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Abstract

Atrial fibrillation (AF), a common cardiac ar-
rhythmia, significantly increases the risk of
stroke, heart disease, and mortality. Photo-
plethysmography (PPG) offers a promising so-
lution for continuous AF monitoring, due to
its cost efficiency and integration into wear-
able devices. Nonetheless, PPG signals are
susceptible to corruption from motion artifacts
and other factors often encountered in ambu-
latory settings. Conventional approaches typ-
ically discard corrupted segments or attempt
to reconstruct original signals, allowing for the
use of standard machine learning techniques.
However, this reduces dataset size and intro-
duces biases, compromising prediction accu-
racy and the effectiveness of continuous mon-
itoring. We propose a novel deep learning
model, Signal Quality Weighted Fusion of
Attentional Convolution and Recurrent Neural
Network (SQUWA), designed to learn how to
retain accurate predictions from partially cor-
rupted PPG. Specifically, SQUWA innovatively
integrates an attention mechanism that directly
considers signal quality during the learning pro-
cess, dynamically adjusting the weights of time
series segments based on their quality. This ap-
proach enhances the influence of higher-quality
segments while reducing that of lower-quality
ones, effectively utilizing partially corrupted

segments. This approach represents a depar-
ture from the conventional methods that ex-
clude such segments, enabling the utilization of
a broader range of data, which has great impli-
cations for less disruption when monitoring of
AF risks and more accurate estimation of AF
burdens. Moreover, SQUWA utilizes variable-
sized convolutional kernels to capture complex
PPG signal patterns across different resolutions
for enhanced learning. Our extensive exper-
iments show that SQUWA outperform exist-
ing PPG-based models, achieving the highest
AUCPR of 0.89 with label noise mitigation.
This also exceeds the 0.86 AUCPR of mod-
els trained with using both electrocardiogram
(ECG) and PPG data.

Data and Code Availability Research data will
not be shared for ethical reasons, except for one pub-
licly accessible. The detailed data description are in
Section 4.1. Code is available at https://github.

com/Runz96/SQUWA.

1. Introduction

Atrial Fibrillation (AF), the most common chronic
cardiac arrhythmia, impacts around 33.5 million peo-
ple globally, with its occurrence increasing Chugh
et al. (2014). Notably, AF significantly contributes
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SQUWA: Signal Quality Aware DNN Architecture

to health risks, accounting for 20% of all strokes
and a third of all hospital admissions due to heart
rhythm issues Marini et al. (2005). To reduce AF-
associated risks, it is important to be able to detect
AF early in the trajectory, allowing for timely inter-
vention that can mitigate the progression of electrical
and structural remodeling of atrial tissue Hart et al.
(2007). Although electrocardiogram (ECG) signals
are the gold standard for detecting AF, their practi-
cal application is limited by challenges in long-term
daily wearability, necessitating the exploration of al-
ternative signal modalities to monitor and detect AF
such as photoplethysmography (PPG) signals Charl-
ton et al. (2023). PPG signals represent blood volume
changes in the microvascular bed of tissue, providing
a non-invasive method to capture the characteristics
of irregular heart rhythms of AF. Their potential for
AF detection, combined with their presence in about
71% of consumer wearables has highlighted their sig-
nificance Henriksen et al. (2018). However, the utility
of PPG in AF detection is often undermined by noise
such as motion artifacts Seok et al. (2021). Thus, ac-
curate classification of these noise-affected PPG sig-
nals is critical for the development of a system that
is both highly sensitive and precise in detecting AF,
in particular for screening AF at scale.

Despite advancements in AF detection through
PPG data analysis using Deep Neural Networks
(DNNs) such as Convolutional Neural Networks
(CNN) Shashikumar et al. (2017), Long Short-Term
Memory (LSTM) Cheng et al. (2020), and Trans-
former Neural Networks Nankani and Baruah (2022),
the issue of noise and motion artifacts in raw PPG
signals remains unresolved. Current methods for
the corrupted PPG signals involves discarding low-
quality samples, or enhancing the signal-to-noise ra-
tio (SNR), so that the standard neural network meth-
ods can focus on the ’clean’ data and tend to ig-
nore signals that are not of high quality Liaqat et al.
(2020). However, discarding low-quality signals can
reduce the volume of data available for model train-
ing, leading to challenges in estimating metrics like
AF burden Pereira et al. (2019b); Zhu et al. (2021).
This strategy often relies on arbitrary thresholds to
remove low-quality signals Roy et al. (2020). Other
approaches attempt to improve signal quality before
detecting AF, which can lead to errors accumulation
and propagation from the enhancement stage to de-
tection, potentially compromising the algorithm’s ef-
fectiveness Ding et al. (2023); Afandizadeh Zargari
et al. (2023). Conversely, a streamlined, one-step

method that directly integrates PPG signal quality
into the AF detection process could provide a more
efficient solution. This method enhances accuracy by
making the most of the data available during train-
ing, without altering the raw signal.

