
Edge-Efficient Deep Learning Models for Automatic
Modulation Classification: A Performance Analysis

Nayan Moni Baishya, B. R. Manoj, and Prabin K. Bora
Department of Electronics & Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Emails: {nmb94, manojbr, prabin} @iitg.ac.in

Abstract—The recent advancement in deep learning (DL) for
automatic modulation classification (AMC) of wireless signals
has encouraged numerous possible applications on resource-
constrained edge devices. However, developing optimized DL
models suitable for edge applications of wireless communications
is yet to be studied in depth. In this work, we perform a
thorough investigation of optimized convolutional neural networks
(CNNs) developed for AMC using the three most commonly
used model optimization techniques: a) pruning, b) quantization,
and c) knowledge distillation. Furthermore, we have proposed
optimized models with the combinations of these techniques to
fuse the complementary optimization benefits. The performances
of all the proposed methods are evaluated in terms of sparsity,
storage compression for network parameters, and the effect on
classification accuracy with a reduction in parameters. The exper-
imental results show that the proposed individual and combined
optimization techniques are highly effective for developing models
with significantly less complexity while maintaining or even
improving classification performance compared to the benchmark
CNNs.

Index Terms—Deep learning, knowledge distillation, model
optimization, pruning, quantization, wireless classifiers.

I. INTRODUCTION

Automatic modulation classification (AMC) of radio fre-
quency (RF) signals is vital to communication systems. The
modulation information of signals is essential for further signal
demodulation and decoding in practical applications, such as
cognitive radio, signal recognition, and spectrum monitoring
[1], [2]. Therefore, AMC is widely applicable in many mil-
itary and civilian applications. Conventional AMC methods
can be categorized into decision theory-based and statistical
machine learning-based methods [2]. However, these methods
are computationally complex and hard to design. Recently,
developing deep learning (DL)-based methods has attracted
significant attention in RF modulation classification. DL-based
methods have enabled the learning from large-scale RF datasets
without any complex feature extraction process. O’Shea et
al. [3] proposed the first convolutional neural network (CNN)
for modulation recognition, known as VTCNN2. Subsequently,
several DL architectures have been applied for AMC, such as
ResNet [4], InceptionNet [4], DenseNet [5], long-short term
memory [6], etc. The over-parameterized DL architectures with
millions of parameters can learn complex representations from
extensive training data and generally require high comput-
ing resources for training. However, the drawback of large
networks with millions of parameters, as in [3]–[6], is the
difficulty of deploying on resource-constrained edge devices.

This work was supported in part by SERB Start-Up Research Grant Scheme,
Govt. of India under Grant SRG/2022/001214 and in part by Start-Up Grant
of Indian Institute of Technology Guwahati.

With the growing number of edge applications and increasing
efforts to transfer artificial intelligence (AI) from cloud or
centralized applications, efficiently deploying DL models on
edge devices has gained significant interest. However, edge
devices are generally limited in their computational capabilities
and are restricted by processing power, memory, and power
consumption constraints. As AMC is applied at the receiver
end, implementing it on the edge devices, such as smartphones,
intelligent vehicles, drones, and other IoT devices, can play a
significant role. However, current DL-models, as in [3]–[5],
are not memory and compute-optimized to deploy on resource
constraint devices.

Much of the work on model optimization [7] has found
applications in computer vision. Various popular techniques
such as pruning, quantization, and knowledge distillation (KD)
are applied to optimize models for smaller model sizes, quicker
inference times, and lower power consumption [8]. These
commonly used techniques are very effective in optimizing
complex and accurate DL models before deployment without
making any changes to the network architecture. However,
the performance of these model optimization techniques on
DL methods in wireless communication applications, specif-
ically for AMC, needs to be thoroughly investigated. Wire-
less systems often have limited computational resources, are
battery-powered, rely on energy harvesting, and require fast
real-time data processing. Therefore, DNN models must be
optimized for low power consumption, and quicker inference
before deploying on edge devices [9]. The optimization of
DNN models for wireless applications consists of a trade-off
between complexity, accuracy, storage, and power consumption
parameters. By carefully tuning these parameters, it is possible
to develop models that meet the requirements of edge devices
without affecting the performance of wireless systems and can
be deployed in real-time, which is the main scope of this paper.

