first
proposed by Ivakhnenko [42]. Subsequently, Shin and Ghosh [43] introduced the pi-sigma network to incorporate

high-order polynomial operators:
v = o(J[Q] wjixy + b)) )
j ok

where w, b are learnable parameters, o(-) represents the activation function, and x denotes the input. The high-order
polynomials are implemented by multiplying several linear functions.

In recent years, advances in deep learning have provided a platform for re-examination and integration of polyno-
mial operators into fully-connected neural networks and convolutional neural networks. Methodologies for introducing
polynomials into neural networks can be categorized into two classes: polynomial structure and polynomial neuron.
In terms of the former, polynomial neural networks were developed using polynomial expansion via recursion [44] or
tensor decomposition [45, 46]. For the latter, the linear function (neuron) in traditional neural networks was substituted
with various polynomial functions [34, 47]. This study primarily focuses on the neuron-level methods.
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Table 2
A summary on quadratic neurons in neural network, where W € R™", W, € R™!, and the bias terms are omitted.

Authors Quadratic functions
Zoumpourlis et al.(2017) [48, 49] y=oc(x"Wx+ W x)
Jiang et al.(2019) [50];

Mantini&Shah(2021) [51] y=0o(xTWx)

Goyal et al.(2020) [52] y=c(W'(x©x))
Bu&Karpatne(2021) [53] y=o(W]x)(W)x))

Xu et al.(2022) [47] y=o(W]x)(W]x)+Wx)

Fan et al.(2018) [34] y=o(W]x)(W]x)+W](x O x))

While polynomial functions can be extended to higher orders, this significantly increases the computational
complexity of the neural network. To facilitate stable training, the polynomial function is typically restricted to the
second order, which is known as quadratic neural network.

Mathematically, given the input x € R?, the one-layer traditional neural network can be expressed as:

y=06(W'x+b), (6)

where W' € RY and b indicate weight and bias of neural network, and o(-) is the activation function.
A quadratic network is constructed by replacing the linear function with a quadratic function [34]:

y=o(W]x+b)W,x+by)+W,(x0x)+by), (7

where © is Hadamard product.

It is noteworthy that a variety of quadratic neurons have been proposed in the literature as summarized in Table 2.
In this paper, we opt for the version proposed by Fan et al. [34] (see Eq. (7)). Compared the quadratic neuron proposed
by Fan et al. and others (Bu&Karpatne, Xu et al.), it serves as a general version which consists of entire inner-product
term and power term.

3. Methodology

The proposed framework, as illustrated in Figure 1, primarily consists of two BD filters, namely a time domain
quadratic convolutional filter and a frequency domain linear filter. These filters serve as a plug-and-play denoising
module, and they are designed to perform the same function as conventional BD methods to ensure that the output is
in the same dimension as the input.

1. The time domain filter is characterized by two symmetric quadratic convolutional neural network (QCNN) layers.
A 16-channel QCNN is employed to filter the input signal (1 X 2048), and an inverse QCNN layer is used to
fuse the 16 channels into one for recovering the input signal.

2. The frequency domain filter, on the other hand, starts with the fast Fourier transform (FFT) with an emphasis on
highlighting the discrete frequency components. Subsequently, a linear neural layer filters the frequency domain
of the signals, and the inverse FFT (IFFT) is conducted to recover the time domain signal. Moreover, an objective
function in the envelope spectrum (ES) is designed for optimization.

After the neural BD filters, 1D deep learning classifiers, such as ResNet, CNN, or Transformer, can be directly
used to recognize the fault type. In this paper, we employ a popular and simple network — wide first kernel deep
convolutional neural network (WDCNN) [54] — as our classifier. Finally, a physics-informed loss function is devised
as the optimization objective to guide the learning of the model. This function comprises a cross-entropy loss £, and
a kurtosis £, and I, /I, norm L ;. It should be noted that £, and L ; are used to calculate the statistical characteristics
of the outputs of the time filter and frequency filter, respectively.
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Figure 1: The proposed framework: (a) The time-domain filter, consisting of two symmetric quadratic convolutional neural
network (QCNN) layers, is designed for time domain BD. (b) The frequency-domain filter, composed of a fully-connected
layer, is utilized for frequency domain BD. (c) The output from the fully-connected layer is extracted to compute the
envelope spectrum (ES), which is crucial for constructing the objective function. (d) The output from the frequency
domain linear filter is directed to the deep learning classifier to yield classification results.

3.1. Time domain quadratic convolutional filter
As mentioned earlier, quadratic convolutional neural networks (QCNN) is a key constitutional component in the
time domain filter. In this paper, we utilize the quadratic neuron proposed by Fan et al. [34], which is expressed as
follows:
y=oc((W,;sx+b)O (W, %x+by)+Wjs*(x0Ox)+ bs). ®)

where * denotes the convolutional operation.

Currently, quadratic networks have been demonstrated to possess certain advantages in both theoretical and
practical aspects. Firstly, in terms of efficiency, quadratic networks are capable of using neurons at a polynomial level
to approximate radial functions, while conventional neural network necessitate neurons at an exponential level [55].
Secondly, when it comes to feature representation, quadratic networks can achieve polynomial approximation. In
contrast, conventional networks resort to piece-wise approximation via non-linear activation functions. The polynomial
approximation is better than the piece-wise one in representing complex functions [56]. Lastly, in practical applications,
several studies have successfully incorporated quadratic neural networks into bearing fault diagnosis, and they have
reported superior performance under challenging conditions such as strong noise [35], data imbalance [57], and
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variation loads [58]. This further underscores the practical utility and robustness of quadratic networks in fault
diagnosis.

Despite the impressive performance of quadratic networks, there is a substantial increase in the number of model
parameters and non-linear multiplication operations in quadratic networks. Accordingly, the number of parameters
to be optimized has increased largely. Previous studies have shown that conventional initialization techniques can
significantly hinder the convergence of quadratic networks [44, 59]. To overcome this problem, we design a dedicated
strategy to initialize the quadratic network:

W, ~ N(0,6?), with 6 = \/1/32(k,),
b, ~ U (=B, B), with B =+/1/k,.

W2=0,W3:0,
b2:1,b3:0.

Normal initialization {

)
Zero initialization {

where N'(0, 62) represents a Gaussian distribution with zero mean, U" (—B, B) represents an uniform distribution
within the range (—B, B), and k,, denotes the kernel size of W.

The group initialization strategy, also known as ReLinear [59], aims to compel QCNN to commence from an
approximately first-order linear neuron. The initial values of high-order weights are set to zero so that it grows slowly.
This strategy greatly increases the stability of quadratic networks during training by avoiding gradient explosion. In
terms of implementation, we employ two QCNN layers to form a symmetric structure which mimics a multi-layer
deconvolution filter. The first QCNN layer maps the input into 16 channels, while the second one consolidates these
16 channels into a single output. The dimension of the output is deliberately maintained the same as the input. This
operation effectively implements a conventional BD filter using a convolutional neural network. Finally, as the QCNN
functions as a time-domain BD, the widely-used time-domain BD objective function kurtosis (Eq. (3)) is employed in
this filter. Thus, we construct the time domain BD loss as follows:

>N v

L,=——=m=lt
N, v

(10)

3.2. Superiority of cyclic features extraction by QCNN

In this section, we provide a theoretical derivation to address the following question: Why are quadratic
convolutional networks beneficial for the extraction of features from periodic and non-stationary signals?

Denote the input signal as x = [x(1), x(2), ---, x(IN)], three different weight parameters (Fan’s quadratic neuron)
as W, = [w;(1), w;(2), -+, w;(K)], where i = 1,2,3 and K < N. We can convert Eq. (7) into a sum-product form for
simplification (note that the bias terms are omitted for the sake of simplicity):

K K K
) =) wi()x(n = DILY, wy(D)x(n— il + Y, w3i)x*(n — ). (1)
i=1 i=1 i=1

As shown in Eq. (11), a quadratic network employs a convolution kernel of size K to convolve over a segment of x.
The quadratic function has two parts: the product of two inner-product terms and one power term. The inner-products
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terms can be further factorized as follows:
K K
[} w,()x(n = DY, wali)x(n — )]
i=1 i=1
=[w;(Dx(n=1)+ w;2)x(n =2) + - w (K)x(n — K)]J[wy(1)x(n — 1) + w,(2)x(n — 2) + - w,(K)x(n — K)]

K K K
=w,; (DY wr(Nx(n = Dx(n = ) + w0, wa()x(n = 2)x(n = j)) + -+ + wi2) Y wr()x(n = K)x(n = j))
=1

j=1 j=1

VE
M=~

w(Dwy(j)x(n = D)x(n — j)

1l
~.
1l

S )x(n = Dx(n = j),

I
™M
M =

I
—_
~.
I
—_

(12)
with f(i, j) = w(j)w, ().

Eq. (12) demonstrates that the inner-product terms signifies several convolution operations: cross-correlation
between filters and inputs, and autocorrelation for input signals. These operations are crucial for cancelling noise
in the bearing fault vibration signals.