In this study, we introduce a novel DNN archi-
tecture, termed Signal Quality Weighted Fusion of
Attentional Convolution and Recurrent Neural Net-
work (SQUWA), designed for AF detection using
PPG data. Unlike conventional methods that ex-
clude low-quality signals, SQUWA integrates an in-
novative attention mechanism that dynamically as-
signs weights to PPG segments based on their signal
qualities. This mechanism is not an isolated feature
but is embedded within the AF detection process it-
self. It’s trained to incorporate signal quality levels
directly into the learning model, moving away from
the detached, two-step methods. In practice, dur-
ing AF detection, SQUWA prioritizes segments with
higher quality to have a greater influence on the pre-
diction. Conversely, segments that are significantly
affected by noise receive less weight. This approach
allows SQUWA to maximize the use of high-quality
segments in a PPG sample, thereby minimizing the
impact of lower-quality segments on the overall anal-
ysis, ensuring the model’s predictions are informed
by the most reliable data available. Moreover, this
attention mechanism operates at a detailed temporal
resolution, processing each data point independently
rather than treating an entire PPG sample as a ho-
mogeneous unit. This refined approach enhances the
overall effectiveness and accuracy of the AF detection
process.

Additionally, to support this attention mechanism,
we utilize a class activation map (CAM) Zhou et al.
(2016) derived from a pre-trained signal quality (SQ)
model. This CAM generates a continuous signal qual-
ity index (SQI) for each PPG signal, offering a gran-
ular view of signal quality over time Pereira et al.
(2019a). Another novel feature of SQUWA is the ini-
tial decomposition of a PPG signal. This involves
decomposing the raw signal and its first and second
derivatives using a variety of CNN kernels, each with
different kernel sizes. These decomposed elements are
then strategically reassembled by a sub-network to
create a composite signal. This approach is crucial
in highlighting relevant signal features, significantly
improving the ability to distinguish between AF and
non-AF conditions.

Our training and testing approach is meticulously
designed to enhance the model’s robustness and gen-
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eralizability. We train the model on over 5 mil-
lion PPG samples, ensuring comprehensive learning
that encompasses a wide range of etiological vari-
ations within this disease population. For testing,
we rigorously evaluate it on three external datasets.
This strategy not only tests the model’s adaptabil-
ity to varied conditions but also confirms its effec-
tiveness across diverse real-world scenarios. Experi-
mental results show that our proposed approach en-
hances the accuracy of AF detection in the presence
of varying signal quality. The SQUWA method out-
performs baseline models, including CNN and RNN-
based single-modality AF detection neural networks,
across three external test sets. Remarkably, our
method also shows competitive results when com-
pared to an AF detection model trained using both
PPG and ECG data. To our best knowledge, the pro-
posed approach is the first deep learning framework
that considers signal quality as an integral element
in learning an AF detector. The contribution of this
work can be summarized as follows:

• We introduced an attention mechanism that si-
multaneously considers the quality of PPG sig-
nals and AF detection. This method learns to
weigh more on segments with higher SQIs, en-
suring accurate AF classification even from par-
tially compromised PPG signals.

• The SQUWA model utilzed an adaptive atten-
tion sub-network to combines the raw PPG sig-
nal and its first and second derivatives. This
approach allows the model to analyze the signal
and its instantaneous rate of change and curva-
ture, providing a comprehensive understanding
of the signal dynamics.

• The proposed method outperforms the base-
line PPG models and we were able to confirm
through model interpretation analysis that the
good quality segments in a PPG are indeed
mapped to higher attention weights as learned
by SQUWA.

2. Related Work

Recent progress in model design has focused on
addressing the challenges posed by noisy sig-
nals. This includes strategies for both preprocess-
ing—to improve signals before classification—and
post-processing, aimed at refining predictions to

offset the impact of partially corrupted data seg-
ments. Chatterjee et al. (2020); Zhang et al. (2021a).
The following paragraphs will highlight the strengths
and weaknesses of common techniques within these
two categories.

A notable preprocessing strategy for signal de-
noising involves the use of Variational Autoen-
coders (VAEs) and Generative Adversarial Networks
(GANs) to augment data Im Im et al. (2017); Brophy
et al. (2023). These models have shown promise in
restoring corrupted data of various types, such as im-
ages Im Im et al. (2017), acoustic signals Kuo et al.
(2020), and text Zhu et al. (2018). Denoising GAN
(DN-GAN) Chen et al. (2020) and Denoising Autoen-
coders Bengio et al. (2013) have been explored for
their capacity to learn complex, high-level represen-
tations of data and for their ability to filter out noise,
respectively. However, their success relies on the as-
sumption that the noise patterns are predictable or
follow certain distributions. This assumption may
not hold in real-world scenarios where noise and cor-
ruption can be unpredictable and non-uniform.