The main contributions of this paper are as follows: a) in
contrast to the complex networks developed for AMC, we pro-
pose to develop optimized models using three model optimiza-
tion techniques, namely, pruning, quantization, and KD, and
evaluate their performances; b) we establish the effectiveness
of combining optimization strategies to merge the benefits of
individual methods. Such methods can be beneficial to develop
smaller and optimized models with similar performance to
large, complex, but highly accurate models; c) the proposed
optimal models offer significant benefits, such as high network
sparsity, high compression rate, and reduced parameters for
efficient deployment on resource-limited devices. Despite these
advantages, the accuracy of our models is comparable to the
original complex models and even outperforms them when

ar
X

iv
:2

40
4.

15
34

3v
1

 [
ee

ss
.S

P]
 1

1
A

pr
 2

02
4

using KD as part of the optimization process.

II. NETWORK ARCHITECTURES AND MODEL
OPTIMIZATION METHODS

In this section, we describe on three individual model opti-
mization methods: a) network pruning, b) model quantization,
and c) knowledge distillation, along with two combined strate-
gies for optimizing CNN architectures developed for AMC

A. Network Architectures

We have considered three CNN-based benchmark architec-
tures, namely, VTCNN2 [3], ResNet [4], and InceptionNet
[4], for applying the proposed model optimization techniques.
The primary motivation for selecting these models as the
benchmark is the complexity of the networks due to a large
number of parameters. We have chosen these large networks
to demonstrate the effectiveness of different optimization tech-
niques and, in general, are applicable to any other model
with high complexity. The VTCNN2 comprises about 2.83M
parameters, and the ResNet and the InceptionNet architectures
have about 3.45M and 10.14M parameters, respectively. It is
observed in all three considered CNN models that the first
fully connected (FC) layer contains the highest number of
parameters. For VTCNN2, this layer has 2.70M of 2.83M total
parameters, ResNet has 3.37M out of 3.45M total parameters,
and InceptionNet has 10.06M out of 10.14M total parameters
in their respective first FC layers. Based on this observation,
we choose to optimize this parameter-heavy layer, which, in
turn, will optimize the overall models.

B. Network Pruning

Network pruning is a powerful model optimization tech-
nique that can improve the efficiency of a DNN by removing
certain connections from the network while preserving its
accuracy. This is based on the fact that DNNs are highly
over-parametrized, and many parameters do not contribute
significantly to the network’s performance [7]. Pruning these
less important parameters can reduce overfitting and improve
the generalization of a DNN. A pruned network also has a
smaller memory footprint, requires fewer computations, and
can be deployed on edge devices with limited resources. In this
paper, we have considered an unstructured pruning technique
called the Net-trim (NT) algorithm [10]. The main idea behind
the NT algorithm is to maximize the sparsity of weights
for each layer of a trained neural network (NN) such that
the post-pruning output responses remain consistent with the
initial output responses. It can be formulated as a constrained
optimization problem for layer l as given by [10]

Ŵl = argmin
Ul

∥Ul∥1 (1)

s.t. ∥Ŷl −Yl∥F ≤ ϵ ,

where Ŷl = max(U⊤
l Xl, 0) with (·)⊤ denotes transpose, ∥·∥F

is the Frobenius norm, and ϵ > 0 is the threshold. In (1), Ŵl is
the sparse weight matrix of layer l, Xl ∈ RN×P is the stacked
input to the layer with N being the number of samples and P
as the dimension of each sample, Yl is the output activation of

Algorithm 1 Net-trim
Input: Data matrix X ∈ RN×P ,
normalized weight matricesW1,W2, . . . ,WL,
index k and ϵ > 0