Next, we establish the relations between QCNN and bearing fault signals. The ideal bearing fault mathematical
model is given as follows [18, 60]:

+00
x(t)= Y plt —iT)q(iT) + (1), (13)
i=—o00
where p(t) is an impulse response by signal impact, q(f) = q(¢ + T) is the periodic modulation with a period of T, T

denotes the interval time between two consecutive impacts on the fault, and n(¢) denotes the additive Gaussian noise.
The instantaneous autocorrelation function is defined as follows [61, 62]:

R, (t,7)= Z(x(t —7/2)x(t + 1/2)), (14)

where 7 is the time delay.
Generally, the bearing fault signal can be regarded as a second-order cyclostationary signal [60]. In other words,
this signal presents periodicity in its second-order statistics (autocorrelation function). For Eq. (13), we have:

R,,(t,7) = R, (t +iT, 7). (15)

Under this assumption, since the noise is randomized over the full time period and it has no periodicity, its
autocorrelation function is expressed as:
R,,(t,t)=0,7 #0. (16)

Lastly, let us show how the quadratic neuron enhances the fault-related signal from the noise. Combining Egs. (12)
and (13), we have:

S )x(n = Dx(n = j)

M~ M~

K K +00
= FEGDIY, DY, plt =i = KT)g(KT) + n(t — i))( 2 p(t = j = KT)q(kT) + n(t = j)]
i=1 j=1 k=—o0 k=—o00

a7)

DM~

FG DR, D) + 2R, (1, 1) + Ry (8, 1)

<.
Il
—_

—
~

Q

M= IM» I~ 1M

Il
—
<.
Il
—

FG R, ).

M =
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where (i) follows from the convolutional step being 1, that is 7 = 1; (ii) follows from p(#) and n(¢) being irrelevance,
such that R,,,(7,1) = 0. In the ideal case, R, is not equal to 0 only on the cycle period. Clearly, the autocorrelation
operation embedded in the QCNN enhances the second-order cyclostationary signal while suppressing the noise at the
same time. Eq. (17) only keeps the fault-related signals.

In addition, the second term in Eq. (11), denoted as leil w3(i)x2(n — i), also plays a crucial role, as it calculates
the power of the signal. This computation facilitates the amplification of the disparity between non-stationary impulses
and stationary signals. Consequently, the QCNN is capable of enhancing the cyclostationary fault impulse while
simultaneously suppressing the effect of random noise. Clearly, the conventional neural networks fall short in this
regard. To showcase the superiority of QCNN, we conduct a comparative analysis of the feature extraction performance
between quadratic and conventional networks in Section 5.5. Please refer to Section 5.5 for a detailed analysis on the
performance of features extracted by regular neural networks and quadratic convolutional operators.

3.3. Frequency domain linear filter with envelope spectrum objective function

In our framework, the frequency domain filter serves as an auxiliary module, and it is endowed with the capability
to directly manipulate the signal’s frequency domain. The main idea involves the utilization of the neural network as
a filter within the frequency domain, facilitated by the Fourier transform. This approach is commonly referred to as
Fourier neural networks [63, 64].

Denote the signal passing through the time domain filter as X(¢), the FFT F(-) is applied to convert the signal into
the frequency domain:

X(f) = F&@). (18)

According to the Convolution Theorem, the convolution of two time-domain data is equivalent to the inner product
in their Fourier transform domain !. Such that, a frequency filter employs a linear operation to filter the signal within
the frequency domain, thereby substituting the convolution operation in the time domain. Consequently, it is reasonable
to utilize a fully-connected neural network for the implementation of the frequency filter:

N
V()= w(HX(f)+by, (19)
f=1

where w, b are the weights and biases in the frequency domain, Y (f) denotes the filtered signal in frequency domain.
Subsequently, the IFFT F~! is employed to recover the signal to the time domain:

(0 =F X (). (20)

Second, an objective function for the frequency domain filter is also required. Previous works have proposed some
BD objective functions for the frequency domain, such as envelope spectra /; /I, norm [65], envelope spectra kurtosis
(ESK) [66], and /,/I, norm [39]. The fundamental concept underlying these approaches is the enhancement of signal
sparsity in the frequency domain, which effectively mitigates the impact of noisy frequency components. We adopt
this idea to design the objective function based on the envelope spectrum (ES). Mathematically, the Hilbert transform
(HT) is defined as:

+0o0
h(t) = %/ xX(t)——d = x(1) * % 1)

o t—7

In our study, the HT is applied after the linear layer, which is computed in the frequency domain. According to the
Convolution Theorem, we have:

H(f) = (—jsgn(/ )Y (f), (22)

where sgn(f) denotes the sign function and j denotes the sign of the complex number.
The analytic signal (discrete form) is a complex-valued signal that is obtained by the HT:

z(n) = H(n) + jh(n), (23)

where h(n) = F~Y(A(f)).

'https://en.wikipedia.org/wiki/Convolution_theorem
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Subsequently, the envelope is defined as the absolute value of z(n), and the ES is the Fourier frequency spectrum

of the envelope:
ES(f) = F(\/ $*(n) + 2(n)). (24)

At last, the objective function is designed to measure the sparsity of the ES as below:

T ES()?
L,= (25)

(ZN, ES(?

Notably, this function is similar to the kurtosis, and both these functions are specific versions of the generalized
sparsity criterion called G —1,/1, norm [67]:

N

—1 | x(m)]?

sz/zq(x) = sgn <log (g>> —Z;_l Jx(e)| 7> P4 > 0. (26)
P77 (N Ix(m)] )

Interestingly, when p = 4, ¢ = 2, it degeneralizes to the classical kurtosis Eq. ((3)); when p = 2, ¢ = 4, it becomes
Eq. ( (25)). In addition, the values of p and g affect the monotonicity of the objective function (See Appendix for
detailed derivation). The derivative of G — [, /I, norm exhibits the following characteristics [31, 39]:

ag,p/,q(x)
—— >0, whenp>g>0,

o0x @7
ag,p/,q(x)

<0, wheng > p>0.
ox

This characteristic guides the design of the joint loss function. Comparing Eq. (10) and Eq. (25), they have opposite
signs. As £, and L ; are different in monotonicity, we rearrange them slightly so that they can be optimized towards
the same direction.

We further expound on the differences between the two objective functions, as illustrated in Figure 2. Initially, we
generate Bernoulli distributed random variables (P(X = 1) = py, P(X =0) =1 — py, 0 < pg < 1) and feed them
into /, /1, (kurtosis) and /, /I, norms to demonstrate the trends. Although both functions are monotonic, they exhibit
opposite directions. More importantly, the /,//, norm follows a more pronounced exponential trend, while the /, /I,
norm exhibits an approximately linear trend. Secondly, the optimization of two functions in the time domain and ES
signals is also predicated on their sparsity. Evidently, the sparsity in the ES is much lower than in the time domain.
We anticipate the optimizer to optimize the ES in a linear interval while optimizing the time domain signal in the
exponential interval to find their optimal values. Consequently, we establish two distinct functions for BD optimization.

3.4. Integral optimization with uncertainty-aware weighing scheme

The fault-diagnosing task typically necessitates a deep learning classifier. Our module exhibits greater flexibility
compared to other denoising models as it can be readily transferred to any 1D classifier, such as Transformer and CNN.
Upon the addition of the classifier, the loss function evolves into a joint loss:

L=L,+L,+L, (28)

where £, and L ; are derived from Eq. (10) and Eq. (25) respectively; L, represents the cross-entropy loss:
£,=-) plogg, (29)
i

with p, g being the true label and predicted label, respectively.

Our framework seamlessly integrates the objective functions of BD and downstream classifier, thereby incorporat-
ing the classification labels as prior information into the BD optimization. Compared to other forms of prior knowledge,
such as cyclic frequency [23], classification labels are more readily obtainable without additional estimation, making
them more suitable to guide BD in benefiting the downstream tasks.
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Figure 2: The optimization directions of /,/I, and I,/I, norm. Where the orange points display the /,/I, values of the
noisy and clean bearing fault signals in the envelope spectrum. Blue points are the I, /I, values of the noisy and clean fault
signals in the time domain. The optimization is to maximize the /,//, value of the time domain while minimizing the /,/1,
value of the frequency domain.

In this context, optimizing ClassBD is framed as a multi-task learning problem [68]. In the context of multi-task
learning, a key challenge lies in balancing different loss components. To address this problem, we employ the so-
called uncertainty-aware weighing loss to automatically balance the importance of each loss component to the learning
problem [69]. Assume that all the tasks have task-dependent or homoscedastic uncertainty, the loss functions for all
tasks are subject to Gaussian noise, then the likelihood function can be defined as:

p1 Y (x) = N(f¥ (x),6?), (30)

where ¢ denotes the variance of the noise.
Consequently, the joint loss is formulated as:

1 1 1
£=§£c+_2£t+—2£f+logo-c+loga,+log0'f. (€29
c 0} O-f

A large value of 62 will decrease the contribution of the corresponding loss component, and vice versa. Each o is
treated as a learnable parameter with value initialized at —0.5 as per [69, 70]. During training, the scale is regulated
by the last term log ¢, which will be penalized if the o is too large. Although this strategy does not achieve perfect
equilibrium, it allows each loss to decrease smoothly and prevents rapid convergence to zero.

4. Computational experiments

4.1. Experimental configurations
4.1.1. Signal preprocessing

In this experiment, we inject additive Gaussian white noise (AWGN) to simulate scenarios with significant noise
and validate the classification performance of our method. The level of noise is determined based on the Signal-to-Noise
Ratio (SNR), which is defined as follows:

PS AS
SNR = 101g { 2> ) =201g{ == ), (32)
n n

where A, and A, denote the average amplitude of signal and noise, respectively. An SNR of O indicates that the
amplitude of the signals is equivalent to that of the noise. The lower the SNR, the higher the noise.

Under this configuration, we partition the datasets as per [71]. Firstly, the raw signals are segmented following the
time sequence to separate training and test sets, thereby preventing information leakage. Secondly, the sub-sequence is
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split with or without overlapping sampling, contingent on the volume of the data. Thirdly, we add noise to the datasets
at varying SNR levels, which are determined by the performance of models under severe degradation. The noisy signals
are then normalized using Z-score standardization.