Transfer Learning has also been utilized to miti-
gate the challenges of partially corrupted signals Pan
and Yang (2009). Zhang et al. (2020) leveraged a pre-
trained models on a clean speech dataset and adapted
them to specific speech recognition task with lower
quality data. Kim et al. (2020) has utilized transfer
learning to address the challenges by training a net-
work with synthetic noise and then transferring this
knowledge to effectively handle the varying charac-
teristics of real-world noise. However, the effective-
ness of transfer learning is limited by the availability
of representative training data and the discrepancies
between training and application datasets Day and
Khoshgoftaar (2017). Models trained on high-quality
data often struggle to adapt to lower quality sig-
nals, leading to challenges in accurately interpreting
biomedical signals like PPG-based AF detection Pan
and Yang (2009). Significant discrepancies in data
quality and patient demographics often require time-
consuming fine-tuning and domain adaptation.

Attention mechanisms are designed to direct a
model’s focus to the most significant parts of the in-
put, improving learning efficiency and accuracy. Niu
et al. (2021). Attention methods have been success-
fully applied in many tasks, e.g., machine transla-
tion Tan et al. (2020), computer vision Guo et al.
(2022), and even physiological signals for AF detec-
tion Mousavi et al. (2020). A closely related study
introduced a unique heart rate estimation method
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that combines a signal quality attention mechanism
with an LSTM network Gao et al. (2022), which pro-
posed a novel remote heart estimation algorithm from
video. However, this approach only uses attention
mechanisms for offline correction of heart rate data,
not for integrating signal quality into the learning
phase. While attention mechanisms can aid in lever-
aging high-quality segments and reducing biases from
low-quality ones, their use in addressing the chal-
lenges of making predictions from partially corrupted
data remains unexplored.

3. Methods

Figure 1 visualizes the overall structure of SQUWA,
which begins by generating a composite signal from
the raw PPG and its first and second derivatives.
This process involves the use of variable-sized kernels
to break down these signals. Subsequently, an atten-
tion subnet aggregates the kernel outputs through a
weighted sum. A deep CNN then processes this com-
posite signal to extract features with a lower temporal
dimension to facilitate the subsequent temporal in-
tegration through a LSTM. Moreover, a pre-trained
CNN-based signal quality (SQ) model evaluates the
raw PPG signal, producing a signal quality index
(SQI) over time. These LSTM outputs and SQIs
are then combined through a signal quality atten-
tion (SQ-attention) mechanism. This nuanced inte-
gration of both signal features and SQIs weighs more
contributions from locations in the signal where SQIs
are high so that valuable information from partially
corrupted PPG signals is effectively utilized for ac-
curate classification. End-to-end training of SQUWA
enables this data-driven integration process to maxi-
mize sensitivity and minimize false detection.

3.1. Composite Signal Generation

The composite signal generation incorporates the two
components found within the yellow box on the left
side of Figure 1. The inputs of the SQUWA net-
work are the raw PPG signal and its first and second
derivatives. A PPG signal captures the heart’s pulse
by tracking changes in blood volume with each beat.
The first derivative of the PPG signal relates to the
velocity of the blood flow, indicating the rapidity of
blood volume changes within the vessels and mirror-
ing the pulse’s rhythm. The second derivative offers
a deeper look at how quickly the blood flow’s veloc-
ity changes, essentially gauging the acceleration or

Figure 1: Structure of Signal Quality Weighted Fu-
sion of Attentional Convolution and Recur-
rent Neural Network (SQUWA).

deceleration of blood within the vessels. As shown
in Figure 3.1, these three forms of the PPG signal
are analyzed in parallel by convolutional kernels of
three different lengths ranging from a short to a long
scale. The exact length of the kernel and the num-
ber of kernels will be fine-tuned during the training
process, but the goal is to decompose the input at
different scales and learn how to selectively combine
them into a composite signal. The output from all
kernels of the same length will be combined by using
a 1x1 kernel, and this process results in nine compo-
nent signals of the same length as that of the original
PPG. An attention subnet learns weights to combine
these nine components in a way that is determined by
the characteristics of raw PPG. This attention sub-
net includes a convolutional layer, a fully-connected
layer, and a SoftMax layer.

