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Abstract—Current electromyography (EMG) pattern recogni-
tion (PR) models have been shown to generalize poorly in uncon-
strained environments, setting back their adoption in applications
such as hand gesture control. This problem is often due to limited
training data, exacerbated by the use of supervised classification
frameworks that are known to be suboptimal in such settings. In
this work, we propose a shift to deep metric-based meta-learning
in EMG PR to supervise the creation of meaningful and inter-
pretable representations. We use a Siamese Deep Convolutional
Neural Network (SDCNN) and contrastive triplet loss to learn an
EMG feature embedding space that captures the distribution of
the different classes. A nearest-centroid approach is subsequently
employed for inference, relying on how closely a test sample
aligns with the established data distributions. We derive a robust
class proximity-based confidence estimator that leads to a better
rejection of incorrect decisions, i.e. false positives, especially
when operating beyond the training data domain. We show our
approach’s efficacy by testing the trained SDCNN’s predictions
and confidence estimations on unseen data, both in and out of the
training domain. The evaluation metrics include the accuracy-
rejection curve and the Kullback-Leibler divergence between the
confidence distributions of accurate and inaccurate predictions.
Outperforming comparable models on both metrics, our results
demonstrate that the proposed meta-learning approach improves
the classifier’s precision in active decisions (after rejection), thus
leading to better generalization and applicability.

Index Terms—Surface EMG, high density, gesture recognition,
bionic, human-machine, neural interface

I. INTRODUCTION

H and gesture recognition (HGR) with electromyography
(EMG) involves recognizing user intent by analyzing the

complex muscle activation patterns generated when different
gestures are elicited. Researchers have employed machine and
deep learning (ML, DL) classification models to learn and
identify the gestures from these intricate signals, which are
subsequently used to control devices [1], [2]. DL, in particular,
has attracted a lot of attention thanks to its ability to learn
relevant features directly from the data, avoiding the need for
feature engineering [3].

While researchers have reported high recognition accuracy
in controlled environments, the performance of the models
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degrades when deployed in unconstrained real-word environ-
ments [4]. This is generally caused by external noise sources,
interference, and confounding factors such as limb orientation
and sensor displacement relative to the limb. These factors
ultimately result in poor user experience, thus motivating
researchers to seek methods to mitigate the performance
degradation arising from them. While acquiring larger EMG
datasets to encompass a broader test domain may lead to better
generalization, it is not practical due to the time and effort
required from the end users to provide such data. Within
the constraint of limited training data, an effective method
to improve usability is the use of decision rejection using
confidence metrics (e.g., posterior probabilities) obtained from
the model [5]–[7]. However, this scheme assumes that the
resulting confidence values can faithfully be interpreted as
measures of class membership. This presents a significant chal-
lenge, especially in the case of DL models, as they typically
function as black boxes, complicating the interpretation of
machine decisions, let alone confidence levels [8]. Moreover,
it is well known that DL models trained with the conventional
cross-entropy loss are generally poorly calibrated [9], tending
to be overconfident even when the decisions are incorrect. This
poses a notable challenge in safety-critical systems like EMG-
controlled prostheses, where the repercussions of erroneous
decisions far outweigh those of inaction. Such errors could
potentially result in hazardous movements of the prosthesis,
posing risks to both the user and bystanders. Researchers have
argued that overconfidence is a fundamental problem with
supervised classification frameworks, and have explored ways
to better calibrate the networks [10]. However, this still does
not help solve the model interpretability issues.

In this work, we aim to address the intrinsic limitations
of the conventional classification frameworks in EMG pattern
recognition (PR) when it comes to model generalization,
interpretation, and usability. We do so by framing EMG PR as
a representation learning problem rather than a conventional
classification problem. To this effect, we present a deep
metric-based meta-learning framework. At the front end of
the model is a Siamese Deep Convolutional Neural Network
(SDCNN) that is trained with a contrastive triplet loss to
learn a semantically meaningful Euclidean embedding space.
At the back end, a nearest centroid (NC) classifier is then
employed to use contextual distance-based information in
the learned embedding space for inference and confidence
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Fig. 1. High-density electromyography (HD-EMG) muscle activity mapping. (a) Non-invasive HD-EMG array of electrodes. (b) Time-series signal are
individually processed if needed. This example shows 64 channels for corresponding 4× 16 = 64 electrodes. (c) From each channel, a mean absolute value
(MAV) window captures a measure of the muscle contraction intensity. (d) The MAV of each channel is mapped to a pixel value in the muscle activity heat
map, and the pixel location corresponds to the electrode’s physical position in the array.