It is noteworthy that in our settings, we simulate a more challenging scenario where the noise is generated according
to each sub-sequence. In other words, the noise power of each sub-sequence varies. This operation further increases the
difficulty of discriminating between similar signals compared to calculating the noise using the entire signal. Finally,
for the chosen datasets, the segmentation ratio differs slightly and will be elaborated upon subsequently.

4.1.2. Baselines and training settings

We adopt some state-of-the-art time domain bearing fault diagnosis methods as the baselines: 1) Deep residual
shrinkage neural network for bearing fault diagnosis (DRSN) [72]; 2) A wavelet convolutional neural network using
Laplace wavelet kernel (WaveletKernelNet) [73]; 3) An enhanced semi-shrinkage wavelet weight initialization network
(EWSNet) [74]; 4) A Gramian time frequency enhancement network (GTFENet) [75]; 5) A time-frequency transform-
based neural network (TFN) [76]. Then, for ClassBD, we adopt WDCNN [54] as our classifier.

Furthermore, the hyperparameters of all the methods have an identical configuration. All the methods have a
maximum training epochs of 200, batch size of 128, learning rate within the range [0.1, 0.3, 0.5, 0.8]. It is noteworthy
that we employ SGD [77] as the optimizer and utilize CosineAnnealingLL.R [78] to dynamically adjust the learning rate
throughout the training process. The experiments are executed on a Nvidia RTX 4090 24GB GPU and implemented
using Python 3.8 with PyTorch 2.1. All reported results represent the average of ten independent runs.

4.1.3. Evaluation metrics
We adopt the commonly used false positive rate (FPR) and F1 score to benchmark the performance of all the
considered methods. Formally, these two metrics are defined as below:

FPR = L,
FP+TN
Recall = L,
TP+ FN
.. TP
Precision = ———,
TP+ FP
2 - Precision - Recall
F1 score =

Precision + Recall ’

where TP, TN, FP, and FN stands for the number of true positive, true negative, false positive, and false negative,
respectively.

4.2. Case study 1: PU dataset
4.2.1. Dataset description

The PU dataset was collected by Paderborn University (PU) Bearing Data Center [79]. This dataset encompasses
multiple faults for 32 bearings, including vibration and current signals. The bearings were categorized into three groups:
i) Six healthy bearings; ii) Twelve bearings with manually-induced damage (seven with outer race faults, five with inner
race faults); iii) Fourteen bearings with real damage, induced by accelerated lifetime tests (five with outer race faults,
six with inner race faults, and three with multiple faults). Four operating conditions were implemented, varying the
rotational speed (N = 1500rpm or N = 900rpm), load torque (M = 0.7Nm or M = 0.1Nm), and radial force (F = 1000N
or F = 400N). The sampling frequency was set at 64KHz. This dataset is one of the more difficult datasets in the field
of bearing fault diagnosis [71].

In this study, we exclusively utilize the real damaged bearings for classification to validate the methods in real-world
scenarios. We classify the fourteen faulty bearings and six healthy bearings into fourteen categories, as illustrated in
Table 3. All the four operating conditions are tested in the experiments, with the codes assigned as NOOMO7F10,
NI15MO1F10, N15M07F4, and N15MO7F10.

Given the large volume of data in the PU dataset, each bearing has 20 segments, so we do not use overlapping to
construct the datasets. We slice 20 x 2048 sub-segments with a stride of 2048, resulting in 400 data per bearing. The
total number of datasets is 7600 x 2048. The data collected in the first 19 segments are randomly divided into training
and validation sets at a ratio of 0.8:0.2, while the data from the 20th segment are allocated to the test set. Consequently,
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the dataset includes 5776 training data, 1444 validation data, and 380 test data. Lastly, we established four SNR levels
(-4dB, -2dB, 0dB, 2dB) to evaluate the diagnosis performance.

Table 3

Fourteen categories of PU datasets in our experiments. Where OR and IR denote outer race fault and inner race fault
respectively; S, R, and M are single, repetitive, and multiple damages respectively; L1-L3 represent damage levels; F and
P are fatigue and plastic deform, respectively.

Category Bearing Code Damage ‘ Category  Bearing Code Damage

1 K01-K06 Healthy 8 KB24 (OR+IR)+M+L3+F
2 KAO04 OR+S+L14+F 9 KB27 (OR+IR)+M+L1+P
3 KA15 OR+S+L1+P 10 K104,KI14 IR+M+L1+F

4 KA16 OR+R+L2+F 11 Kl16 IR+S+L3+F

5 KA22 OR+S+L14+F 12 Kl17 IR+R+L14-F

6 KA30 OR+R+L1+P 13 KI18 IR+S+L2+F

7 KB23 (OR+IR)+M+L2+F | 14 Ki21 IR+S+L1+F

4.2.2. Classification results

The classification results are presented in Table 4. We highlight key findings from the analysis. Notably, the
ClassBD model demonstrates superior performance compared to its competitors across various noise levels and
operating conditions. Overall, the average F1 scores of ClassBD on the four conditions are higher than 94%.
Specifically, under high noise conditions (at -4 dB), the ClassBD exhibits a substantial performance gap relative to
other methods. For instance, on the N1SMO1F10 dataset with -4dB noise, the ClassBD achieves an impressive 95% F1
score, while the second-best method, EWSNet, only attains 70% F1. These results underscore the efficacy of ClassBD
as a robust anti-noise model, consistently delivering competitive performance across diverse high-noise scenarios.

Table 4
Classification results on the PU datasets. Where bold-faced numbers denote the better results.
. . SNR=-4dB SNR=-2dB SNR=0dB SNR=2dB Average
Operating Condition  Method FI1 FPRI FLf FPRI FLf FPR| FL{ FPRI| FLi FPRJ
WaveletKernelNet  67.45% 2.30%  74.09% 1.80% 83.14% 1.01% 89.04% 0.68% 78.43%  1.45%
EWSNet 87.28% 091% 92.81% 0.49% 96.18% 0.28% 97.60% 0.18% 93.47% 0.47%
NO9MO7F10 GTFENet 70.68% 1.80% 82.19% 1.08% 92.39% 0.52% 90.34% 0.59% 83.90% 1.00%
TFN 2424% 5.87% 30.12% 5.45% 46.66% 4.37% 3.70% 7.69% 26.18% 5.85%
DRSN 51.95% 2.83% 61.74% 2.28% 71.28% 1.84% 71.42% 1.49% 64.10% 2.11%
ClassBD 92.08% 0.60% 95.35% 0.34% 98.28% 0.13% 99.27% 0.05% | 96.25% 0.28%
WaveletKernelNet 29.91% 3.94% 53.56% 2.67% 66.60% 1.95% 82.73% 1.08% 58.20% 2.41%
EWSNet 69.66% 1.86% 82.65% 1.07% 94.89% 0.31% 99.06% 0.06% 86.56% 0.83%
N15MO1F10 GTFENet 47.70% 3.22% 72.85% 1.51% 92.13% 0.45% 92.89% 0.44% 76.39% 1.41%
TFN 32.46% 5.34% 37.94% 5.01% 51.75% 3.79% 60.85% 3.38% | 45.75% 4.38%
DRSN 52.29% 2.76% 67.15% 1.87% 81.88% 1.20% 88.81% 0.78% 72.53% 1.65%
ClassBD 95.19% 0.36% 98.87% 0.08% 99.63% 0.02% 99.71% 0.02% | 98.35% 0.12%
WaveletKernelNet  17.16% 4.82% 42.61% 3.30% 75.14% 1.38% 53.78% 2.38% | 47.17% 2.97%
EWSNet 81.06% 1.12% 88.49% 0.65% 96.42% 0.23% 98.71% 0.08% 91.17% 0.52%
N15MO7E04 GTFENet 65.56% 1.96% 78.51% 1.30% 95.60% 0.26%  98.40%  0.10% 84.51% 0.90%
TFN 26.22% 5.75% 31.63% 5.41% 50.40% 3.89% 61.71% 3.24% 42.49% 4.57%
DRSN 25.49% 4.14% 52.14% 2.81% 72.41% 1.56% 87.31% 0.75% 59.34% 2.32%
ClassBD 96.52% 0.24% 97.35% 0.18% 99.20% 0.05% 99.44% 0.03% | 98.13% 0.13%
WaveletKernelNet  45.93% 3.13% 51.33% 2.81% 61.39% 2.14% 78.33% 1.18% 59.24% 2.31%
EWSNet 57.38% 2.39% 76.01% 1.37% 95.84% 0.27% 98.60% 0.10% 81.96% 1.03%
N15MO7F10 GTFENet 23.93% 4.26% 79.42% 1.14% 96.57% 0.21% 97.97% 0.12% 74.47%  1.43%
TFN 30.47% 5.44% 33.87% 5.29% 68.23% 2.88% 8.50% 6.27% 35.27% 4.97%
DRSN 33.80% 3.91% 6251% 2.23% 86.19% 0.90% 92.14% 0.48% 68.66% 1.88%
ClassBD 80.13% 1.28% 97.35% 0.18% 99.48% 0.03% 99.44% 0.04% | 94.10% 0.38%
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4.2.3. Classification under small sample conditions

In this study, we rigorously assess the performance of various methods under the challenging scenario of
extremely limited sample availability. While our approach is not explicitly tailored for small sample issues, we conduct
straightforward tests to gain insights into their behavior.