1: Y0 ← X // Input data
2: for l = 1 to L do
3: Yl ← max(W⊤

l Yl−1,0) // Generating pre-pruning layer
outputs

4: end for
5: Ŵk ← TRIM(Yk−1,Yk,0, ϵ) // Apply TRIM on FC layer k

Ouput: Pruned weight matrix Ŵk

the layer before pruning, Ŷl is the output activation of the layer
during optimization for the intermediate weight matrix Ul.
Here, the non-linear activation function ReLU is considered for
the layer. The optimization problem in (1) is solved using the
alternating direction method of multipliers (ADMM) technique
[10]. The implementation of the NT algorithm on the weight
matrix of the first FC layer of a DL-based AMC network
is presented in Algorithm 1. In the algorithm, the TRIM
procedure depicts the iterative solution of the optimization
problem in (1) to obtain the sparse weight matrix Ŵl and
the parameter ϵ controls the sparsity of the weights. The input
data and output activations of the lth network layer are given
by Yl−1 and Yl, respectively. L denotes the total number of
layers, and k denotes the index of the first FC layer of the
CNN architectures that are considered in our work.

C. Model Quantization

Model quantization involves compressing the weights of
different CNN layers to lower precision representations than
the original high precision. For example, in an FC layer, the
weights can be stored using 8-bit integers instead of using
64-bit floating-point numbers. The quantization of weights
significantly reduces the storage requirements for deployment
on edge devices with limited memory. It was demonstrated in
[11] that a small subset (5%) of the parameters can accurately
predict the layer weights of a DNN due to the redundancies
present in NN parameter space. With this motivation, we have
considered vector quantization, which is successfully used
in signal processing applications to exploit the redundancies
in a high-dimensional data space. Specifically, we have im-
plemented the product quantization (PQ) algorithm [12] to
compress the weight matrices of the first FC layers of the three
complex networks: VTCNN2, ResNet, and InceptionNet.A
mathematical representation of the implementation of the PQ
algorithm is presented in Algorithm 2, where W ∈ RM×N

denotes the weight matrix of an FC layer and it is divided into
P subspaces column-wise, each of dimension M ×

(
N
P

)
. For

each subspace, K-means clustering is performed to obtain the
Ks centroids, and all the sub-vectors are assigned to one of the
centroids. The original N -dimensional vector (row) can now
be represented with P -dimensional vector, which is indexed
with an integer-valued PQ code. Each value in the code is the
cluster index of a sub-vector in the respective subspace. During
inference, the quantized sub-vectors are used to reconstruct an

Algorithm 2 Product quantization
Input: Weight matrix W ∈ RM×N , P , Ks, M > Ks, N is divisible
by P

1: Partition W column-wise into P disjoint submatrices: W =
[W1,W2, · · ·,WP], where Wi ∈ RM×d, d = N

P

2: for each Wi, i = 1 . . . P do
3: K-means clustering(Wi, Ks)
4: return: The final cluster centroids {cij}Ks

j=1, cij ∈ Rd

5: Concatenate all the centroids row-wise to form the sub-
codebook Ci ∈ RKs×d

6: Assign each subvector, wi
z ∈Wi to its closest centroid: cij ←

argminj d(w
i
z, c

i
j)

7: Store the cluster index for wi
z as wi

z

8: end for
9: The PQ code for a N -dimensional vector wz ∈ W is wz =

[w1
z, w

2
z, . . . , w

P
z] ∈ {1, 2, . . . ,Ks}P

10: The overall codebook is C = [C1,C2, . . . ,CP]

Output: The PQ codes ∀wz ∈ W: {wz}Mz=1 and the codebook
C ∈ RP×Ks×d

approximation of the original high-dimensional weight vector.
The compression rate for this method is

CQ =
bMN

bKsN + log2(Ks)MP
, (2)

where b is the number of bits used to represent the original
weights and CQ signifies the ratio of the number of bits
required to store the original weight matrix to the number of
bits required to store the PQ codes along with the codebook.

