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Abstract—Data-driven deep learning (DL) techniques devel-
oped for automatic modulation classification (AMC) of wireless
signals are vulnerable to adversarial attacks. This poses a severe
security threat to the DL-based wireless systems, specifically for
edge applications of AMC. In this work, we address the joint
problem of developing optimized DL models that are also robust
against adversarial attacks. This enables efficient and reliable
deployment of DL-based AMC on edge devices. We first propose
two optimized models using knowledge distillation and network
pruning, followed by a computationally efficient adversarial
training process to improve the robustness. Experimental results
on five white-box attacks show that the proposed optimized and
adversarially trained models can achieve better robustness than
the standard (unoptimized) model. The two optimized models
also achieve higher accuracy on clean (unattacked) samples,
which is essential for the reliability of DL-based solutions at
edge applications.

Index Terms—Adversarial attacks, adversarial training, deep
learning, modulation classification, knowledge distillation, prun-
ing, wireless security.

I. INTRODUCTION

Deep learning (DL), the cornerstone of modern artificial
intelligence systems, has empowered researchers to effectively
solve some of the most challenging problems in diverse fields,
such as healthcare, natural language processing, and computer
vision [1]. Inspired by their tremendous success, DL-based
approaches are adopted in wireless communication domain for
both classification-based [2]–[4] and regression-based applica-
tions [5]. Compared to the conventional probabilistic decision
theory-based methods, the DL-based approaches achieve better
performance and provide significant computational advan-
tages, such as extracting superior features directly from a large
corpus of wireless signal data to develop more complex models
and scalability to multiple use cases.

In practice, to accomplish the potential of DL-based so-
lutions for wireless communication applications, it is of
paramount importance to design these solutions for successful
deployment on edge devices. By combining the advent of
the next-generation communication technology, the DL-based
approaches can empower edge devices, such as drones and IoT
systems, to perform intelligent wireless communication tasks
efficiently and autonomously [6]. Edge devices equipped with
DL capabilities can process data locally, reducing the need
for transmitting large volumes of data to centralized servers,
thus conserving bandwidth and enhancing privacy. However,
edge devices generally have power constraints and limited
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computational resources, and the complex, over-parametrized
DL models must be optimized before deployment to run
efficiently with faster inference, less compute requirement, and
lower power and memory consumption. The most commonly
used methods to achieve model optimization are knowledge
distillation (KD), network pruning, and model quantization
[7]. KD is a powerful method to transfer the rich knowledge
learned by a complex, large deep neural network (DNN) to
a lightweight network to achieve comparable performance. In
network pruning, the less important neurons or weights of a
DNN are identified and removed to make the network sparse.
The sparsity will benefit a model to achieve faster inference
and lesser storage requirements. Model quantization also aims
to achieve model storage optimization by representing the
weights of a DNN at a reduced precision.

Although the ability to deploy optimized DL models on
edge devices is beneficial for enhancing privacy through local
data handling and computation, a critical security threat to
such applications is the vulnerability of DL models to various
attacks, namely, adversarial attacks, data poisoning, model
extraction [8], etc. This work primarily focuses on the threat
towards optimized DL models against adversarial attacks,
where a malicious adversary generates an adversarial example
by adding a well-crafted perturbation to the input signal, which
could lead to an incorrect prediction by the DL model. The
adversarial perturbations are low-power signals that are hard to
detect. The adversarial attacks can be classified as: a) white-
box (WB) and b) black-box (BB) attacks. In a WB attack,
the adversary has access to the trained DL model parameters
and the training data to generate the adversarial perturbations,
e.g., fast gradient method (FGM), fast gradient sign method
(FGSM), projected gradient descent (PGD) [9], etc. On the
other hand, the adversary lacks model-related information in
a BB attack, such as the universal adversarial perturbation
(UAP) [10].