Specifically, we employ the NOOMO7F10 dataset, comprising 20 signal segments per category. In the most stringent
case, we retain only one sample from each signal segment, reserving the last segment of the signal as the test set.
Consequently, we collect one to three samples from each signal segment and finally compose 15, 30, and 45 samples
per class for training sets. Notably, we exclude noise from this experiment.

The results, depicted in Figure 3, reveal that even under these constrained conditions, the ClassBD, EWSNet, and
DRSN models exhibit commendable performance. Remarkably, all three methods achieve over 90% F1 scores with a
training dataset of just 15 samples per class. Notably, the performance of ClassBD and EWSNet closely align. Their
average F1 scores stand at 97.70% and 97.47%, respectively, positioning them as the top-performing approaches. In
summary, our findings underscore the promising potential of ClassBD in addressing the challenges posed by small
sample sizes

T = 1
I ClassBD
[ Waveletnet]
[ 1EWSNet
[ GTFENet
[ T7FN
[ DRSN

F1 Score (%)

30 2
# Samples

Figure 3: The F1 scores (%) of baseline methods on the PU NO9MO7F10 dataset under small sample conditions.

4.3. Case study 2: JNU dataset
4.3.1. Dataset description

This dataset was provided by Jiangnan University (JNU) [80]. Two types of roller bearings were artificially injected
with inner race defects (bearing N205), outer race defects and ball defects (bearing NU205) by a wire-cutting machine.
Three different rotation speeds (600rpm, 800rpm, 1000rpm) were implemented to test the bearings. The sampling rate
was set to SOKHz, resulting in signal segments of 20 seconds each. This dataset is one of the more difficult datasets in
the field of bearing fault diagnosis [71].

To facilitate varying rotation speed classification, we organized the data into ten classes. These classes encompass
three fault types across the three different speeds, along with a healthy class. Furthermore, compared to the PU dataset,
the JNU dataset is characterized by a limited data volume. Consequently, we adopted an overlapping strategy to extract
signal segments, with a stride of 100. The final dataset configuration involved allocating the last 25% of the data as the
test set. Prior to this, the remaining data were randomly partitioned into training and validation sets, maintaining an
80:20 split ratio.

In summary, the dataset statistics are as follows: 54,064 samples in the training set, 13,517 samples in the validation
set, and 22,269 samples in the test set. Also, we introduce four SNR levels: -10 dB, -8 dB, -6 dB, and -4 dB for
evaluation.
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4.3.2. Classification results

The classification results, as summarized in Table 5, yield valuable insights. Notably, the ClassBD model
consistently outperforms its competitors across various noisy conditions. Overall, The ClassBD achieves an impressive
F1 score exceeding 96%, surpassing the second-best method, EWSNet, which attains an average F1 score of 92.75%.
To be specific, even in the presence of severe noise (at -10 dB), our method maintains a commendable 93% F1 score.
This remarkable performance underscores the ClassBD’s excellent anti-noise capabilities. In comparison, under the
same noisy conditions, other methods, excluding EWSNet, experience significant degradation. At last, the JNU dataset
experiment substantiates that our approach effectively realizes bearing fault diagnosis across varying rotational speeds,
even in challenging high-noise environments.

Table 5
Classification results on the JNU dataset. Where bold-faced numbers denote the better results.
Method SNR=-10dB SNR=-8dB SNR=-6dB SNR=-4dB ‘ Average

Flt FPR| F11 FPR| FLf FPR| F1{ FPRL| Fl11 FPR|
WaveletKernelNet  42.19% 4.43% 74.72% 1.66% 70.75% 1.66% 74.36% 1.52% | 65.50% 2.32%

EWSNet 89.39% 0.63% 90.06% 0.62% 95.03% 0.29%  96.51% 0.21% | 92.75% 0.44%
GTFENet 63.35% 2.13% 80.19% 1.28% 91.45% 0.52% 93.98% 0.34% | 82.24% 1.07%
TFN 58.90% 3.01% 39.86% 5.30% 6.69%  10.00% 18.74% 6.58% | 31.05% 6.22%
DRSN 33.60% 4.80% 50.55% 3.36% 56.89% 2.54% 57.96% 2.42% | 49.75% 3.28%
ClassBD 93.06% 0.42% 96.20% 0.23% 97.33% 0.17% 98.54% 0.09% | 96.28% 0.23%

4.4. Case study 3: HIT dataset
4.4.1. Dataset description

The Harbin Institute of Technology (HIT) dataset was collected by our team. The data acquisition for faulty bearings
was conducted at the MIIT Key Laboratory of Aerospace Bearing Technology and Equipment at HIT. The bearing test
rig and faulty bearings are illustrated in Figure 4. This test rig follows the Chinese standard rolling bearing measuring
method (GB/T 32333-2015). The test bearings used were HC7003 angular contact ball bearings, typically employed
in high-speed rotating machines. For signal collection, an acceleration sensor was directly attached to the bearing, and
the NI USB-6002 device was used at a sampling rate of 12 KHz. Approximately 47 seconds of data were recorded for
each bearing, resulting in 561,152 data points per class. The rotation speed was set to 1800rpm, significantly faster
than previous datasets.

Moreover, defects were manually injected at the outer race (OR), inner race (IR), and ball, similar to the JNU
dataset. However, we established three severity levels (minor, moderate, severe), resulting in ten classes, as detailed in
Table 6. This dataset presents a greater challenge than the JNU dataset due to the faults being cracks of the same size
but varying depths, leading to more similarity in the features of different categories.

The segmentation of the dataset is similar to that of the JNU dataset. A stride of 28 was set to acquire a larger
volume of data. The last quarter of the data was designated as the test set, while the remaining data were randomly
divided into training and validation sets at a ratio of 0.8:0.2. Consequently, the training set, validation set, and test set
comprise 113920, 28480, and 46732 samples, respectively. Lastly, the SNR levels were set at -10dB, -8dB, -6dB, -4dB.

Table 6
Ten healthy statuses in our HIT dataset. OR and IR denote that the faults appear in the outer race and inner race,

respectively.

Category Faulty Mode ‘ Category Faulty Mode
1 Health 6 OR (Moderate)
2 Ball cracking (Minor) 7 OR (Severe)
3 Ball cracking (Moderate) | 8 IR (Minor)
4 Ball cracking (Severe) 9 IR (Moderate)
5 OR cracking (Minor) 10 IR (Severe)
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Figure 4: The bearing fault test rig and three types of faults.

4.4.2. Classification results

The classification results are presented in Table 7. Several observations observations are as follows. Firstly, ClassBD
outperforms its competitors in terms of both F1 score and FPR across all noise conditions. The F1 score of ClassBD
exceeds 96%, compared to the second-best method, EWSNet, which achieves an average F1 score of 92.75%. Secondly,
it is noteworthy that even under severe noise conditions (-10dB), ClassBD maintains an F1 score of 93%, indicating
its robust anti-noise performance. Under these conditions, the performance of all other methods, except EWSNet,
degrades significantly. This phenomenon highlights the superiority of ClassBD.

Table 7
Classification results on the HIT dataset. Where bold-faced numbers denote the better results.
Method SNR=-10dB SNR=-8dB SNR=-6dB SNR=-4dB Average

FLt FPRY FL1 FPR| F1t FPR| F1f FPRl| FL1 FPR|
WaveletKernelNet  20.93%  7.68% 51.64% 4.64% 66.58% 3.17% 83.89% 1.49% | 55.76%  4.25%

EWSNet 48.23% 5.10% 63.91% 3.58% 78.39% 2.02% 83.99% 1.49% | 68.63%  3.05%
GTFENet 42.01% 5.63% 5253% 4.93% 76.79% 2.58% 82.90% 1.68% | 63.56% 3.70%
TFN 752% 9.53% 19.90% 8.54% 36.14% 6.67% 61.65% 4.02% | 31.30% 7.19%
DRSN 32.83% 6.80% 61.67% 3.77% 59.31% 4.12% 84.85% 1.38% | 59.67% 4.01%
ClassBD 86.15% 1.29% 86.84% 1.42% 93.74% 0.69% 97.23% 0.32% | 90.99% 0.93%

Furthermore, we reduce the dimensions of the last layer features of all methods to 2D space using t-SNE [81] under
-10dB noise. The results are depicted in Figure 5. Overall, the features of the five methods can generate distinct clusters,
with the exception of TFN, which aligns with their categorical performance. However, all methods exhibit some
degree of misclassification. For instance, the red points (OR3) of DRSN and EWSNet appear within the blue clusters
(B3), indicating that some instances of OR3 are misclassified as B3. Similarly, in GTFENet and WaveleKernelNet,
some green points (IR3) overlap with the IR2 and B3 clusters. In contrast, ClassBD only has a few outliers that are
misclassified into other clusters, demonstrating its superior feature extraction ability under high noise conditions.

In summary, based on the performance across three datasets, we illustrate the average F1 scores of all methods
in Figure 6. The results indicate that our method, ClassBD, outperforms other baseline methods on all datasets, with
average F1 scores exceeding 90%. This underscores the robust anti-noise performance of ClassBD.
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Figure 5: The t-SNE visualization of the last convolutional features of all methods on the -10dB HIT dataset.

5. Computational experiments
5.1. Comparison of BD methods

Despite the recent proposal of many BD methods, a few works have validated their fault diagnosis performance via
the integration of classifiers. Initially, we assess the performance of these BD methods by employing WDCNN as the
post-BD classifier. For comparative analysis, we utilize four prior-free BD methods: minimum entropy deconvolution
(MED) [26], sparse maximum harmonics-to-noise-ratio Deconvolution (SMHD) [82], improved maximum correlated
kurtosis deconvolution (IMCKD) [83], and multi-task neural network blind deconvolution (MNNBD) [31]. The metric
employed for this evaluation is also the F1 score.