estimation. This approach leverages the feature extraction
capabilities of deep learning while incorporating an element
of interpretable AI through the transparent and intuitive na-
ture of the NC classifier. We evaluate the model under 3
EMG PR test scenarios: 1) in-domain predictions, 2) domain-
divergent predictions, 3) out-of-domain predictions. Among
other evaluation metrics, we use the accuracy-rejection curve
(ARC) and the Kullback-Leibler (KL) divergence between
confidence distributions of accurate and inaccurate predictions.
The ARC provides insights into the trade-off between accuracy
and the rejection of uncertain predictions, while the KL
divergence measures the difference in confidence distributions
between correct and incorrect predictions, shedding light on
the model’s calibration and decision-making process. Thanks
to meta-learning and NC classification, the proposed approach
outperforms comparable methods on those metrics, offering
a deep learning approach that is better suited to deal with
the generalization problem caused by inherent data limitations
in EMG PR. With improved confidence estimation to inform
decision rejection, it also contributes to build more efficient
DL models for EMG-based human-machine interfaces (HMI).

II. RELATED WORK

This section presents the related work in 3 areas: EMG pat-
tern recognition, decision rejection, and representation learn-
ing.

a) Electromyography pattern recognition: Classification-
based pattern recognition is the leading method for EMG
HGR [11]. Because of the user-specific nature of EMG,
EMG-driven HMIs require end user training data. However,
obtaining enough data to encompass all possible variations
in movements is impractical as it puts extraordinary burden
on the users. Researchers thus only collect a few repetitions
of data from selected gestures, typically when contractions
are maintained without any dynamic movements (also called
static or stationary data). This constraint results in models
performing sub-optimally due to limited training. To alleviate
this, recent works have proposed approaches such as transfer

learning [12], [13], domain adaptation [14], [15], and data
augmentation schemes [16], [17]. While these methods rein-
force training for a given set of gesture classes, the core model
still faces generalization issues outside of the trained scope as
users inevitably generate loosely-controlled EMG patterns in
unconstrained test scenarios.

b) Decision rejection: In cases when device inaction is
preferred to prediction error, decision rejection can reduce the
percentage of false positive activations, albeit affecting some
true positives in the process. In the DL space, [18] proposed
the use of CNN posterior probabilities to model a confidence
estimator for decision rejection. In [19], it is proposed to re-
place the softmax probabilities in a CNN with evidence-based
output activation and loss functions to embed uncertainty
estimates in the output. However, these approaches rely on the
quality and variability of the training dataset for the estimators,
thus limiting their usefulness. Interpretability still remains
limited, as the black box-type learning of the downstream
training loss does not yield intelligible features for users. Wu et
al. [20] use a metric center loss to train the last hidden layer of
their model in conjunction with the conventional cross-entropy
loss for a CNN model. Additionally, an autoencoder (AE) is
trained for each class and novel samples are rejected based
on the reconstruction error of the AEs. Though this approach
steps in the right direction to address the generalization issues
of cross-entropy loss, it has two weaknesses. First, along with
the base model, one AE is required for every gesture class that
is being considered; second, the performance of the AEs may
still rely on the training data for proper generalization, which
limits the benefits of the approach when data availability is
constricted.

c) Representation and distance learning: Meta-learning
has been used to solve challenges of data availability and
model generalization. In deep learning in particular, it can
add good inductive bias in the learning process [21]. Specific
implementations may use metric, model, or optimization-
based methods. The exploration of meta-learning in EMG
applications is, however, under-explored in comparison to
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Fig. 2. Siamese deep convolutional neural network architecture. The two branches of 2D convolution feature extractors embed the input data through multiple
convolution layer blocks and yield a flattened feature vector. The feature vectors are then compared with a distance function to assess similarity. More than
2 branches may be used to compare larger tuples of input data.

other fields. Proroković et al. [22] use model-agnostic meta-
learning (MAML) to facilitate model adaptation to EMG
signal variations over time. In [23], a few-shot learning (FSL)
framework is used to maximize learning and generalization
with limited data. Fan et al. [24] use a similar approach, but
also implement MAML to specifically facilitate adaptation of
EMG pattern recognition systems to new users. The previous
works focused on achieving better recognition accuracy under
different conditions, but largely ignored interpretability. In this
work, we use metric-based meta-learning from a different
angle, with supervised representation learning as a way to
generate interpretable and actionable signals from the model,
such as confidence estimation to inform automatic decision
rejection.

