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Abstract — Deep learning techniques are subject to increasing
adoption for a wide range of micro-Doppler applications, where
predictions need to be made based on time-frequency signal
representations. Most, if not all, of the reported applications
focus on translating an existing deep learning framework to this
new domain with no adjustment made to the objective function.
This practice results in a missed opportunity to encourage
the model to prioritize features that are particularly relevant
for micro-Doppler applications. Thus the paper introduces a
micro-Doppler coherence loss, minimized when the normalized
power of micro-Doppler oscillatory components between input
and output is matched. The experiments conducted on real data
show that the application of the introduced loss results in models
more resilient to noise.
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I. INTRODUCTION

Advancements in deep learning have motivated diverse
research in their application to radar signal processing since
many of the relevant tasks can be described as instances of
classification or domain translation. The paper reports on the
enhanced performance of deep learning models processing
Doppler-time radar signals, achieved by changing the content
of the objective function.

Although a number of deep learning approaches have
been applied to radar signal processing, research to adjust
the objective function within this domain has been limited. In
[1], one of the early applications of a Convolutional Neural
Network (CNN) for the classification of radar signals is
reported and although a performance improvement is evident
owing to deep learning techniques, the type of loss used is
not revealed. The unsupervised approach utilising a stacked
auto-encoder architecture presented in [2] utilised a cost
function consisting of a reconstruction term, based on the
Mean Squared Error (MSE), a weight regularisation term,
and a divergence term between a sparsity parameter and
the average output of the hidden neurons. A CNN model
for human activity classification is introduced in [3], but
the exact characteristics of the objective function are not
disclosed. A transfer learning approach using a novel DivNet
architecture for human motion classification is proposed in
[4], without modification of the objective function content.
An unsupervised approach to learning relevant features from
radar micro-Doppler spectrograms in [5] applies a standard
auto-encoder objective function. A significant body of research
related to the classification of radar signals has adopted the
same methodologies [6], [7], [8], [9], [10], [11], [12], [13].

Here, a micro-Doppler coherence loss (an additional term
within the objective function) is introduced, applicable in
a wide range of frameworks operating on radar Doppler
signals. The micro-Doppler coherence loss improves results in
an unsupervised learning scheme applied for a classification
task by promoting aligned periodic characteristics of the
reconstructed signal in individual velocity bands to that of the
ground truth signal. Results indicate that deep neural networks
performing tasks related to micro-Doppler analysis can achieve
superior immunity to injected noise when trained using this
loss.

II. PROBLEM FORMULATION

Two representative application contexts are selected to
position the scope of the reported results. First, a network
executing domain translation where a given time-frequency
map is transformed to a different domain - de-noising
or interference removal fall into this category; second is
classification, one of the common uses of deep learning for
radar applications.

In general, each application requires the network to
learn relevant features from the input time-frequency map.
In the case of domain translation, the features establish a
representation used to decode an appropriate output, while in
the case of classification, these features form the input to a
classification output module (for instance, a relatively shallow
stack of fully connected layers). The feature set learned by the
encoding module significantly impacts the performance of the
network in both cases. Consequently, the challenge of learning
the relevant features constitutes the problem.

Furthermore, reliance on the standard losses widely
adopted outside of the radar context can advertise features
that are not relevant in the goal of interpreting Doppler
signals. The most commonly applied objective function Jθ for
fully convolutional networks with parameters θ, is the MSE
reconstruction loss between the target y and network output ŷ
(both of size M ×N ):

Jθ(y, ŷ) = LMSE(y, ŷ) =
1

N

1

M

N∑
fD=1

M∑
t=1

(yt,fD − ŷt,fD )
2 (1)

This loss does not prioritise any set of high-level features over
others in the sense that the value of each pixel has an equal
and direct influence on the error. The choice of prioritised
features is challenging, but if the assumption that the relevant
information is not uniformly spread over all pixels holds true,
then an improvement in performance can be expected through
adjustment of the loss terms.
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Fig. 1. Diagram of the used hybrid model.