3.2. CNN-LSTM Fusion

Figure 2 highlights two branches: one for process-
ing the composite signal and the other for processing
the raw PPG. The composite signal is analyzed by
a CNN to effectively extract a sequence of feature
vectors. These vectors have a dimension of n × T ,
where n is the number of kernels in the last convolu-
tional layer and T is the temporal dimension of the
sequence. Because of pooling layers in the CNN, T
will be smaller than the length of the original signal.
The second branch uses a CNN-based SQ model that
processes raw PPG signals to produce SQIs. This
SQ model, pre-trained on a small PPG dataset la-
beled with good and bad signal quality, differenti-
ates between these qualities. We utilized the class
activation map (CAM) from the last layer (prior to
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Visualization of the composite signal generation in
the proposed SQUWA algorithm.

a global average pooling layer) of the SQ model as
SQIs to reflect PPG quality over time Zhang et al.
(2021b). To match the temporal dimension with
the feature-extraction CNN, we make sure the down-
sampling factors in both CNN networks are identical
so that each element of a feature sequence from the
first branch can be characterized by a scalar SQI. We
use 1-D ResNet as the backbone for the CNN feature
extraction layer and SQ model and leave the explo-
ration of other more modern CNN architecture for
future work Alzubaidi et al. (2021). These two net-
works do not need to have identical architectures but
need to have the same downsampling factors to be
temporally in sync. The output of the CNN feature
extractor will be processed by a LSTM, and we use
the one-directional LSTM as the backbone. The out-
put from the LSTM has the dimension of k×T , where
k is the number of hidden units in the LSTM layer.

3.3. Signal Quality (SQ) - Attention

In this section, we introduced the SQ-attention mech-
anism that begins by analyzing the hidden states H
from the LSTM, which captures the temporal sequen-
tial patterns in the PPG signal, along with signal
quality values SQI that assess the quality of each
segment of the PPG signal in Figure 2. As shown
in Formula 1, the mechanism converts these hidden
states H and SQI values into queries (Q), keys (K),
and values (V ), which are simplified representations

Figure 2: Visualization of the CNN-LSTM fusion
and SQ-attention process.

to help the model determine the segments of the sig-
nal that should be prioritized.

Hadj = H + P

Q = HT
adj ·WQ

K = SQIT ·WK

V = HT
adj ·WV (1)

, where WQ, WK , and WV are the weight matrices
for the query, key, and value transformation, respec-
tively. And P represents the positional encoding.

The attention mechanism operates by pairing
queries with keys. This is done by measuring how
much each query matches with a key, taking the prod-
uct of two numbers in Formula 2. This step calculates
the significance or ’weight’ to be assigned to each
segment of the signal, which we call attention scores
Satten. The weight matrices WQ and WV are shaped
(k×k), and weight matrix WK is sized (1×k). Given
that the hidden states from LSTM has the dimension
(k × T ) and signal quality vector has the dimension
(1× T ), the dimension of Satten is (T × T ).

Satten =
QKT

√
dk

(2)

, where dk is used to normalize the attention scores.
It is equal to k, the number of hidden units in the
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LSTM layer.

Watten = SoftMax(Satten) (3)

In Formula 3, a softmax function is then applied
to convert these attention scores into a standardized
form where they all add up to one, effectively scal-
ing the attention across the signal. The standard-
ized scores form an attention matrix Watten, which,
as outlined in Formula 4, is employed to calculate a
context vector by weighting the value vectors accord-
ing to these scores.

Output = Watten · V (4)

This output context vector is a refined summary of
the entire PPG signal, adjusted according to the qual-
ity of the signal. It emphasizes the trustworthy seg-
ments of the signal while diminishing the influence of
lower quality parts. Finally, the context vector goes
through a fully connected layer and a sigmoid func-
tion, which together classify the PPG signal. The
sigmoid function provides the probability of the sig-
nal belonging to a specific category, thus completing
the process of integrating SQIs into PPG signal clas-
sification.

4. Experiment

4.1. Dataset

In this study, we employed a comprehensive evalu-
ation on multiple datasets. For training purposes,
we used a large-scale dataset, and for evaluation, we
utilized three additional external datasets, including
one that is publicly available. Additionally, we incor-
porated a smaller signal quality dataset with clean
labels and detailed signal quality information, such
as the presence and exact timings of low-quality seg-
ments. This dataset was used to train our signal qual-
ity assessment model.

4.1.1. Train dataset

Our training dataset was sourced from 28,539 pa-
tients in a hospital environment, where continuous
PPG signals were recorded from bedside monitors.
These monitors flagged events such as atrial fibrilla-
tion (AF), premature ventricular contraction (PVC),
and others. Our study focused on AF, PVC, and nor-
mal sinus rhythm (NSR), grouping PVC and NSR la-
bels under Non-AF for a binary AF vs. Non-AF clas-
sification. The PPG signals were segmented into non-
overlapping 30-second intervals, initially sampled at

240Hz (7,200 timesteps each), and then downsam-
pled to 80Hz (2,400 time steps). The dataset was
divided by patient IDs into training and validation
sets. The training dataset included 13,432 patients
with 2,757,888 AF and 3,014,334 Non-AF segments,
while the validation set comprised 6,616 patients with
1,280,775 AF and 1,505,119 Non-AF segments. Given
that the labels were automatically generated by mon-
itors, some label noise is expected and estimated to
be around 25%. This estimate was derived by manu-
ally annotating a small sample of the dataset.