The classification results of the three datasets are presented in Table 8. Collectively, our approach outperforms
others on all three datasets, indicating that the classifier-guided optimization is more apt for fault diagnosis. This
is because traditional BD methods employ unsupervised optimization, whereas our method implements supervised
learning, which introduces class-aware information. Furthermore, our approach is a streamlined one-step pipeline.
When compared to the combination of conventional BD and classifiers, our method demonstrates superior effectiveness
under noise-affected conditions.

Table 8
The F1 scores (%) of different BD methods on three datasets.

MED SHMD IMCKD MNNBD ClassBD

NO9MO7F10 0dB  63.21% 75.12% 73.35%  72.52% 98.28%
JNU -6dB 88.64% 89.88% 90.02%  90.33% 97.51%
HIT -6dB 66.12% 70.61% 69.63% 73.23% 98.47%

On the other hand, it is imperative to validate the denoising performance of BD methods in the frequency domain,
thereby demonstrating that these methods indeed extract fault-related features and provide interpretability. Therefore,
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Figure 6: The average F1 scores of all methods across the compared datasets.

we design a frequency domain metric called fault frequency index (FFI), which is defined as follows:

1
FFI = % Y max[EES(if, —0.1f,). EES(if, +0.1f,)]. (33)

i=1

Where, f, represents the fault characteristic frequency, I is the number of harmonic frequencies (set to I = 5), 0.1
constitutes an interval of the random drift of f, in the actual measured signals [18], The term EE.S(-) signifies the
enhanced envelope spectrum, obtained by performing Fast-SC [84]:

N
EES@ = Y, I S, (34)
=1

where y, (e, f) is the spectral coherence, N denotes the number of discrete frequency, and « is the cyclic frequency,
which encompasses fault characteristic frequencies f, and other cyclic frequency components. Compared to the
squared envelope spectrum (ES), the EES can amplify the non-zero cyclic frequency. Hence, the EES is apt for
identifying the amplitude of fault characteristic frequencies and computing the FFL.

Subsequently, we utilize the JNU dataset to demonstrate the feature extraction performance. The SNR is set to
-10dB, and we apply BD methods to all faulty signals, and then calculate the FFI of the signals post-BD. The results
are illustrated in Table 9. From these results, we can make several observations. Firstly, ClassBD is highly effective
in extracting fault-related features, as evidenced by the highest FFIs across all signals, surpassing even the raw clean
signals. Secondly, on average, all BD methods are capable of enhancing the fault characteristic frequencies. The FFIs
are consistently higher than the noisy signals, with MNNBD ranking second-best, achieving an average improvement
of 41% compared to the noisy signals.

Finally, we present a comparison of the feature extraction performance on the B1000 signal using Fast-SC. As
depicted in Figure 7, the bright lines in the spectral coherence suggest that the magnitudes of the cyclic frequencies a
and corresponding frequency bands are elevated. And the EES displays the intensity of the extracted cyclic frequencies
of the signal post-BD. Several observations can be made from this. Firstly, the noise significantly attenuates the
characteristics of the signal. A comparison between Figure 7 (a) and (b) reveals that the intensity of all frequency
bands is suppressed, with the lower frequency bands being more severely drown out by the noise. Secondly, all BD
methods are capable of enhancing the cyclic frequency characteristics of the signal, indicating the effectiveness of BD in
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Table 9

The FFI of different BD methods on the JNU dataset. Higher is better. OR, IR, B represent the outer, inner and ball faults
respectively and the numbers (600,800, 1000) denote the rotating speeds.

OR600 OR800 OR1000 [IR600 IR800 IR1000 B600 B800 B1000 ‘ Average
Raw signal 0.51 0.38 0.38 0.38 0.45 0.39 0.31 0.60 0.49 0.43
Noisy signal (-10dB) 0.25 0.17 0.16 0.17 0.24 0.20 0.11  0.10 0.09 0.17
IMCKD 0.25 0.18 0.15 0.18 0.22 0.19 0.12 0.25 0.19 0.19
SHMD 0.18 0.14 0.11 0.17 0.16 0.21 0.19 025 0.23 0.18
MED 0.25 0.18 0.15 0.18 0.22 0.19 0.12 0.26 0.19 0.19
MNNBD 0.13 0.23 0.29 0.24 0.31 0.28 0.20 0.17 0.29 0.24
ClassBD 0.62 0.42 0.44 0.68 0.86 0.73 0.37 0.87 0.48 0.61

extracting fault-related features from noisy signals. Specifically, MNNBD focuses on the fundamental cyclic frequency,
resulting in the extraction of full frequency bands at the first cyclic frequency. While SHMD and MED enhance all
cyclic frequency bands, the amplitude of the individual cyclic frequencies is lower. Lastly, ClassBD exhibits the best
performance. It significantly enhances the cyclic frequency characteristics of the signal. More importantly, ClassBD
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Figure 7: Comparison of BD methods on the JNU B1000 signal.
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5.2. Classification results on various noise conditions

To underscore the superior performance of ClassBD in handling various types of noise, we conduct a comparative
analysis using several synthetic and real-world noises.

First, we generate Gaussian and Laplace noises from their respective probability density functions:

—x=w)?
Gaussian Noise : g(x|u,0) = e 2% |
o\ 2rx (35)
—lx—rl
Laplace Noise : I(x|y,b) = ZLbe b s

where u and o denote mean and standard deviation respectively, and are set 4 = 0,0 = 1 for Gaussian noise. For
Laplace noise, y represents the location parameter and b is the scale parameter, withy = 0,5 = 1.

Furthermore, pink noise is generated in the frequency domain, with its power spectral density inversely proportional

to the signal frequency:
1
e
where f denotes the randomly determined frequency of the noise, and « is set to 1. In this experiment, we validate the
classification performance on the PU "NO9MO7F10" dataset and set the SNR to -4dB for all synthetic noises.

Lastly, we employ two types of real-world noises, collected from an airplane and a truck using acoustic sensors, to
simulate bearings operating under real-world conditions >. Due to the discrepancy between the signal power captured
by the acoustic and vibration sensors, we adjust the noise power to match the power of the vibration signal, thereby
simulating a real-world bearing failure scenario.

The experimental results, presented in Table 10, reveal that our method delivers the highest average F1 score, out-
performing the second-best method by 20%. This underscores the superior anti-noise performance of ClassBD across
different types of noise. Specifically, Gaussian noise is the easiest to handle, with several methods (WaveletKernelNet,
EWSNet, GTFENet, ClassBD) achieving optimal results at the same SNR. Conversely, pink noise appears to be the
most challenging, as evidenced by the highest-performing method only achieving an 83% F1 score. This is likely due
to pink noise being generated in the frequency domain, which can interfere with the signal frequency. Finally, when
considering the two real-world noises, ClassBD significantly outperforms other methods, demonstrating approximately
40% improvement over the second-best method. A comparison of the performance of several methods reveals that the
difficulty of handling real-world noise lies somewhere between Gaussian and Laplace noise, indicating the efficacy of
using synthetic noise to simulate real-world scenarios.

Pink Noise : S(f) (36)

Table 10
The F1 scores (%) of all methods on the PU "NO9MO7F10" dataset with different noise.

Airplane Truck Pink=-4dB  Laplace=-4dB  Gaussian=-4dB  Average

WaveletKernelNet  49.88%  47.94% 48.36% 59.08% 67.45% 54.54%
EWSNet 61.19% 58.30% 80.58% 60.51% 87.28% 69.57%
GTFENet 61.19% 67.36% 68.58% 41.27% 70.68% 61.81%
TFN 26.64% 26.07% 24.05% 14.39% 24.24% 23.07%
DRSN 58.96% 55.36% 48.13% 51.49% 51.95% 53.17%
ClassBD 90.01% 91.01% 83.68% 90.52% 92.08% 89.46%

5.3. Employing ClassBD to deep learning classifiers

Given that ClassBD serves as a signal preprocessing module, it possesses the flexibility to be integrated into
various backbone networks. In the context of this experiment, we assess the classification performance by incorporating
ClassBD into four widely recognized deep learning classifiers: ResNet [85], MobileNetV3 [86], WDCNN [54], and
Transformer [87]. It is important to note that some networks were initially designed for image classification, so some
parameters are revised to accommodate the 1D signal input. The properties of these backbone networks are illustrated

in Table 11.

Zhttps://github.com/markostam/active-noise-cancellation
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Table 11
The properties of compared backbone networks. Where #FLOPs represents floating point operations, inference time
denotes the elapsed time to infer one sample (1 x 2048) on an Intel i9-10900K CPU.

Backbone network  #Params  #FLOPs Inference time (ms)

WDCNN 67.30k 1.61M 3.99
Transformer 0.41M 7.45M 5.08
ResNet18 3.83M 0.35G 13.96
MobilieNetV3 5.32M 77.4M 22.98

Firstly, the classification results on the PU dataset are illustrated in Table 12. Predominantly, ClassBD has
demonstrated its efficacy in enhancing performance. For instance, in the case of NOOMO7F10 with -4dB noise, the
application of ClassBD results in an improvement exceeding 10% across all backbones. On average, when the SNR is
-4dB, ClassBD achieves F1 scores of 87.60%, whereas the raw networks only yield 64.07%.