D. Knowledge Distillation (KD)

KD is a technique to transfer knowledge from a more
complex network (teacher model) to a smaller, lightweight net-
work (student model). The teacher model provides additional
guidance and regularization, which can help the student model
avoid overfitting and improve its generalization performance.
The smaller student model is more computationally efficient,
capable of faster inference, and easier to deploy on devices with
limited resources. Hinton et al. [13] introduced the concept of
vanilla KD framework, which is presented in Algorithm 3 and
demonstrated its effectiveness in reducing the size of DNNs
while maintaining high accuracy. In the algorithm, the pre-
trained teacher model is denoted by f t

V and the student model
is denoted by fs

W, where V and W are the respective trainable
model parameters. BATCH(·) and TRAIN(·) represent the
sampling of random batches from the training dataset and the
training of a model batch-wise, respectively. the temperature
parameter T in the SoftmaxT (·) activation function regulates
the softness of the output probability distributions. During the
distillation process, a high value of T is used, but after the
distilled model is trained, T is set to 1. The distillation loss,
i.e., the distance between the output probability distributions
Ŷt

B and Ŷs
B for teacher and student models respectively,

is minimized using the Kullback-Leibler (KL) divergence,
KLDivergence(·). The overall loss function is the weighted sum
of distillation loss and cross-entropy loss for the student model
with α being the weight of the distillation loss.
E. Combined Optimization Strategies for AMC

All three techniques discussed above have unique and com-
plementary advantages for DL model optimization. Moreover,

Algorithm 3 Vanilla knowledge distillation
Input: Teacher model f t

V, student model fs
W, training dataset D,

batch size B, temperature T , weight of distillation loss α

1: V̂ ← TRAIN(f t
V,D,Lc, SoftmaxT) // V̂ are the trained

parameters
2: Initialize W randomly
3: repeat
4: (XB ,YB)← BATCH(D)
5: Ŷt

B ← SoftmaxT (f
t
V(XB))

6: Ŷs
B ← SoftmaxT (f

s
W(XB))

7: Ld = KLDivergence(Ŷ
t
B , Ŷ

s
B)

8: Lc = Cross-entropy(Ŷs
B ,YB)

9: Compute the total loss as: L = α · Ld + (1− α) · Lc

10: Update: W←W −∇WL
11: until convergence
Output: Distilled student model fs

W

these techniques do not significantly affect the classification
performance, as shown in Section III, which is most important
for AMC model optimization. Inspired by this, we propose
two strategies to fuse the benefits of the techniques under
consideration, which are named the Distilled pruning (DP) and
the Distilled quantization (DQ) methods. These methods are
outlined below:

a) Distilled pruning: This method implements KD as
the first step of optimization, followed by applying the NT
algorithm on the FC layer weights of the distilled student
model. The transfer of knowledge through KD can help to
achieve better model performance with a small model, and
the NT method is highly effective in sparsifying the model
without affecting the performance. Through this method, we
can obtain an optimized model with less parameter count
and high model sparsity, translating to better storage and
computational efficiency during edge inference.

b) Distilled quantization: Similar to DP, the DQ method
also performs KD on a small student model, followed by
implementing PQ on the FC layer weights to learn a codebook
to store the weights. The final optimized model is benefitted
from the better feature representations learned from KD as well
as a reduction in precision and the number of weights to be
stored in a memory-constrained device.

III. RESULTS AND DISCUSSIONS

In this section, we will discuss the results of the proposed
models developed using individual and combined optimization
techniques. For all the experiments, we consider the Ra-
dioML2016.10A AMC dataset [14], consisting of the 11 most
widely used modulation schemes. For each modulation scheme,
there are 20,000 samples belonging to 20 different signal-to-
noise ratios (SNRs), varying from −20dB to 18dB with a step
of 2dB. Each RF signal in the dataset is of dimension 2× 128
with both real and imaginary parts. We have considered the
RadioML2016.10A dataset as it is publicly available and for
reproducibility of the results. All three network architectures
are first pre-trained on this RF dataset using 50% of data
as the training dataset (DTrain) and the remaining 50% for
testing (DTest) [14]. Evaluation on a larger test set eliminates
training data bias on the results of the optimized models and
will reinforce generalization on real-world test samples. The

TABLE I: Pruning efficiency (pe) achieved for ϵ = 0.08.