4.1.2. Signal quality dataset

The signal quality dataset consists of 18,055 PPG
segments from 13 stroke patients. The data collection
settings for this dataset were consistent with those of
our training dataset. A notable feature of this dataset
is the detailed information on signal quality, including
the presence and specific timings of segments with
poor quality. The SQ model shown in Figure 1 was
trained using this dataset.

4.1.3. Test dataset

Testset A (Public Source) Testset A is a public
dataset from Torres-Soto and Ashley (2020), featur-
ing data from wrist-worn devices in ambulatory set-
tings. Originally with 25-second segments, we aug-
mented these to 30 seconds and resampled them to
2,400 timesteps. It contains 52,911 AF and 80,620
Non-AF samples from 163 patients, including those
with AF and healthy individuals.

Testset B (Institution B) Sourced from institu-
tion B, Testset B was gathered using wrist-worn Sam-
sung Simband devices from 98 ambulatory patients.
We processed the data into 30-second segments with
2,400 timesteps each. The dataset includes 348 AF
and 506 Non-AF segments, reviewed and annotated
by medical professionals.

Testset C (Institution C) Testset C, collected
from institution C, consists of fingertip PPG data
from 126 hospital patients. We formatted the con-
tinuous signals into 30-second, non-overlapping seg-
ments, each downsampled to 2,400 timesteps. This
dataset includes 38,910 AF and 220,740 Non-AF seg-
ments, annotated by cardiac electrophysiologists.
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4.2. Compared Model

To evaluate the performance of our proposed model,
we conduct a performance comparison against sev-
eral baseline models, including ResNet-34 classifer He
et al. (2016), LSTM model Yu et al. (2019) and the
hybird ResNet-34 and LSTM architecture. Moreover,
we also include two recent AF detection models that
are publicly accessible: the CMC model, which ad-
dresses the issues of inaccurate AF labels Ding et al.
(2024), and anther model SiamAF, which is trained
utilizing both PPG and ECG data but only utiliz-
ing PPG for inference Guo et al. (2023). Given the
presence of noisy label in our training dataset, as dis-
cussed in Section 4.1, we apply a variety of label noise
mitigation techniques, including the strategy used in
CMC study Ding et al. (2024), Symmetric Cross En-
tropy (SCE) Wang et al. (2019), Joint Optimization
Learning (JOL) Tanaka et al. (2018), and Generalized
Cross Entropy (GCE) Zhang and Sabuncu (2018).
We utilized Area Under the Receiver Operating Char-
acteristic curve (AUROC), F1 score, and Area Un-
der the Precision-Recall Curve (AUCPR) as metrics
to compare the performance of SQUWA with several
baselines.

4.3. Ablation Study

To rigorously evaluate our SQUWA model, we per-
formed a series of ablation studies, as outlined in
Table 1. These experiments involved systematically
removing certain components of the model to cre-
ate different model variants to assess their individ-
ual contributions. We also removed different sized
kernels from the signal compositor to see the effect
of each. The NKS, NKM, and NKL variants were
each modified by removing (N) the small (S), medium
(M), and large (L) kernels (K), respectively. The
NSC variant was designed to use the raw PPG sig-
nal directly, bypassing the composite signal (SC) as
input. In the NFE variant, we took away the CNN
that extracts features (FE) and let the composite sig-
nal be analyzed by the LSTM. For the NRN variant,
we replaced the LSTM with a simpler global aver-
aging layer with SQI integration. The NSQ variant
retained the CNN and LSTM combination but did
not incorporate SQIs, to specifically assess the role of
signal quality integration. Finally, to further explore
the significance of SQI integration, we introduced the
RSQ variant. This model has the complete SQUWA
structure but is trained with randomly (R) generated
SQIs, enabling us to evaluate the impact of accuracy
of SQIs on model performance.