Table 12
The F1 scores (%) of the compared backbone networks on the PU datasets.
Working Condition  Backbone Network SNR=-4dB SNR=-2dB
Raw ClassBD  Improvement Raw ClassBD  Improvement

MobilieNetV3 71.86%  84.49% 12.64% 77.84%  97.20% 19.36%

NOOMO7F10 ResNET18 63.39% 84.99% 21.60% 73.11%  74.29% 1.17%
WDCNN 50.75%  79.06% 28.31% 65.74%  95.35% 29.61%
Transformer 61.15%  82.34% 21.19% 64.87%  87.69% 22.82%
MobilieNetV3 84.30% 82.65% -1.66% 91.32%  96.15% 4.83%

N15MO1F10 ResNET18 3.70% 88.57% 84.88% 22.78%  94.22% 71.44%
WDCNN 78.67%  95.19% 16.51% 90.71%  98.87% 8.16%
Transformer 75.94%  81.45% 5.51% 82.76%  89.29% 6.54%
MobilieNetV3 86.95%  94.55% 7.60% 91.37%  97.82% 6.45%

N15MO7F04 ResNET18 40.57%  87.28% 46.71% 56.53%  96.46% 39.93%
WDCNN 81.59%  96.52% 14.94% 92.60%  97.35% 4.75%
Transformer 83.68% 88.37% 4.69% 79.41%  80.34% 0.93%
MobilieNetV3 89.19%  91.99% 2.80% 91.80%  97.66% 5.86%

N15MO7E10 ResNET18 3.68% 94.05% 90.37% 88.89%  95.41% 6.52%
WDCNN 74.35% 80.13% 5.78% 59.33% 97.35% 38.02%
Transformer 75.35%  89.97% 14.62% 76.97%  94.88% 17.91%

Average 64.07%  87.60% 23.53% 75.38%  93.15% 17.77%

Subsequently, we also test these models to the JNU and HIT datasets, setting the SNRs to -6dB and -4dB
respectively. As depicted in Table 13, ClassBD exhibits commendable performance on both datasets, and all backbones
experience a performance boost. Specifically, on the JNU dataset, the F1 scores exceed 90% post the employment
of ClassBD, irrespective of the backbone performance. Furthermore, a substantial improvement is observed in the
Transformer. The raw Transformer initially yields F1 scores around 50% on the JNU and HIT datasets, which, after
the application of ClassBD, escalates to an average F1 score of 90%.

Finally, the results on the three datasets suggest that ClassBD can function as a plug-and-play denoising module,
thereby enhancing the performance of deep learning classifiers under substantial noise. Considering both performance
and model size, the simplest backbone, WDCNN, achieves consistent performance under all conditions. Consequently,
we recommend it as the backbone for bearing fault diagnosis.

5.4. Employing ClassBD to machine learning classifiers
In comparison of deep learning models, classical machine learning (ML) classifiers offer some distinct advantages,
including robust interpretability and lightweight models. However, these “shallow” ML methods invariably rely on
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Table 13
The F1 scores (%) of the compared backbone networks on the JNU and HIT datasets.
Dataset  Backbone Network SNR=-6dB SNR=-4dB
Raw ClassBD  Improvement Raw ClassBD  Improvement
MobilieNetV3 84.16%  93.59% 9.42% 90.61%  96.73% 6.12%
INU ResNET18 69.73%  95.31% 25.59% 6.69% 97.73% 91.04%
WDCNN 94.35%  97.33% 2.98% 95.98%  98.54% 2.57%
Transformer 54.25%  94.58% 40.32% 53.30% 96.81% 43.51%
Average 75.62%  95.20% 19.58% 61.65%  97.45% 35.81%
MobilieNetV3 68.62%  94.31% 25.69% 86.21%  95.38% 9.17%
HIT ResNET18 49.24%  86.18% 36.94% 85.03% 86.57% 1.53%
WDCNN 85.11%  93.74% 8.63% 94.15%  97.23% 3.07%
Transformer 42.95%  80.14% 18.26% 61.88%  95.58% 52.63%
Average 61.48%  88.59% 22.38% 81.82%  93.69% 16.60%

human-engineered features for bearing fault diagnosis, thereby exhibiting limited generalization ability in the design
of end-to-end diagnozing models [6]. Given that ClassBD can enhance the performance of deep learning classifiers,
we posit that it can also serve as a feature extractor to augment the performance of classical ML classifiers.

Consequently, in this experiment, we utilize the pre-trained ClassBD as a feature extractor and feed the output
of ClassBD into several ML classifiers for comparison: support vector machine (SVM) [88], k-nearest neighbor
(KNN) [89], random forest (RF) [90], logistic regression (LR) [91], and a highly efficient gradient boosting decision
tree (LightGBM) [92].

The results are presented in Table 14. Evidently, ClassBD significantly facilitates the performance of ML methods.
Directly inputting raw signals into these ML classifiers results in markedly poor performance. On the JNU and
HIT datasets, SVM and RF even fail to converge. However, with the incorporation of ClassBD, the classification
performance experiences a substantial improvement. For instance, the KNN achieves a 90.71% F1 score on the JNU
dataset, compared to a mere 2.89% F1 score without ClassBD. This performance even surpasses some deep learning
methods. Nonetheless, ML methods exhibit instability across different datasets. The best-performing ML methods
can only achieve a 49.77% score on the PU dataset. Despite this, we believe that the combination of ClassBD and
ML methods presents a promising solution, promoting the study of high interpretability and efficiency in diagnostic
approaches. We will explore this topic further in our future work.

Table 14
The F1 scores (%) of different machine learning methods on three datasets. Where the bold-faced numbers are the better

results, '-" denotes the model failed to converge.
SVM KNN RF LR LightGBM
Raw ClassBD  Raw  ClassBD Raw ClassBD Raw ClassBD Raw ClassBD

PU-NO9MO7F10 (-4dB) 16.59%  40.28% 6.80% 49.77%  7.70%  31.99% 15.48% 52.73% 12.30% 38.68%
JNU (-10dB) - 89.74% 2.89% 90.711% 16.28% 90.30% 13.58% 88.06%  18.36%  89.38%
HIT (-10dB) - 72.58% 1.90% 73.69% - 68.91% 23.85% 49.28% 35.82% 75.78%

Dataset

5.5. Feature extraction ability of quadratic and conventional networks

Previously, we have theoretically demonstrated that quadratic networks possess superior cyclostationary feature
extraction ability to conventional networks. It is also necessary to validate the performance in practice. Therefore, we
construct two time-domain filters using quadratic convolutional layers and conventional convolutional layers with an
identical structure and then evaluate their feature-extraction performance on the JNU dataset subjected to -10 dB noise.

The signals are analyzed using the Fast-SC method [84]. The results, as depicted in Figure 8, clearly demonstrate
that the quadratic network outperforms in terms of feature extraction capability. The bright lines in the spectral
coherence, highlight the quadratic network can extract cyclic frequency across high and low frequency bands. Despite
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the severe attenuation of the signal amplitude due to the noise, the quadratic network effectively recovers the cyclic
frequency of the signal. Remarkably, the amplitude of the initial few cyclic frequencies is even higher than that of the
raw signal.
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Figure 8: Denosing performance of the quadratic neural network and conventional network on the JNU dataset.

5.6. Comparison of ClassBD filters

Given that ClassBD comprises two filters, we explore their respective contributions in this experiment. Here we
test four combinations: a standalone time domain filter (T-filter), a standalone frequency domain filter (F-filter), an
F-filter followed by a T-filter, and our proposed scheme (a T-filter followed by an F-filter).

The results are presented in Table 15. Primarily, our scheme exhibits superior performance, indicating that both
filters contribute significantly to the classification. Secondly, when comparing the single T-filter and F-filter, their
performances are found to be dataset-dependent. On the PU and HIT datasets, T-filters outperform F-filters, whereas
their performance is inferior to F-filters on the JNU dataset.

Lastly, the F-T filter demonstrates instability across the three datasets, with the average F1 score showing only
about a 1% improvement compared to the single filter module. A plausible explanation for this is that the F-filter
operates across the entire frequency domain. If it is employed as the first filter, it is susceptible to significant information
loss. This is illustrated in Figure 9, where we plot the envelope spectrum of the outputs of the F-filter and T-filter. A
comparison of raw and noisy signals reveals that the fault characteristic frequencies f, are severely suppressed and
distorted. While T-filters can still recover the f,. in different faults, the F-filter amplifies the energy across all frequency
bands, causing the f, to be overwhelmed. Therefore, our scheme initially employs a T-filter to extract f,, from the noisy
signals, followed by an F-filter to enhance the energy in the frequency domain.

6. Conclusions

In this study, we have introduced a novel approach termed as ClassBD for bearing fault diagnosis under heavy noisy
conditions. ClassBD is composed of cascaded time and frequency neural BD filters, succeeded by a deep learning
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Table 15
The F1 scores (%) of different neural filters on three datasets. Where T-filter represents time domain quadratic convolutional
filter, F-filter represents frequency domain filter

T-filter ~ F-filter  F-T filter  T-F filter (Ours)

PU-NO9MO7F10 (-4dB) 63.01% 56.48% 58.23% 92.08%
JNU (-10dB) 82.28% 89.26% 88.44% 93.06%
HIT (-10dB) 61.99% 60.83% 64.11% 86.15%
Average 69.09% 68.86% 70.26% 90.43%
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Figure 9: The envelope spectrum of the signals and the output of F/T filters on the HIT dataset. Where IR denotes inner
race fault, OR denotes outer race fault, and f, is the fault characteristic frequency.

classifier. Specifically, the time BD filter incorporates quadratic convolutional neural networks (QCNN), and we have
mathematically proved its superior capability in extracting periodic impulse features in the time domain. The frequency
BD filter includes a fully-connected linear filter, supplementing the frequency domain filter subsequent to the time
filter. Furthermore, a deep learning classifier is directly integrated to empower classification capabilities. We have
devised a physics-informed loss function composed of kurtosis, /,/I, norm, and cross-entropy loss to facilitate the
joint learning. This unified framework transforms traditional unsupervised BD into supervised learning, providing
interpretability due to its retention of conventional BD operations. Finally, comprehensive experiments conducted on
three public and private datasets reveal that ClassBD outperforms other state-of-the-art methods. ClassBD represents
the first BD method that can be directly applied to classification and it exhibits a good noise resistance, portability, and
interoperability. Therefore, ClassBD holds a great potential for further generalization on other difficult tasks such as
cross-domain and small sample issues in future research.