Network nT nb na pe
VTCNN2 2.70M 2.69M 94.47K 96.5%

ResNet 3.38M 3.37M 63.94K 98.1%
InceptionNet 10.11M 10.07M 106.48K 98.94%

TABLE II: Compression rates (CQ) for different values of P .
Network P = 2 P = 8 P = 16
VTCNN2 39.65 35.52 31.2

ResNet 49.56 42.92 36.76
InceptionNet 133.20 95.8 69.76

benchmark classification accuracy versus SNR plots for all
three networks is shown in Fig. 1a–1c and are used to compare
the performances of the proposed optimized models.

A. Network Pruning
To develop the optimized models, the NT pruning algorithm

is applied to the parameters of the first FC layers of the three
pre-trained complex models. We have experimented with the
parameter ϵ = {0.02, 0.08}, which controls the amount of
sparsity introduced in the model. The input data matrix X
in Algorithm 1 is created from 20,000 randomly selected RF
signals from DTrain. The performance of the pruning method
is evaluated using (a) the pruning efficiency (pe) and (b) the
classification accuracy as a function of SNRs. The pe can be
defined as

pe = 1− na

nT
, (3)

where nT is the total number of parameters of the FC layer,
and na is the number of non-zero parameters after pruning.
Thus, pe measures the sparsity after the pruning process, and
a high value of pe indicates high sparsity. In our work, we
could obtain pe ≥ 90% ∀ ϵ, with the highest is achieved
for ϵ = 0.08. Table I shows the pe for all three networks
when ϵ = 0.08, where nb (and na) is the number of non-
zero parameters of the layer before (and after) pruning is
applied. The pe values for VTCNN2, ResNet, and InceptionNet
are 96.5%, 98.1%, 98.94% respectively for ϵ = 0.08. This
establishes that only a small fraction of parameters contribute
to the modulation classification task and thus significant opti-
mization can be achieved. Also, Fig. 1 compares the accuracy
versus SNR curves for unpruned and pruned networks. As
seen from Fig. 1a–1c, the classification performance always
remains comparable to the benchmark, irrespective of the very
high sparsity achieved in the optimized models. In conclusion,
developing optimized models for AMC using the NT algorithm
can achieve high sparsity with comparable classification perfor-
mance to the benchmark. Sparse DNNs can offer compressed
storage requirements by only storing the non-zero elements and
their indices. The computation complexity during inference is
also reduced as the number of operations decreases. However,
most of today’s popular CPU and GPU architectures and
DL frameworks are mainly optimized for dense computations
and lack the functions to benefit from the sparsity in DNNs
[15]. With growing research on developing sparse DNNs, the
development of hardware accelerators optimized for sparse
matrix computations for edge devices is advancing [16]. Such
developments will facilitate the applications of sparse DNNs
in wireless systems at the edge.

TABLE III: Combinations of student and teacher models and respec-
tive change in parameters and accuracies.

Cases Student Teacher Reduction
ratio

Accuracy
compared to
benchmark

I VTCNN2 InceptionNet 0.28 Improved
II VTCNN2 ResNet 0.82 Improved
III ResNet InceptionNet 0.34 Comparable

B. Model Quantization

Model quantization using the PQ algorithm is also applied
to the first FC layers of all three complex networks. As in
Algorithm 2, the high-dimensional weight matrix of the FC
layer is partitioned into P sub-matrices, and we have experi-
mented with P = {2, 8, 16}. The number of cluster centroids
computed for each sub-matrix is Ks = 256 and thus, the PQ
codes can be represented with only 8 bits. Table II compares the
compression rates (CQ) achieved for the optimized models with
different values of P . The highest compression rate is achieved
for P = 2. High compression leads to a significant reduction in
the total number of bytes required to store the layer parameters
as compared to the original 64-bit float representation. For
example, the storage requirement of the FC layer weights of
the quantized InceptionNet is reduced by a factor of 133.20
for P = 2. Similarly, the PQ code-based storage requirement
for ResNet after quantization is reduced by a factor of 49.56
than the original weight matrix when P = 2.