This work focuses on the development of DL models that
are optimized for edge devices as well as robust against
adversarial attacks, with automatic modulation classification
(AMC) of radio-frequency (RF) signals as the wireless appli-
cation of interest. AMC is a safety-critical task with different
applications, such as cognitive radio, signal detection and de-
modulation, and spectrum monitoring as well as management
[11]. In recent years, DL-based methods for AMC have been
proposed based on convolutional neural networks (CNN) [2],
[3], long short-term memory (LSTM) [12], and transformer
architectures [13]. These are generally complex networks with
millions of trainable parameters that have to be optimized for
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deployment in edge devices. It has also been shown in the
literature that the DL models for AMC are highly susceptible
to both WB and BB adversarial attacks [10]. Thus, several
defense techniques are proposed based on adversarial training
(AT) [14]–[16], randomized smoothing [15], GAN [17], etc.
Amongst the defense methods, AT is found to provide superior
performance for improving the robustness of the DL models.
In the AT method, adversarial examples are augmented to the
training dataset so that the DL model learns features from the
adversarial input space. In the literature, the effectiveness of
the AT method has been demonstrated for AMC [14]–[16].
To the best of the author’s knowledge, there has not been any
work in the investigation of the robustness of optimized DL
models against adversarial attacks. Moreover, a key drawback
of applying AT on large, complex models is the computational
complexity associated with the generation of adversarial ex-
amples and the training process. The computational cost is
significantly higher for examples generated using an iterative
adversarial attack having a better attack success rate, such as
PGD, momentum iterative method [18], etc. This results in
a great challenge for performing on-device AT at the edge
applications where computational resources are scarce. Thus,
now more than ever, there is a great need to develop optimized,
computationally efficient DL models for AMC that are also
robust to adversarial attacks.

Specifically, the main contributions of this work are as
follows: (a) We propose to implement KD and network prun-
ing to develop the optimized and lightweight DL models for
AMC. Through optimization, the computational cost of AT
can also be significantly reduced to enable enhanced security
of DL models with edge computing. (b) We show that both
distillation and pruning are effective for developing optimized
and robust DL models for AMC with a computationally
efficient AT process. (c) For AT, we propose to utilize a
combination of single-step and multi-step attacks, i.e., FGSM
and PGD samples, and show that it also helps in achieving
significant robustness against other unseen attacks (FGM,
Deepfool, and UAP). (d) To further ensure secure deployment,
the classification accuracy of all the adversarially trained
models for clean samples should not be affected significantly.
We have observed that the optimized models developed in this
work perform much better than the standard model after AT.

II. OPTIMIZED DL MODELS FOR AMC

Two optimized DL models for AMC are developed to
investigate the robustness against adversarial attacks, and in
this work, they are named distilled and distill-pruned models.

A. Distilled model

To develop this model, we have implemented the vanilla
KD method proposed in [19]. KD has been widely adopted for
optimizing the DNN for deployment in resource-constrained
edge devices [20]. The main idea is to transfer the knowledge
from the learned representations of a large, complex model
(teacher model) to a smaller, less complex model (student
model). The student model will provide several computational

Algorithm 1: Distilled model
Input: Student fD(.;θD), teacher fT (.;θT ), clean training

data X = {(xi,yi)}Ni=1, Ld, Lc, temperature T ,
weight α, epochs E, batch size B

Initialize: Model parameters θD

Number of batches per epoch: NB = ceil(N/B)
for m in {1, 2, . . . , E} do

for n in {1, 2, . . . , NB} do
Randomly sample a batch: (XB ,YB)
Teacher Predictions for the batch:
ŶT ,B = SoftmaxT (fT (XB ,θT ))

Student Predictions for the batch:
ŶD,B = SoftmaxT (fD(XB ,θD))

Distillation loss: Ld = KLDiv.(ŶT ,B , ŶD,B)
Classification loss: Lc = CE(ŶD,B ,YB)
Total loss: Lt = α · Ld + (1− α) · Lc