Appendix

The monotonicity of the sparsity objective function is derived as follows [31, 39]:
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First, given the input vector x € RX, the G — I »/1, norm can be unfolded as:
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N N

|x(nma")|”—1( > |x(n)|q+|x(nma")|“)—|x(nma")|“—1< D |x<n)|”+|x(nma")|”>

n=1,n#nMax n=1,n#nmax

(39
(20 o X 14 1) 19) (T 15 () 17+ 1x (7 17)
| (nmax) |4 - [ (nmax) |2 ’
when p > g > 0, the following inequality holds:
S s [X )17 [x ()[4 T [ () [P+ [ () [P
n# i 40
e () 7 e ) |7 0
Therefore, substituting (40) into (38), we have:
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Similarly, when 0 < p < g, we have:

G111, (%)

Olx () | <0. (42)

Eq. (41) and Eq. (42) demonstrate that the Q,p /1y is a monotonic function with respect to the relationship between p

and gq. Therefore, we set the loss function of /4 /I, norm and /, /I, norm with the opposite sign to keep the optimization
direction consistent.

References

(1]
[2]
[3]
[4]

[3]
[6]
[7]
[8]
[9]
[10]
(11]
[12]

(13]
[14]

[15]
(16]

(17]
(18]
(19]

(20]
[21]

[22]
(23]

[24]
(25]
[26]
(27]
[28]

[29]

R. B. Randall, V.-b. C. Monitoring, Industrial, aerospace and automotive applications, Vibration-based Condition Monitoring. West Sussex
(2011) 13-20.

Y. Miao, B. Zhang, J. Lin, M. Zhao, H. Liu, Z. Liu, H. Li, A review on the application of blind deconvolution in machinery fault diagnosis,
Mechanical Systems and Signal Processing 163 (2022) 108202.

Z. Wang, J. Zhou, W. Du, Y. Lei, J. Wang, Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution,
Mechanical Systems and Signal Processing 162 (2022) 108018.

S. Li, J.Ji, Y. Xu, X. Sun, K. Feng, B. Sun, Y. Wang, F. Gu, K. Zhang, Q. Ni, Ifd-mdcn: Multibranch denoising convolutional networks with
improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions, Reliability Engineering & System
Safety 237 (2023) 109387.

S. Li, J. Ji, Y. Xu, K. Feng, K. Zhang, J. Feng, M. Beer, Q. Ni, Y. Wang, Dconformer: A denoising convolutional transformer with joint
learning strategy for intelligent diagnosis of bearing faults, Mechanical Systems and Signal Processing 210 (2024) 111142.

S. Zhang, S. Zhang, B. Wang, T. G. Habetler, Deep learning algorithms for bearing fault diagnostics—a comprehensive review, IEEE Access
8 (2020) 29857-29881.

T. Zuo, K. Zhang, Q. Zheng, X. Li, Z. Li, G. Ding, M. Zhao, A hybrid attention-based multi-wavelet coefficient fusion method in rul prognosis
of rolling bearings, Reliability Engineering & System Safety 237 (2023) 109337.

P. Liang, J. Tian, S. Wang, X. Yuan, Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet
transform and an improved domain adaptation network, Reliability Engineering & System Safety 242 (2024) 109788.

X. Lou, K. A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy inference, Mechanical Systems and Signal Processing
18 (2004) 1077-1095.

Z. Peng, W. T. Peter, F. Chu, A comparison study of improved hilbert-huang transform and wavelet transform: Application to fault diagnosis
for rolling bearing, Mechanical Systems and Signal Processing 19 (2005) 974-988.

P. K. Kankar, S. C. Sharma, S. P. Harsha, Rolling element bearing fault diagnosis using wavelet transform, Neurocomputing 74 (2011)
1638-1645.

Y. Xu, Y. Deng, J. Zhao, W. Tian, C. Ma, A novel rolling bearing fault diagnosis method based on empirical wavelet transform and spectral
trend, IEEE Transactions on Instrumentation and Measurement 69 (2019) 2891-2904.

K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Transactions on Signal Processing 62 (2013) 531-544.

Y. Wang, R. Markert, J. Xiang, W. Zheng, Research on variational mode decomposition and its application in detecting rub-impact fault of
the rotor system, Mechanical Systems and Signal Processing 60 (2015) 243-251.

G. W. Stewart, On the early history of the singular value decomposition, SIAM Review 35 (1993) 551-566.

H. Li, T. Liu, X. Wu, Q. Chen, A bearing fault diagnosis method based on enhanced singular value decomposition, IEEE Transactions on
Industrial Informatics 17 (2020) 3220-3230.

V. Vrabie, P. Granjon, C. Serviere, Spectral kurtosis: from definition to application, in: 6th IEEE international workshop on Nonlinear Signal
and Image Processing (NSIP 2003), 2003, p. xx.

J. Antoni, The spectral kurtosis: a useful tool for characterising non-stationary signals, Mechanical Systems and Signal Processing 20 (2006)
282-307.

Y. Wang, J. Xiang, R. Markert, M. Liang, Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with
applications, Mechanical Systems and Signal Processing 66 (2016) 679-698.

A. McCormick, A. Nandi, Cyclostationarity in rotating machine vibrations, Mechanical Systems and Signal Processing 12 (1998) 225-242.

G. L. McDonald, Q. Zhao, M. J. Zuo, Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection,
Mechanical Systems and Signal Processing 33 (2012) 237-255.

C. A. Cabrelli, Minimum entropy deconvolution and simplicity: A noniterative algorithm, Geophysics 50 (1985) 394-413.

M. Buzzoni, J. Antoni, G. d’Elia, Blind deconvolution based on cyclostationarity maximization and its application to fault identification,
Journal of Sound and Vibration 432 (2018) 569—-601.

L. He, C. Yi, D. Wang, F. Wang, J.-h. Lin, Optimized minimum generalized lp/lq deconvolution for recovering repetitive impacts from a
vibration mixture, Measurement 168 (2021) 108329.

S. Haykin, Adaptive filter theory, Prentice-Hall, Inc., USA, 1986.

R. A. Wiggins, Minimum entropy deconvolution, Geoexploration 16 (1978) 21-35.

K. Pearson, “das fehlergesetz und seine verallgemeiner-ungen durch fechner und pearson.” a rejoinder, Biometrika 4 (1905) 169-212.

Y. Cheng, B. Chen, W. Zhang, Adaptive multipoint optimal minimum entropy deconvolution adjusted and application to fault diagnosis of
rolling element bearings, IEEE Sensors Journal 19 (2019) 12153-12164.

G. L. McDonald, Q. Zhao, Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection,
Mechanical Systems and Signal Processing 82 (2017) 461-477.

Jing-Xiao Liao et al.: Preprint submitted to Elsevier Page 26 of 28



[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
(38]
[39]
[40]
[41]

[42]
[43]

[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]

[56]
(571

(58]
[59]
[60]
[61]

[62]
[63]

Classifier-guided neural blind deconvolution

S. Wang, J. Xiang, A minimum entropy deconvolution-enhanced convolutional neural networks for fault diagnosis of axial piston pumps, Soft
Computing 24 (2020) 2983-2997.

J.-X. Liao, H.-C. Dong, L. Luo, J. Sun, S. Zhang, Multi-task neural network blind deconvolution and its application to bearing fault feature
extraction, Measurement Science and Technology 34 (2023) 075017.

Y. Cheng, N. Zhou, W. Zhang, Z. Wang, Application of an improved minimum entropy deconvolution method for railway rolling element
bearing fault diagnosis, Journal of Sound and Vibration 425 (2018) 53-69.

Y. Cheng, B. Chen, G. Mei, Z. Wang, W. Zhang, A novel blind deconvolution method and its application to fault identification, Journal of
Sound and Vibration 460 (2019) 114900.

F. Fan, W. Cong, G. Wang, A new type of neurons for machine learning, International journal for numerical methods in biomedical engineering
34 (2018) €2920.

J.-X. Liao, H.-C. Dong, Z.-Q. Sun, J. Sun, S. Zhang, F.-L. Fan, Attention-embedded quadratic network (qttention) for effective and interpretable
bearing fault diagnosis, IEEE Transactions on Instrumentation and Measurement 72 (2023) 1-13.

C. He, H. Shi, J. Li, Idsn: A one-stage interpretable and differentiable stft domain adaptation network for traction motor of high-speed trains
cross-machine diagnosis, Mechanical Systems and Signal Processing 205 (2023) 110846.

Q. Ni, J. Ji, B. Halkon, K. Feng, A. K. Nandi, Physics-informed residual network (piresnet) for rolling element bearing fault diagnostics,
Mechanical Systems and Signal Processing 200 (2023) 110544.

S. Yang, B. Tang, W. Wang, Q. Yang, C. Hu, Physics-informed multi-state temporal frequency network for rul prediction of rolling bearings,
Reliability Engineering & System Safety 242 (2024) 109716.