We have compared the classification performance of the
quantized networks with the benchmark results, as shown in
Fig 2. From Fig. 2a and Fig. 2b, it is observed that the PQ-
based quantization of the layer weights results in a minimal
loss in accuracy (within 1% of the benchmark) for VTCNN2
and ResNet for all P . Specifically, for P = 2, i.e., when the
highest compression is achieved, the accuracies are comparable
to the benchmark for all three optimized networks. In the case
of InceptionNet, the accuracies are reduced when P = 8, 16. It
is observed that the accuracy can be improved with retraining
for 20 epochs using only 10% of the original training dataset.
For retraining, Ŵ for the FC layer is kept non-trainable so
that the weights remain consistent with the centroids in the
codebook and also reduce the number of trainable parameters.
As seen in Fig. 2c, the accuracies of the quantized InceptionNet
model for P = 8 and 16 can be significantly recovered and
become comparable to the benchmark performance with a
computationally efficient retraining process. Thus, it can be
established that the PQ algorithm is an effective method for
developing optimized models from any large and complex
AMC network, with consistent storage benefits for the edge
while providing performance comparable to the unquantized
networks.

C. Knowledge Distillation (KD)

To evaluate the efficacy of the KD method, we have for-
mulated three scenarios of student and teacher models with
the student model having fewer parameters compared to the
teacher model. Table III shows the parameter reduction ratios
for all three cases, which is the ratio of the parameter count
of the student to that of the teacher. In case I, the number

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100
Cl

as
sif

ica
tio

n A
cc

ur
ac

y
Unpruned VTCNN2

= 0.02
= 0.08

4 6 8 10 12 14 16 18
65.0
67.5
70.0
72.5
75.0
77.5

(a) VTCNN2

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Unpruned ResNet
= 0.02
= 0.08

4 6 8 10 12 14 16 18

70.0
72.5
75.0
77.5
80.0

(b) ResNet

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Unpruned InceptionNet
= 0.02
= 0.08

4 6 8 10 12 14 16 18
65.0
67.5
70.0
72.5
75.0
77.5

(c) InceptionNet
Fig. 1: Performance of network pruning method (NT) for different values of ϵ.

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Unquantized VTCNN2
 P = 2, Retrain=No
P = 8, Retrain=No
P = 16, Retrain=No
 P = 2, Retrain=Yes
P = 8, Retrain=Yes
P = 16, Retrain=Yes

10 12 14 16 18
68

70

72

74

76

(a) VTCNN2

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Unquantized ResNet
 P = 2, Retrain=No
P = 8, Retrain=No
P = 16, Retrain=No
 P = 2, Retrain=Yes
P = 8, Retrain=Yes
P = 16, Retrain=Yes

10 12 14 16 18

74

76

78

80

(b) ResNet

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Unquantized InceptionNet
 P = 2, Retrain=No
P = 8, Retrain=No
P = 16, Retrain=No
 P = 2, Retrain=Yes
P = 8, Retrain=Yes
P = 16, Retrain=Yes

8 10 12 14 16 18
62.5

65.0

67.5

70.0

72.5

(c) InceptionNet

Fig. 2: Performance of model quantization method (PQ) with and without retraining for different values of P .

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Distilled VTCNN2
Benchmark VTCNN2
Benchmark InceptionNet

4 6 8 10 12 14 16 18
67.5
70.0
72.5
75.0
77.5
80.0

(a) Case I

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Distilled VTCNN2
Benchmark VTCNN2
Benchmark ResNet

4 6 8 10 12 14 16 18
67.5
70.0
72.5
75.0
77.5
80.0

(b) Case II

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Distilled ResNet
Benchmark ResNet
Benchmark InceptionNet

4 6 8 10 12 14 16 18
67.5
70.0
72.5
75.0
77.5
80.0

(c) Case III

Fig. 3: Performance of the KD method for all three combinations as given in Table III with fixed temperature T = 10.