// Compute gradient of Lt and update θD
θD ← θD −∇θDLt

endfor
endfor

Output: Distilled model fD(.;θD)

advantages for edge devices, such as faster inference and
less storage and power requirements. Moreover, the student
model can also achieve performance comparable to or even
better than the teacher model, which is an additional important
benefit of KD. Algorithm 1 presents the development of
the distilled model using the vanilla KD method [19]. In
the algorithm, the pre-trained teacher model is denoted by
fT (.;θT ), where θT are the trained parameters and the un-
trained student model is denoted by fD(.;θD), where θD are
trainable parameters. The trained student model obtained after
the distillation process is called the distilled model. The knowl-
edge transfer process takes place by minimizing the distance
between the output probability distributions of the teacher and
student models, i.e., ŶT ,B and ŶD,B , respectively. The output
probabilities are computed by applying SoftmaxT (·) on the
logit values, where the temperature parameter T regulates
the softness of the output probability distributions. During
distillation, a high value of T is used, and T is set to 1 during
inference. In Algorithm 1, we have used the Kullback-Leibler
(KL) divergence, KLDiv.(·) to compute the distillation loss,
Ld between ŶT ,B and ŶD,B . For the classification loss of
the student, i.e., Lc, we have used the cross-entropy loss. The
total loss for the student model, Lt, is the weighted sum of
Ld and Lc, with α being the weight of the distillation loss.

For demonstration purposes, this work considers the
VTCNN2 model in [2] as the student model and the Incep-
tionNet model in [3] as the teacher model. The VTCNN2 and
the InceptionNet models have 2.83M and 10.07M parameters,
respectively. Both architectures are publicly available, which
is beneficial for the reproducibility of our results. The pa-
rameters T = 10 and α = 0.1 are chosen for this work.
For the remainder of the manuscript, fD will refer to the
distilled VTCNN2 model, where knowledge is distilled from
the InceptionNet teacher model. Also, the original VTCNN2
model trained specifically for AMC as in [2] (without KD) is
referred to as the standard model fS in this work.



Algorithm 2: Distill-pruned model
Input: Distilled model fD(.;θD), normalized weight

matrices W1,W2, . . . ,WL, L layers, prune-layer
index k, data matrix U ⊂ X, η > 0

// Calculate layer-wise activations with original weights
Y0 = U // Input data
for l in {1, 2, . . . , L} do

Yl ← max(W⊤
l Yl−1,0) // Activations before pruning

endfor
Ŵk ← TRIM(Yk−1,Yk,0, η) // Apply TRIM on layer k
Update: Wk ← Ŵk

Output: Distill-pruned model fP(.;θP)

B. Distill-pruned model

In this method, we combine KD and network pruning to
optimize the DL model for AMC further. Specifically, the
goal is to incorporate the complementary benefits of the
two methods, i.e., knowledge transfer from KD and sparsity
from pruning, to optimize a DL model. Network pruning is
powerful for model optimization because many parameters
do not contribute significantly to the network’s performance
and, therefore, can be removed or pruned. From an edge
application perspective, pruning can have several benefits, such
as faster inference, less storage and compute requirements,
and increased generalization. We first obtain the distilled
model fD(.;θD) using Algorithm 1, followed by applying the
Net-Trim (NT) pruning method in [21]. The NT algorithm
optimizes a model by maximizing the sparsity in the layer
weights while minimizing the difference between the post-
pruning output response and the initial output response of a
layer. This can be formulated as a constrained optimization
problem for a layer with index k as given by [21],

Ŵk = argmin
Vk

∥Vk∥1 s.t. ∥Ŷk −Yk∥F ≤ η ,

where Ŷk = max(V⊤
k Yk−1, 0) is the output activation of

the kth layer for the intermediate weight matrix Vk during
optimization, with Yk−1 being the output of the previous
layer, (·)⊤ denotes transpose, ∥ · ∥F is the Frobenius norm,
and η > 0 is the threshold. In our implementation, the first
fully-connected (FC) layer of the distilled VTCNN2 model
fD is pruned as it has the highest number of parameters, i.e.,
2.7M out of the total 2.83M parameters, and pruning this
layer will effectively optimize the overall model. The final
sparse weight matrix Ŵk is obtained by solving the problem
in (1) using the alternating direction method of multipliers
(ADMM) technique [21]. After updating the original weights
Wk to the sparse weights Ŵk, we can obtain the distill-pruned
model, denoted as fP(.;θP), where θP are the parameters
after pruning. The overall procedure is presented in Algorithm
2. In the algorithm, the TRIM method depicts the iterative
solution of the optimization problem in (1) to obtain Ŵk