L. He, D. Wang, C. Yi, Q. Zhou, J. Lin, Extracting cyclo-stationarity of repetitive transients from envelope spectrum based on prior-unknown
blind deconvolution technique, Signal Processing 183 (2021) 107997.

B. Fang, J. Hu, C. Yang, Y. Cao, M. Jia, A blind deconvolution algorithm based on backward automatic differentiation and its application to
rolling bearing fault diagnosis, Measurement Science and Technology 33 (2021) 025009.

B. Fang, J. Hu, C. Yang, X. Chen, Minimum noise amplitude deconvolution and its application in repetitive impact detection, Structural
Health Monitoring (2022) 14759217221114527.

A. G. Ivakhnenko, Polynomial theory of complex systems, IEEE Transactions on Systems, Man, and Cybernetics (1971) 364-378.

Y. Shin, J. Ghosh, The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation, in:
IJCNN-91-Seattle International Joint Conference on Neural Networks, volume 1, IEEE, 1991, pp. 13-18.

G. G. Chrysos, B. Wang, J. Deng, V. Cevher, Regularization of polynomial networks for image recognition, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp. 16123-16132.

G. Chrysos, S. Moschoglou, G. Bouritsas, J. Deng, Y. Panagakis, S. P. Zafeiriou, Deep polynomial neural networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

G. G. Chrysos, M. Georgopoulos, J. Deng, J. Kossaifi, Y. Panagakis, A. Anandkumar, Augmenting deep classifiers with polynomial neural
networks, in: European Conference on Computer Vision, Springer, 2022, pp. 692-716.

Z.Xu, F. Yu,J. Xiong, X. Chen, Quadralib: A performant quadratic neural network library for architecture optimization and design exploration,
Proceedings of Machine Learning and Systems 4 (2022) 503-514.

G. Zoumpourlis, A. Doumanoglou, N. Vretos, P. Daras, Non-linear convolution filters for cnn-based learning, in: Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 4761-4769.

P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, et al., Mixed
precision training, in: International Conference on Learning Representations, 2018.

Y. Jiang, F. Yang, H. Zhu, D. Zhou, X. Zeng, Nonlinear cnn: improving cnns with quadratic convolutions, Neural Computing and Applications
32 (2020) 8507-8516.

P. Mantini, S. K. Shah, Cqnn: Convolutional quadratic neural networks, in: 2020 25th International Conference on Pattern Recognition (ICPR),
IEEE, 2021, pp. 9819-9826.

M. Goyal, R. Goyal, B. Lall, Improved polynomial neural networks with normalised activations, in: 2020 International Joint Conference on
Neural Networks (IICNN), IEEE, 2020, pp. 1-8.

J. Bu, A. Karpatne, Quadratic residual networks: A new class of neural networks for solving forward and inverse problems in physics involving
pdes, in: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), SIAM, 2021, pp. 675-683.

W. Zhang, G. Peng, C. Li, Y. Chen, Z. Zhang, A new deep learning model for fault diagnosis with good anti-noise and domain adaptation
ability on raw vibration signals, Sensors 17 (2017) 425.

F.-L. Fan, H.-C. Dong, Z. Wu, L. Ruan, T. Zeng, Y. Cui, J.-X. Liao, One neuron saved is one neuron earned: On parametric efficiency of
quadratic networks, arXiv preprint arXiv:2303.06316 (2023).

F. Fan, J. Xiong, G. Wang, Universal approximation with quadratic deep networks, Neural Networks 124 (2020) 383-392.

W.-E. Yu, J. Sun, S. Zhang, X. Zhang, J.-X. Liao, A class-weighted supervised contrastive learning long-tailed bearing fault diagnosis approach
using quadratic neural network, 2023. arXiv:2309.11717.

Y. Tang, C. Zhang, J. Wu, Y. Xie, W. Shen, J. Wu, Deep learning-based bearing fault diagnosis using a trusted multiscale quadratic attention-
embedded convolutional neural network, IEEE Transactions on Instrumentation and Measurement 73 (2024) 1-15.

F.-L. Fan, M. Li, F. Wang, R. Lai, G. Wang, On expressivity and trainability of quadratic networks, IEEE Transactions on Neural Networks
and Learning Systems (2023).

R. B. Randall, J. Antoni, S. Chobsaard, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults
and other cyclostationary machine signals, Mechanical Systems and Signal Processing 15 (2001) 945-962.

J. Antoni, Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions, Journal of Sound and vibration 304 (2007) 497-529.
R. B. Randall, Vibration-based condition monitoring: industrial, automotive and aerospace applications, John Wiley & Sons, 2021.

L. Chi, B. Jiang, Y. Mu, Fast fourier convolution, Advances in Neural Information Processing Systems 33 (2020) 4479-4488.

Jing-Xiao Liao et al.: Preprint submitted to Elsevier Page 27 of 28


http://arxiv.org/abs/2309.11717

[64]

[65]

[66]
[67]

[68]
[69]

[70]
[71]

[72]
(73]
[74]
[75]
[76]
(771
(78]
[79]
[80]

(81]
[82]

[83]

[84]
(85]

[86]
(87]

(88]
[89]

[90]
[91]

[92]

Classifier-guided neural blind deconvolution

H. Yu, J. Huang, L. LI, m. zhou, F. Zhao, Deep fractional fourier transform, in: Advances in Neural Information Processing Systems,
volume 36, Curran Associates, Inc., 2023, pp. 72761-72773.

W. T. Peter, D. Wang, The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint
title as “two automatic vibration-based fault diagnostic methods using the novel sparsity measurement—parts 1 and 2”, Mechanical Systems
and Signal Processing 40 (2013) 499-519.

H. Zhang, X. Chen, Z. Du, R. Yan, Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis,
Mechanical Systems and Signal Processing 80 (2016) 349-376.

L. Li, Sparsity-promoted blind deconvolution of ground-penetrating radar (gpr) data, IEEE Geoscience and Remote Sensing Letters 11 (2014)
1330-1334.

S. Ruder, An overview of multi-task learning in deep neural networks, arXiv preprint arXiv:1706.05098 (2017).

A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482-7491.

B. Lin, Y. Zhang, LibMTL: A Python library for multi-task learning, Journal of Machine Learning Research 24 (2023) 1-7.

Z.Zhao, T. Li, J. Wu, C. Sun, S. Wang, R. Yan, X. Chen, Deep learning algorithms for rotating machinery intelligent diagnosis: An open
source benchmark study, ISA Transactions 107 (2020) 224-255.

M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial
Informatics 16 (2020) 4681-4690.

T. Li, Z. Zhao, C. Sun, L. Cheng, X. Chen, R. Yan, R. X. Gao, Waveletkernelnet: An interpretable deep neural network for industrial intelligent
diagnosis, IEEE Transactions on Systems, Man, and Cybernetics: Systems 52 (2022) 2302-2312.

C. He, H. Shi, J. Si, J. Li, Physics-informed interpretable wavelet weight initialization and balanced dynamic adaptive threshold for intelligent
fault diagnosis of rolling bearings, Journal of Manufacturing Systems 70 (2023) 579-592.

L. Jia, T. W. Chow, Y. Yuan, Gtfe-net: A gramian time frequency enhancement cnn for bearing fault diagnosis, Engineering Applications of
Artificial Intelligence 119 (2023) 105794.

Q. Chen, X. Dong, G. Tu, D. Wang, C. Cheng, B. Zhao, Z. Peng, Tfn: An interpretable neural network with time-frequency transform embedded
for intelligent fault diagnosis, Mechanical Systems and Signal Processing 207 (2024) 110952.

S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747 (2016).

I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts, arXiv preprint arXiv:1608.03983 (2016).

C. Lessmeier, J. K. Kimotho, D. Zimmer, W. Sextro, Condition monitoring of bearing damage in electromechanical drive systems by using
motor current signals of electric motors: A benchmark data set for data-driven classification, in: PHM Society European Conference, volume 3,
2016.

K. Li, X. Ping, H. Wang, P. Chen, Y. Cao, Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based
on vibration analysis, Sensors 13 (2013) 8013-8041.

G. E. Hinton, Visualizing high-dimensional data using t-sne, Vigiliae Christianae 9 (2008) 2579-2605.

Y. Miao, M. Zhao, J. Lin, X. Xu, Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings,
Measurement Science and Technology 27 (2016) 105004.

Y. Miao, M. Zhao, J. Lin, Y. Lei, Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling
element bearings, Mechanical Systems and Signal Processing 92 (2017) 173-195.

J. Antoni, G. Xin, N. Hamzaoui, Fast computation of the spectral correlation, Mechanical Systems and Signal Processing 92 (2017) 248-277.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, H. Adam, Searching for
mobilenetv3, in: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1314-1324.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, Advances in
Neural Information Processing Systems 30 (2017).

C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273-297.

A. Mucherino, P. J. Papajorgji, P. M. Pardalos, A. Mucherino, P. J. Papajorgji, P. M. Pardalos, K-nearest neighbor classification, Data Mining
in Agriculture (2009) 83-106.

T. K. Ho, Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition, volume 1, IEEE,
1995, pp. 278-282.

D. R. Cox, The regression analysis of binary sequences, Journal of the Royal Statistical Society Series B: Statistical Methodology 20 (1958)
215-232.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu, Lightgbm: A highly efficient gradient boosting decision tree, Advances
in Neural Information Processing Systems 30 (2017).

Jing-Xiao Liao et al.: Preprint submitted to Elsevier Page 28 of 28