of parameters of the VTCNN2 student model is 0.28× the
parameters of the InceptionNet teacher model, which is the
smallest among the three cases. The distilled student model
is trained on DTrain and the temperature (T) for the softmax
function is assumed to be 10. A comparison of the classification
performances of the distilled student models with the original
benchmark student and teacher models is shown in Fig. 3
for all three cases. It can be observed from Figs. 3a and
3b that the accuracy of the distilled VTCNN2 has improved
compared to the benchmark VTCNN2, with InceptionNet and
ResNet being teacher models, respectively. This can benefit
model optimization as VTCNN2 is the smallest of all three
models, with better accuracy. In case III, when ResNet is used
as the student model, the distillation process only results in
comparable accuracy with the benchmark, as shown in Fig. 3c.
Thus, it can be said that the choice of the student and teacher
architectures plays a vital role in performance improvement.
We also observed that the parameter T does not effect the

classification performance significantly. As observed in Case
I and II of Table III, when the goal is to design a smaller
optimized model with a low-complexity architecture, such as
VTCNN2, the KD can reduce the effective parameter count
while increasing the accuracy of such a model.

D. Combined methods: DP and DQ

We now evaluate the performance of the proposed two
combined optimization strategies: the DP and the DQ methods.
The primary focus is to investigate the effect on classification
performance while attempting to merge the benefits of two op-
timization techniques simultaneously. Optimizing a model with
less complexity while improving classification performance
is desirable for edge applications. Therefore, the VTCNN2
model is optimized using the two combined methods, as it is
the smallest model among the three considered architectures.
In both methods, the first step is to perform KD to reduce
the number of parameters for computational efficiency during

20 15 10 5 0 5 10 15
SNR

0

10

20

30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

Proposed DP
Proposed DQ
Benchmark VTCNN2

4 6 8 10 12 14 16 18
67.5
70.0
72.5
75.0
77.5
80.0

Fig. 4: Comparison of performance of the proposed combined opti-
mization strategies with benchmark VTCNN2.
inference while learning better representations for AMC. To
achieve this, the pre-trained InceptionNet is used as the teacher
model for the VTCNN2 student model (i.e., case I in Table
III). The training parameters are the same as the ones used
while evaluating the KD method. For the DP method, we
then apply the NT pruning on the first FC layer of the
distilled VTCNN2 with ϵ = 0.08, as it achieves maximum
sparsity for VTCNN2 (96.5%). For the DQ method, the PQ
algorithm is performed on the first FC layer of the distilled
VTCNN2, and P = 2 is used as it provides the highest
compression rate for VTCNN2 (39.65). It can be observed in
Fig. 4 that both the DP and DQ optimized models can achieve
marginally better classification accuracies than the benchmark.
Table IV compares the individual and combined strategies for
VTCNN2 in terms of accuracies and optimization factors for
each method. It is noticed that the DQ method can maintainin
a similar compression rate (CQ = 39.65) to the individual
PQ method with P = 2 with slight improvement in the
accuracy. With the DP method, we can achieve a higher pe
of 97.1% compared to the NT method, which achieves 96.5%
with ϵ = 0.08 for VTCNN2.

Thus, it can be established that the proposed individual and
combined strategies are highly effective for optimizing DL-
based AMC models while maintaining or improving classifi-
cation performance. Once optimized for performance prede-
ployment, the models can achieve higher storage benefits and
faster inference on resource-constrained edge devices. Also,
for large models with high complexity and high performance,
a combination of optimization methods, like the proposed DP
and DQ methods can be more beneficial in developing smaller,
reduced parameter models while merging the complementary
benefits of sparsity or compression to provide better-optimized
models. The use of the combined methods based on the
use case (i.e., whether to sparsify or to quantize) can be an
excellent possibility for edge applications of AMC.

IV. CONCLUSIONS

This work showed the effectiveness of three individual
model optimization methods: the NT algorithm, the PQ algo-
rithm, and the vanilla KD on CNN models developed for AMC.
These methods can optimize the models based on sparsity,
compression, and parameter reduction, without substantial loss
in classification accuracy and can even improve the perfor-
mances using KD. This is advantageous for deploying accurate

TABLE IV: Comparison of proposed individual and combined strate-
gies of model optimization for VTCNN2.