and the parameter η controls the extent of sparsity in the
weight matrix. To generate the layer-wise output activations
from the distilled model, only a small subset of samples U,
randomly chosen from the training dataset X for fD, is utilized
in Algorithm 2. In this work, we have used η = 0.8 to achieve

a 96.5% sparsity, which means that only 94.47K weights are
non-zero out of the total 2.7M weights.

III. ADVERSARIAL ATTACKS

A. Attack model

In general, we denote a trained DL-based wireless signal
classifier as f(.;θ) : x ∈ X → y ∈ Y , where θ are the
trained parameters of the model, x is the clean complex-
valued input RF signal (no attack) in X ⊂ R2×n, referring to
the in-phase (I) and quadrature (Q) components of dimension
n. y is the clean output probability vector in Y ⊂ RK ,
where K is the output dimension which corresponds to the
number of modulation schemes. The goal of the adversary is
to generate an adversarial perturbation for the input signal
x, denoted as δ, specific to the attacked classifier f(.;θ).
The adversarial example is then generated as xadv = x + δ.
When xadv is provided as the input signal during infer-
ence, the classifier predicts the corresponding output label as
l̂(xadv) = argmaxj f

j(xadv;θ), where f j(xadv;θ) is the
output probability of the classifier corresponding to the j-th
class. If l(x) is the original label of the clean RF signal x, then
the adversarial attack will be successful if l(x) ̸= l̂(xadv). In
this work, we focus on untargeted adversarial attacks, where
the predicted label l̂(xadv) can be any other class except the
original label l(x).
B. White-box attacks

a) FGM: In this attack method, the xadv is generated by
solving a constrained optimization problem as given by

argmax
xadv

L(θ,xadv,y), s.t. ∥xadv − x∥2 ≤ ϵ , (1)

where L(θ,xadv,y) is the loss for f(.;θ) when xadv is
the input signal, ∥·∥2 is the L2-norm and ϵ is the allowed
perturbation. The solution to (1) is given by

xadv = x+ ϵ · (∥∇xL(θ,x,y)∥)−1L(θ,x,y) , (2)
b) FGSM: This method follows the same optimization

problem in (1) to generate the δ, except the constraint that is
being subjected to is the L∞-norm instead of the L2-norm,
i.e., ∥δ∥∞ ≤ ϵ. The resultant xadv is given by

xadv = x+ ϵ · sign(∇xL(θ,x,y)) , (3)
c) PGD: This is an advanced and iterative method, which

involves refining the xadv at each iteration by adjusting the
perturbation in the direction that maximizes the loss L(·) while
staying within the ϵ-neighbourhood of the clean signal. The
mathematical formulation is given by

x0 = x (4)
xi+1 = clip[x,ϵ]{xi + β · sign(∇xi

L(θ,xi,y)} (5)
xadv = xT , (6)

where β is a step size, T is the number of iterations and
clip[x,ϵ]{xi} denotes constraining the intermediate sample xi

in the range [xi − ϵ,xi + ϵ].
d) Deepfool: This is an iterative attack originally devel-

oped for binary classifiers. It is based on the idea that the
minimum perturbation required for the misclassification of an
input sample will be the orthogonal projection of the sample



Fig. 1: Taxonomy for the evaluation of robustness against adversarial attacks of the proposed optimized models.

onto the decision boundary. The iterative optimization problem
to generate the minimum perturbation, δi is given by

argmin
δi

||δi||2, s.t. f(xi) +∇xif(xi)
Tδi = 0, (7)

e) UAP: UAP is a method to generate adversarial per-
turbations that are input-agnostic and do not depend on the
knowledge of the DL model; thus, these perturbations are
universal in nature. In this work, we have used the PCA-
based UAP method proposed in [10], as it is computationally
efficient.