5. Results

The results in Table 2 show that SQUWA outper-
forms ResNet, LSTM, and the combined ResNet-34
+ LSTM in terms of all three metrics across differ-
ent test sets. CMC, a recent model tailored for AF
detection using PPG signals known for its ability to
manage label noise, is outperformed by our SQUWA
model, despite SQUWA not being specifically de-
signed to handle label noise. This is an important
observation given that our training dataset is affected
by label noise. Comparing SQUWA with SiamAF, a
contemporary AF detection model trained using both
PPG and ECG data, SQUWA shows competitive per-
formance on Testsets B and C. However, it does not
perform as well on Testset A. Furthermore, the last
four rows of the table show SQUWA’s performance
when combined with strategies to address the label
noise, such as the strategy used in the CMC model,
as well as other methods like SCE, JOL, and GCE.
Notably, these strategies improve SQUWA’s perfor-
mance, allowing it to surpass SiamAF on Testset A.
For instance, SQUWA with JOL achieves a F1 score
of 0.63 on Testset A, which is higher than the 0.61
F1 score from SiamAF.

In the ablation study, we evaluate the performance
of SQUWA against a series of its modified versions.
As shown in Figure 3, the AUCPR metric is uti-
lized to compare these models across three distinct
datasets. From the results, it is apparent that the
full SQUWA model generally outperforms its ablated
counterparts. This suggests that all parts of the
model work well together to make accurate predic-
tions. For example, the version without the CNN
for handling composite signals, named NFE, shows a
notable decrease in performance across all datasets.
This tells us that using a CNN to get features from
PPG signals is important. When we look at how
the model does with different kernel sizes in the sig-
nal compositor, we observe varying degrees of perfor-
mance drop. The version with a medium-sized ker-
nel, NKM, didn’t do as poorly as the versions with
small or large kernels. This means the medium-sized
kernel might not be as important as the other two
kernel sizes. However, the large kernel seems more
important for the Testset B and Testset C, but not
as much for Testset A, where it’s about as important
as the small kernel. Another interesting point is that
the version NSQ without the signal quality integra-
tion, which is key for managing noisy data, had a
significant drop in performance, especially in Testset
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Table 1: Configuration for the ablation study, where ’x’ denotes the inclusion of specific modules in the
algorithm, and ’N/A’ indicates the absence of such modules. SC means composite signal generation.

sLx1 Conv mLx1 Conv xLx1 Conv SC CNN LSTM SQ-attention
SQUWA x x x x x x x
NKS N/A x x x x x x
NKM x N/A x x x x x
NKL x x N/A x x x x
NSC x x x N/A x x x
NFE x x x x N/A x x
NRN x x x x x N/A x
NSQ x x x x x x N/A
RSQ x x x x x x x

Table 2: Comparison of performance between the baseline models and SQUWA, evaluated using AUROC,
F1 score, and AUCPR as metrics.

Testset A Testset B Testset C
Model Data AUROC F1 AUCPR AUROC F1 AUCPR AUROC F1 AUCPR
ResNet-34 PPG 0.54 ± 0.01 0.4 ± 0.01 0.25 ± 0.01 0.63 ± 0.01 0.6 ± 0.02 0.53 ± 0.02 0.68 ± 0.01 0.28 ± 0.02 0.23 ± 0.02
LSTM PPG 0.48 ± 0.01 0.23 ± 0.03 0.21 ± 0.02 0.41 ± 0.02 0.47 ± 0.03 0.39 ± 0.02 0.57 ± 0.02 0.18 ± 0.03 0.12 ± 0.03
ResNet-34 +LSTM PPG 0.64 ± 0.01 0.43 ± 0.01 0.34 ± 0.02 0.82 ± 0.01 0.71 ± 0.01 0.74 ± 0.01 0.93 ± 0.01 0.56 ± 0.01 0.68 ± 0.01
CMC PPG 0.76 0.53 0.6 0.88 0.75 0.84 0.94 0.7 0.73
SiamAF PPG+ECG 0.87 0.61 0.72 0.9 0.78 0.86 0.94 0.73 0.72
SQUWA PPG 0.8 ± 0.01 0.56 ± 0.01 0.63 ± 0.01 0.9 ± 0.01 0.8 ± 0.01 0.85 ± 0.02 0.94 ± 0.01 0.73 ± 0. 01 0.75 ± 0.01
SQUWA + CMC PPG 0.82 0.59 0.66 0.91 0.8 0.85 0.95 0.75 0.79
SQUWA + SCE PPG 0.84 0.62 0.7 0.89 0.79 0.8 0.94 0.75 0.79
SQUWA + JOL PPG 0.87 0.63 0.7 0.93 0.81 0.89 0.94 0.74 0.77
SQUWA + GCE PPG 0.87 0.61 0.71 0.92 0.8 0.88 0.95 0.76 0.8

A. The RSQ version, characterized by its randomly
generated signal quality index, exhibited the poor-
est performance among all variants across the three
datasets. These findings underscore the crucial role
of signal quality. On the other hand, the NRN ver-
sion didn’t fall behind much from the full SQUWA
model. Overall, these observations suggest that each
component of the SQUWA model plays a vital role
in its overall effectiveness, with certain components
being particularly critical depending on the datasets
evaluated.