Method pe CQ Accuracy Sparsity Efficiency
Storage Computation

NT 96.5% - Comparable ✓ ✓ ✓
PQ - 39.65 Comparable - ✓ -
KD - - Improved - ✓ ✓

DQ - 39.65 Marginally
improved - ✓ ✓

DP 97.1% - Marginally
improved ✓ ✓ ✓

AMC models on edge devices. The proposed optimized models
using the NT algorithm could achieve sparsity as high as 98%,
and the PQ algorithm achieved a compression rate of 133
with minimal loss in accuracy. We observed that combination
strategies: the DP and DQ methods, can effectively optimize
a model, with the DP method having even higher sparsity
(97.1%) for VTCNN2 compared to the NT method (96.5%).
Our future work will involve developing optimization tech-
niques tailored to other desired optimization criteria for edge
applications.

REFERENCES

[1] E. E. Azzouz and A. K. Nandi, “Automatic modulation recognition of
communication signals,” IEEE Trans. Commun., vol. 334, no. 4, pp. 431–
436, 1998.

[2] O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of auto-
matic modulation classification techniques: Classical approaches and new
trends,” IET commun., vol. 1, no. 2, pp. 137–156, Apr. 2007.

[3] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modula-
tion recognition networks,” in Proc. Int. Conf. Eng. Appl. Neural Netw.
(EANN), Aberdeen, UK, Sep. 2–5, 2016, pp. 213–226.

[4] N. E. West and T. O’shea, “Deep architectures for modulation recog-
nition,” in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN),
Baltimore, MD, USA, Mar. 6–9, 2017, pp. 1–6.

[5] X. Liu, D. Yang, and A. El Gamal, “Deep neural network architectures
for modulation classification,” in Proc. Asilomar Conf. Signals, Syst.,
Comput., Pacific Grove, CA, USA, Oct. 29–Nov. 1, 2017, pp. 915–919.

[6] Z. Zhang, H. Luo, C. Wang, C. Gan, and Y. Xiang, “Automatic modula-
tion classification using CNN-LSTM based dual-stream structure,” IEEE
Trans. Veh. Tech., vol. 69, no. 11, pp. 13 521–13 531, Nov. 2020.

[7] R. Mishra, H. P. Gupta, and T. Dutta, “A survey on deep neural network
compression: Challenges, overview, and solutions,” Oct. 2020. [Online].
Available: https://arxiv.org/abs/2010.03954

[8] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” Oct. 2017.
[Online]. Available: https://arxiv.org/abs/1710.09282

[9] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Commun. Surveys &
Tuts., vol. 22, no. 4, pp. 2167–2191, Jul. 2020.

[10] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex
pruning of deep neural networks with performance guarantee,” in Proc.
Adv. Neural. Inf. Process. Syst. (NIPS), Long Beach, CA, USA, Dec.
4–7, 2017, pp. 3180–3189.

[11] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. De Freitas,
“Predicting parameters in deep learning,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), Lake Tahoe, NV, USA, Dec. 5–10, 2013, pp. 2148–
2156.

[12] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1,
pp. 1–15, Jan. 2010.

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” Mar. 2015. [Online]. Available: https://arxiv.org/abs/
1503.02531

[14] T. O’Shea and N. West, “Radio machine learning dataset generation with
GNU Radio,” in Proc. GNU Radio Conf., Boulder, CO, USA, Sep. 2016.

[15] J. Yu et al., “Scalpel: Customizing dnn pruning to the underlying hard-
ware parallelism,” in Proc. IEEE/ACM 44th Annu. Int. Symp. Comput.
Architecture (ISCA), Toronto, ON, Canada, Jun. 24–28, 2017, pp. 548–
560.

https://arxiv.org/abs/2010.03954
https://arxiv.org/abs/1710.09282
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531

[16] J. F. Zhang et al., “Snap: An efficient sparse neural acceleration processor
for unstructured sparse deep neural network inference,” IEEE J. Solid-
State Circuits, vol. 56, no. 2, pp. 636–647, Feb. 2021.

	Introduction
	Network Architectures and Model Optimization Methods
	Network Architectures
	Network Pruning
	Model Quantization
	Knowledge Distillation (KD)
	Combined Optimization Strategies for AMC

	Results and discussions
	Network Pruning
	Model Quantization
	Knowledge Distillation (KD)
	Combined methods: DP and DQ

	Conclusions
	References