III. PROPOSED SOLUTION

The modulations of Doppler components contain crucial
information in micro-Doppler applications. Consequently,
uniform contribution of each time-frequency bin to the
total error may not be appropriate. A new loss term of
micro-Doppler coherence loss LµD with a weight β is proposed
to promote the relevant micro-Doppler features. The introduced
loss term is designed to promote spectral similarity within each
Doppler band. This is achieved by formulating a metric that
will be minimized when the normalized spectral distribution
of each Doppler band is the same for both compared signals.

Jθ(y, ŷ) = LMSE(y, ŷ) + β · Lµ D(y, ŷ) (2)

For Lµ D, both a 2D time-frequency ground truth matrix
y[t, fD] and a corresponding network output ŷ[t, fD] are
subject to discrete Fourier transform Ft applied in the temporal
dimension t, transforming it to cadence frequency t → fc.
This yields two tensors representing Doppler-cadence maps
(still of size M × N ). The magnitude of the resulting 2D
map Ft[y] is extracted with integral normalized to 1 to obtain
the final representation C[fc, fD], constituting a normalized
Doppler-cadence magnitude map defined as:

C[fc, fD] =
|Ft(y)]|∑M

fc=1

∑N
fD=1 |Ft(y)|fc,fD

(3)

An identical derivation applied to ŷ[t, fD] yields Ĉ[fc, fD].
Since C[fc, fD] and Ĉ[fc, fD] are normalized 2D

representations, the form of the Lµ D(y, ŷ) loss term will be
similar to (1), since MSE is used to compare them:

Lµ D(y, ŷ) =
1

N

N∑
fD=1

M∑
fc=1

(Cfc,fD − Ĉfc,fD )2

M︸ ︷︷ ︸
S[fD]

(4)

The new term in Lµ D in the objective function Jθ in (2)
emphasizes features directly related to Micro-Doppler oriented
tasks. The initial phase information for each oscillatory mode
within a Doppler frequency bin is ignored by applying
the magnitude operation. The periodicity of the Doppler
components has to match the truth in order to minimise
the micro-Doppler coherence loss. Furthermore, the loss is

invariant to small shifts in time of individual micro-Doppler
spectral components1.

IV. EVALUATION

The utility of the micro-Doppler coherence loss is
demonstrated using a dataset containing real radar signatures
of various human activities. The dataset is publicly available2,
containing 1,752 samples with ground truth [14]. The samples
contain signatures from 6 different activities: 1) Walking, 2)
Sitting down, 3) Standing up, 4) Object Pick Up, 5) Drinking,
6) Fall. The samples are divided into training, validation and
test datasets with ratios of (0.5, 0.25, 0.25), respectively. Since
the class imbalances in the dataset are not severe, no balancing
countermeasures are applied.

The general learning approach is similar to [5], where
classification training is preceded by an unsupervised stage
enabling the evaluation in the improvement in both the domain
translation as well as the classification contexts.

The structure of the model is shown in Figure 1. The
network utilises 128 by 128 spectrogram images with 2
channels to accommodate real and imaginary components.
The spectrogram is computed with 128 bins in a 0.2 seconds
Blackman window and 0.19 seconds overlap. The resulting
spectrogram image is then uniformly sampled in time to obtain
128 spectra, yielding a 128 by 128 complex matrix. The model
encoder translates this image to a latent code of size 128, as
shown in Figure 1. All convolutional layers in the network
use a kernel of size 3 with a stride of 2. The latent code
is then input to the decoder module; alternatively, the same
code can be fed to the classifier module. The hybrid structure
allows for convenient switching between the translation and
the classification operation.

The results rely on a comparison between a network
where only MSE reconstruction loss LMSE is contained in the
objective function Jθ and a network where the micro-Doppler
loss term LµD is added to the objective with a weight β of 4.

A. Unsupervised Stage

The influence of the proposed loss term can be
demonstrated by investigating the loss curves of the trained
convolutional auto-encoding model component. In the long
term, the decay of the reconstruction loss can be expected
to drive the micro-Doppler loss down also. However, the
degree to which the two losses are coupled remains to
be demonstrated. This stage also provides confirmation on
whether using the additional loss term significantly changes
the direction of gradients used for backpropagation.