Figure 4 presents the AUCPR scores in relation
to the bad signal quality percentage for the SQUWA
model and its variant NSQ that omits SQI integra-
tion. The y-axis measures the AUCPR, while the
x-axis represents the percentage of the signal consid-
ered to be of bad quality based on SQIs from CAM.
Each point on the graphs corresponds to AUCPR
scores computed from signal samples with a bad qual-
ity percentage up to the indicated threshold. For the
Testset A, as the threshold for bad signal quality in-
creases, the AUCPR for SQUWA remains relatively
stable and even shows a slight improvement, suggest-
ing that the model is robust to varying signal quality.
In contrast, the NSQ exhibits a decline in AUCPR,
highlighting the model’s dependency on higher signal
quality for maintaining performance. In the case of

the Testset B, the disparity between the two models
becomes more pronounced. The SQUWA maintains
its AUCPR scores substantially better as the signal
quality worsens compared to the NSQ, which demon-
strates a steeper drop. This indicates that the inte-
gration of SQI within SQUWA plays a significant role
in preserving the model’s performance under poor sig-
nal conditions. For the Testset C, both models show
an increase in AUCPR as the threshold for bad signal
quality increases, but SQUWA consistently outper-
forms NSQ. The SQUWA’s AUCPR scores increase
more steeply, reinforcing the benefit of SQI integra-
tion in managing lower-quality signals. Overall, these
figures suggest that SQI integration is an important
feature of the SQUWA model, helping to sustain per-
formance across varying levels of signal quality, which
is particularly evident when comparing to the NSQ
variant that lacks this feature.

As shown in Figures 5, we applied the trained
SQUWA model on the signal quality dataset men-
tioned in Section 4.1.2. Figure 5 illustrates an ex-
ample of a Non-AF signal, with an additional AF
example shown in Figure 6. The first subplot de-
picts the amplitude variations corresponding to the
raw PPG over time, while the second subplot visu-
alizes the shape of the combined original signal and
its derivatives after being passed through the com-
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Figure 3: Visualization of an ablation study showing the area under the precision-recall curve (AUCPR)
across three test sets.

posite signal generator. The composite signal shows
more fine-grained details and contains a rich set of
features than the raw PPG signal. In summary,
the processed composite signal appears to extract a
more comprehensive representation of the physiologi-
cal characteristics as captured in the raw PPG signal
and its temporal derivatives using varying-sized ker-
nels. The purple curve represents the SQIs from SQ
model, where a low value means worse signal quality.
The red shaded areas represent periods manually an-
notated as having bad signal quality. It appears that
the purple curve, which indicates the assessed signal
quality, has valleys that align with the red shaded ar-
eas. This suggests that the SQIs are sensitive to the
noise in the signal. The heatmap visualizes the atten-
tion score matrix and indicate how each time point in
the SQIs (horizontal axis) influences each time point
in the hidden states derived from the LSTM (vertical
axis). Color intensity indicates the strength of the
attention. A warmer color indicates higher attention
weights, meaning that the SQI at that time point has
a large influence on the hidden state from the LSTM
at a given time. Each column on the horizontal axis
corresponds to a moment in time for the SQI, and
each row on the vertical axis corresponds to a mo-
ment in time for the hidden states derived from the
LSTM. And all the elements of SQI and hidden states
provide a sequential representation of the 30s input
PPG signals. From the heatmap, we can observe that
the bright yellow lines or spots indicate time points

where the SQIs strongly influences the LSTM’s hid-
den states. Conversely, the darker regions indicate
time points that have less influence on the LSTM’s
hidden states, and these dark regions correspond with
the red shaded areas in the SQIs, it suggests that the
network is learning to disregard low-quality data.

6. Discussion & Conclusion

Detecting AF using PPG signals is crucial for use
cases such as population-wide AF screening using
wearable devices. However, a key challenge to realize
such a potential of PPG is to account for impact of
low signal quality on AF-detection sensitivity, which
is important for screening AF at scale, and preci-
sion, which is critical to minimize untoward conse-
quences of false detection. In response to this chal-
lenge, we present the SQUWA neural network, which
employs an attention mechanism designed to priori-
tize decision-making based on high-quality signal seg-
ments while mitigating the negative effects of cor-
rupted segments, thereby enhancing the reliability of
AF detection in PPG signals. Using SQUWA, there is
no need to rely on using an arbitrary signal threshold
to discard PPG siganls of poor quality. When assess-
ing our method using three independent datasets not
included in the training data collection, SQUWA out-
performed traditional PPG models in classifying AF
and Non-AF conditions. An ablation study revealed
that the signal quality attention mechanism signifi-
cantly boosts performance, with each component of