IV. PGD-FGSM ADVERSARIAL TRAINING

Adversarial examples are generated by maximizing the loss
function of a DL model as formulated in (1). Therefore, AT ex-
poses the DL model to these samples by augmenting the clean
training data and then aim to minimize the classification loss
through standard training, which will enhance the robustness
of the model against adversarial attacks. A key objective of this
work is to reduce the cost of AT so that it can be performed
locally on an edge device, which will enhance the privacy
and security of the application on demand. However, most of
the existing work considers incorporating adversarial samples
generated from iterative or multi-step attacks as they have a
high attack success rate, but it also increases the computational
cost of AT significantly. In contrast, we consider incorporating
examples from both single-step and multi-step attacks. This
will help in reducing the computational complexity of AT
because the cost of generating N examples from a multi-step
attack is significantly higher than the combined cost of gener-
ating N1 examples from the multi-step attack and N2 examples
from another single-step attack, where N1 + N2 = N and
N1 = N2. Also, incorporating adversarial examples generated
in different gradient directions can effectively improve the ro-
bustness of the models. Therefore, this work utilizes both PGD
and FGSM attacks to generate adversarial examples during

the AT process. To achieve more computational efficiency, we
have also fixed the weights of the first FC layer of the standard
model fS , the distilled model fD, and the distill-pruned
model fP , while performing AT. This reduces the number of
trainable parameters to around 126K compared to the original
2.83M parameters. The corresponding adversarially trained
models are denoted as fadv

S , fadv
D , and fadv

P . Fig. 1 shows
the taxonomy for developing the proposed robust, optimized
models and the evaluation against adversarial attacks.

V. RESULTS AND DISCUSSION

In this work, for the demonstration purpose of the
proposed techniques, we have considered the well-known
RML2016.10A RF modulation classification dataset [2]. The
dataset consists of 220, 000 RF signals from 11 modulation
schemes. For each modulation, the signals are generated using
signal-to-noise ratios (SNRs) in the range of −20 dB to 18
dB with a step size of 2 dB. Each complex-valued signal is
of dimension 2 × 128, where both the I and Q components
contain 128 samples each. We have chosen this dataset because
it is publicly available, which enables the reproducibility of
our results. We have considered 50% of the dataset as the
training set, denoted as DTrain, which is used to develop
the models fS , fD, and fP . The remaining 50%, denoted
as DTest, is used to evaluate the proposed defense method.
The AT process is performed on the three models using the
examples generated from DTrain. The performance of the
models fadv

S , fadv
D , and fadv

P are evaluated in terms of i)
robustness performance for adversarial test samples generated
from five WB attacks, namely FGM, PGD, FGSM, Deepfool,
and UAP, ii) classification performance of the models on the
clean test samples. Further, we define two quantities in the
context of adversarial attacks: the perturbation-to-noise ratio
(PNR) and the perturbation-to-signal ratio (PSR). PNR is the
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Fig. 2: Classification accuracy of the adversarially trained standard and optimized models for adversarial attacks at SNR=10 dB.

relation between the perturbation power and the noise power
defined as PNR = ϵ2 (SNR+1)

||x||22
, where ||x||22 is the signal

power and ϵ is the maximum allowed perturbation. PSR is the
relation between the perturbation power and the signal power
defined as PSR = PNR/SNR.

a) Robustness against WB attacks: In Fig. 2, we have
compared the robustness performance of fadv

D , fadv
P , and fadv

S
when tested against the five representative adversarial attacks,
at a fixed SNR=10 dB. Specifically, we have evaluated the
proposed models against both single-step attacks, i.e., FGM
FGSM, and UAP, as well as multi-step (iterative) attacks, i.e.
PGD and Deepfool. It can be observed that fadv

D and fadv
P

overall performs better than the fadv
S across all the attacks.