Figure 2 illustrates how both the reconstruction and
micro-Doppler losses vary with each weight update. In the case
of the MSE-only objective (black), both losses are reduced
in the long term; however, the latter decays at a slower
rate than in the case of the proposed objective function
(red). Thus the reconstruction loss and the micro-Doppler loss

1However, significant shifts in time of individual components will be
penalised by LMSE due to the resulting pixel error.

2Available at http://researchdata.gla.ac.uk/848/

http://researchdata.gla.ac.uk/848/


(a) (b) (c)
Fig. 2. Comparison of autoencoding loss curves. (a) Reconstruction Loss (b) micro-Doppler Loss and (c) scatter plot of the Reconstruction Loss Change and
micro-Doppler Loss Change

gradients are only partially aligned, implying that each loss
can be associated with a different set of learned features.
Further confirmation can be obtained by investigating the
correlation between the change in the reconstruction loss
and the change in the micro-Doppler loss for the scenario
where the objective function contains only the reconstruction
loss (black). The scatter plot in Figure 2(c) illustrates
that relationship. The correlation coefficient between the
two variables is 0.058 suggesting no consistent relationship
between them and confirming that the gradients propagated
from the reconstruction loss generally point in a different
direction than in the case of the proposed objective.

B. Classification

Two sets of model weights pre-trained in the unsupervised
stage have been used subsequently to train a classifier head

(a)

(b)
Fig. 3. Comparison of the relationship between accuracy and SNR of tested
samples

to discriminate between the three classes contained in the
dataset (only cross-entropy loss is included in the objective
function at this stage). Figure 3(a) shows the validation curves
for the two sets of pre-trained weights. Evident is that the
weights obtained using the addition of micro-Doppler loss in
the unsupervised stage (red) lead to a smoother validation loss
decay than the standard MSE-only objective (black). The dots
mark the lowest validation loss achieved in each case; 0.50647
for the standard approach, and 0.52433 for the proposed
micro-Doppler coherence loss. The weights from these states
have been extracted in order to compare the two approaches.

Using the best-performing weights, the accuracy of the
classifier has been tested against varying levels of additive
white noise (SNR swept from 10 to -10 dB), as shown
in Figure 3(b). Results indicate that the application of the
proposed micro-Doppler coherence loss yields a model more
robust to noise compared to the conventional approach.

The advantage gained in the context of the classification
task is further observed in the confusion matrices for the level
of noise where the difference of accuracy is most significant.
The confusion matrices presented in Fig. 4 demonstrate the
performance achieved by both networks with injected additive
input noise of SNR equal to -5 dB. Further, the network
output for each sample has been computed for 16 different
noise samples in order to obtain a representative example. The
proposed micro-Doppler coherence loss results in an increase
in accuracy from 0.48 to 0.61 (marked by the two vertically

(a) (b)
Fig. 4. Comparison of obtained confusion matrix at -5 SNRdB for
(a) a scenario with no micro-Doppler loss applied (b) a scenario with
micro-Doppler loss backpropagation.



aligned dots). Conversely, for a set accuracy level of 0.61, the
proposed approach can accommodate an additional 1.2 dB of
added noise with no drop in accuracy. The confusion matrix
for the model trained using the micro-Doppler coherence loss
is shown in Figure 4(b). The number of correctly classified
samples for almost all classes increase significantly compared
to the standard approach in Figure 4(a). The numbers of correct
predictions for the Walking and the Fall class are lower for
the proposed approach, however, the differences are minimal.
Nevertheless, the total number of correct predictions is higher
for the model trained with micro-Doppler coherence loss over
a range of noise level values as illustrated in Figure3(b).

V. CONCLUSIONS

A novel coherence loss term has been proposed for training
deep learning models operating on Doppler time-frequency
representations. Inclusion of the loss term in the objective
function provides more appropriate optimization gradients for
micro-Doppler applications. Results indicate that this practice
can be beneficial not only when the network output target is
a time-frequency map but also in a classification framework.
The new loss term utilised in the unsupervised pre-training
stage leads to a classifier significantly more resilient to noise,
making the model accuracy invariant to approximately 1.2 dB
of additional noise, or 10 percentage points higher accuracy
for the same level of noise is achieved.
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