9
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(a) Testset A

(b) Testset B

(c) Testset C

Figure 4: Comparing AUCPR scores of the SQUWA
model and its NSQ variant without sig-
nal quality integration. The comparison is
shown on a graph with AUCPR on the y-
axis and the percentage of signal with bad
quality on the x-axis.

the SQUWA model contributing positively to achiev-
ing performance seen in the full version of SQUWA.
The attention maps validated our theory that the
decision-making process favors segments with higher
signal quality over those with lower quality. This at-
tribute aligns with the insights of human domain ex-

Figure 5: This figure shows a Non-AF PPG signal
with poor signal quality segments. The red
area highlighted in the third figure indi-
cates the portion of poor quality annotated
by a person. The first and the second fig-
ures show the raw PPG signal and the sig-
nal after the composite signal generator in
Figure 3.1. The purple line of the third
figure visualizes the signal quality, where a
low value indicates poor signal quality

. Additionally, an attention heatmap shows the influ-
ence of each SQI component (x-aixs) on the LSTM’s
hidden states (y-axis), highlighting the impact of se-
quence segment quality on the LSTM representation.

perts, who can identify and tolerate noisy segments
in the signals to a certain extent, while still mak-
ing accurate judgments about AF by focusing on
the segments of good quality. The issue of handling
noisy time-series data is not unique to AF detection.
Therefore, the principles underlying the SQUWA ar-
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chitecture could potentially be adapted for a range of
other applications, such as human activity recogni-
tion and speech recognition, where similar data qual-
ity challenges exist.
It’s important to note that alghtough the SQUWA

model benefits from integrating the SQIs in the train-
ing process, it is not an entirely end-to-end system.
The signal quality assessment component does re-
quire pre-training on a dataset with annotated signal
quality, though the size of this dataset does not need
to be substantial. Although we presented three test
sets to demonstrate the robustness of SQUWA, more
evaluations are needed to confirm its generalizabil-
ity. Another limitation is that SQUWA is suscepti-
ble to inducing false negatives when artifacts obscure
portions of signals where evidence AF is located. In
practice, outputs from SQUWA processing consecu-
tive 30-second strips can be further analyzed to en-
hance the model robustness for AF detection.

Institutional Review Board (IRB) The model
development data was sourced from routine bed-
side monitor usage in the intensive care units at
UCSF Medical Center (Institution A), under an IRB-
approved waiver for written patient consents (IRB
number: 14-13262). Testset B was collected from pa-
tients at Emory University Hospital undergoing AF
ablation, who consented to wear a study device for
PPG signal collection under IRB (00084629). Testset
C was collected from routine bedside monitor usage in
the acute care units at UCLA Medical Center with
an IRB-approved waiver for written consents (IRB
10-000545).
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Appendix A. Implementation Details

All experiments were conducted on a high-
performance computing (HPC) cluster equipped with
NVIDIA A100 and V100 GPUs. SQUWA was trained
with these hyperparameters: batch size of 1024, and
an Adam optimizer with a learning rate of 1e-4, using
exponential decay. To prevent overfitting, we em-
ployed early stopping, stopping training if the vali-
dation loss did not improve for 10 epochs. For the
composite signal generator, we used odd kernel sizes:
119 (about 1.5 seconds), 479 (about 6 seconds), and
799 (about 10 seconds), with a sampling frequency of
80Hz. Our architecture includes ResNet 34 for signal
quality assessment and ResNet 18 for feature extrac-
tion, along with an LSTM with a hidden size of 64.

Figure 6: This figure shows an AF PPG signal with
segments of low quality.

Appendix B. Attention Map of a AF
Sample

Figure 5 shows a Non-AF sample, and we introduce
an additional AF example in this section. The AF
sample, as shown in Figure 6, exhibits greater and
more complex fluctuations compared to the Non-AF
sample. But the generated signal quality index suc-
cessfully identifies the corrupted segments, aligning
with the human annotations marked by red shapes in
the figure. The attention map reveals that the good
quality sections receive higher weights compared to
those that are corrupted. This demonstrates that our
proposed method still works well for AF signals.

Appendix C. Visualization of Test
Samples

(a) Non-AF

(b) AF

Figure 7: Accurately classified AF and Non-AF sam-
ples from Testset A

In this section, we provide additional instances of
accurately classified AF and Non-AF samples for the
three datasets: Testset A, as presented in Figure 7,
Testset B, as presented in Figure 8, and Testset C,
as presented in Figure 9. These EGM signals contain
corrupted parts, demonstrating that SQUWA is able
to accurately identify AF despite imperfections in the
EGM signals.
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(a) Non-AF

(b) AF

Figure 8: Accurately classified AF and Non-AF sam-
ples from Testset B

(a) Non-AF

(b) AF

Figure 9: Accurately classified AF and Non-AF sam-
ples from Testset C
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