Fig. 2a shows that for FGM attack, fadv
D performs significantly

better than fadv
S , with an average accuracy gain of 12% across

all PNRs. The accuracy of fadv
P is comparable to fadv

D at
higher PNRs for FGM attack. It can also be observed for
FGSM and PGD attacks in Fig. 2b and Fig. 2c, respectively,
that both fadv

D and fadv
P performs significantly better than fadv

S
at the high PNR values. For example, both fadv

D and fadv
P

achieve an accuracy gain of around 20% compared to fadv
S

when evaluated for PGD attack at PNR = 0 dB. Similarly, for
FGSM attack, fadv

D and fadv
P achieve 15% and 12% higher

accuracies, respectively, at PNR = 0 dB.
These results signify that a DL model that is optimized

using KD can achieve improved adversarial robustness than the
standard model when both are subjected to a computationally
efficient AT process. We have also observed that pruning the
distilled model can still provide better adversarial robustness
than the standard model. This is beneficial for edge appli-
cations as we can achieve both high sparsity and robustness
simultaneously with the distilled-pruned model. Our evaluation
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Fig. 3: Classification accuracy of the models on clean samples with
and without AT at SNR=10 dB.

also proves that performing AT with the combination of a
single-step attack (FGSM) and an iterative attack (PGD) can
be computationally efficient as this also achieves robustness
against unseen single and multi-step attacks, such as FGM,
Deepfool, and UAP, without incorporating any adversarial
samples during the AT process.

b) Performance on clean samples: We have compared
the classification performance of the optimized and the stan-
dard models for the clean samples when evaluated with and
without AT at SNR=10 dB, as shown in Fig. 3. The AT process
can lead to a reduction in accuracy for the clean samples,
i.e., the clean accuracy, when compared to the model without
AT. The reduction in clean accuracy affects the reliability of
the model for classifying received signals without any attack.
Therefore, it is important to minimize the decrease in the
clean accuracy. It can be observed in Fig. 3 that the drop
in clean accuracy after AT is the lowest for fadv

D and the
highest for fadv

S . Specifically, the clean accuracies of fD,
fP , and fS (models before AT) are 77.97%, 77.07%, and
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73.31%, respectively. After performing AT, the accuracies of
the models fadv

D , fadv
P , and fadv

S are 75.61%, 73.41%, and
66.98%, respectively. It can be observed that both distilled and
distill-pruned models have higher accuracies on clean samples
than the standard model, before as well as after AT. This shows
that KD also helps the lightweight model to learn more robust
features and is not affected significantly by AT.

To emphasize the choice of FGSM for AT, we have also
analyzed the robustness of fadv

D when UAP along with PGD
is used for AT. UAP is also a single-step attack and, thus,
can provide comparable computational benefits for AT. Fig. 4
shows a comparison of the accuracies of fadv

D for the PGD
and FGM attacks with different AT methods at SNR=10 dB.
For the PGD attack, it can be observed that AT with PGD and
FGSM performs the best and is even better than AT with only
PGD samples. Similarly, for the FGM attack, AT with PGD
and FGSM achieves the highest robustness and is significantly
higher than the model trained with only FGM samples. Thus,
using a combination of multi and single-step attacks for AT
can significantly increase the robustness of the model for FGM
attack. Increasing the robustness of a DL model against the
FGM attack is especially relevant for wireless communication
applications as it takes into account the perturbation power
(L2-norm).

VI. CONCLUSION

In this work, we proposed two DL-based optimized models
for AMC, namely distilled and distill-pruned models, based
on knowledge distillation and network pruning. The primary
objective of the proposed approach is to enhance the ro-
bustness of the optimized models against adversarial attacks
for secure deployment in edge devices. To achieve this, we
performed adversarial training with PGD and FGSM samples
on the optimized models in a computationally efficient manner.
Further, we investigated the robustness of these models using
five adversarial attacks: FGM, FGSM, PGD, Deepfool, and
UAP. Experimental results have shown that the optimized
models can achieve better robustness than the standard model,
with the distilled model achieving the maximum robustness
across all attacks. We have demonstrated that distillation also
helps with minimizing the loss in accuracy for the clean
samples for the adversarially trained optimized models. Future
work will incorporate developing computationally efficient,

retraining-free countermeasure techniques to enable the on-
device robustness improvement of DL models.
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