III. METHODS

A. High-density electromyography signals and data

In this work, we employ a high-density electromyography
(HD-EMG) array consisting of 64 electrodes organized as a
4×16 grid [17], [25]. As depicted in Fig. 1, the HD-EMG can
be interpreted as heat-map images representing the intensity
of muscle contraction in the limb. With periodic sampling,
sequences of HD-EMG data are produced with a shape of
(N, H, W), where N is the time/sample axis, and H and
W correspond to the height and width of the sensor array.
This HD-EMG image representation enables direct use of 2D
convolutions to extract spatial correlation patterns.

B. Siamese deep convolutional neural network for represen-
tation learning

To extract informative features from the HD-EMG data,
we employ a Siamese Deep Convolutional Neural Network
(SDCNN) architecture. Siamese networks are sometimes also
referred to as twin, matching, or prototypical networks [21].
As shown in Fig. 2, the parallel branches of the SDCNN
consist of 2D convolution blocks, with shared parameters
between the branches. Details of the architecture are presented

in Table I. Akin to AlexNet [26], the convolution kernels
are progressively smaller along the depth of the network.
Given the relatively low image resolution of HD-EMG maps
(compared to conventional images), downsampling the feature
maps with pooling layers was deemed unnecessary. After the
convolution blocks, the last feature maps are flattened to form
the feature embedding vector.

We train the network with a triplet loss function [27],
which guides the network to learn a feature embedding space
that enforces proximity between sampled same-class vectors,
and maximizes inter-class distance. New samples can then be
projected into the embedding space, which will enable greater
understanding of the sample’s membership to different class
clusters. The loss is mathematically defined by:

losstriplet = max(dsame − ddiff + α, 0),

where, for a given data point, dsame is its Euclidean distance
to a same class example, ddiff is its distance to a different
class example, and α is a margin parameter. In this work,
we use the semi-hard online implementation [27], where the
sampled triplets from the training set batches are subject to
the following constraint:

||f(xref
i )− f(xsame

i )||22 < ||f(xref
i )− f(xdiff

i )||22 <
||f(xref

i )− f(xsame
i )||22 + α,

where xref
i is the reference (anchor) sample, xsame

i is another
sample from the same class, xdiff

i is another sample from a
different class, and α is the configurable margin parameter.
This makes the training more efficient by avoiding trivial
triplets that would yield negative losses. The α margin also
enforces the sub-selection of semi-hard triplets (xdiff

i close to
xref
i , but still farther than xsame

i ). This process also excludes
so-called hard triplets which may impair training convergence.

C. Nearest centroid classifier and decision confidence estima-
tion

Once the SDCNN learns to embed HD-EMG data into a
semantic Euclidean feature space, multi-class discrimination
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TABLE I
LAYERS OF THE CONVOLUTION FEATURE EXTRACTORS IN THE TWIN

CHANNELS OF THE SDCNN

Layer Hyper-param. Add. layers Activation
Conv2D 32, 13x13, 0-padding Batch norm. Leaky ReLU (0.01)
Conv2D 32, 9x9, 0-padding Batch norm. Leaky ReLU (0.01)
Conv2D 32, 5x5, 0-padding Batch norm. Leaky ReLU (0.01)
Conv2D 32, 3x3, 0-padding Batch norm. Leaky ReLU (0.01)
Conv2D 8, 3x3, no padding Batch norm. Leaky ReLU (0.01)
Flatten N/A N/A N/A

can be done with a nearest centroid approach. The centroid
prototypes for each class are obtained by computing the mean
feature embedding vectors from the training data. An added
benefit of Siamese networks and the NC approach is the
utilization of few-shot learning, which enables training with
minimal quantities of examples, and subsequent handling of
new prototypes without having to retrain the neural network
[28].

For classification, the incoming test data is attributed to the
nearest centroid’s class. Because the SDCNN learns the feature
space based on EMG data similarity, distance from the other
classes can be used to provide contextual information along
with the prediction and inform a confidence estimator. The
distance to each prototype is turned into a class membership
score with the softmax function as in:

C = softmax([D0, D1, ..., DN−1]) (1)

Dc = 1− dc∑N
i=0 di

(2)

where dc represents the distance to the class c centroid, and
N the total number of classes. The softmax scores relay
how confident the decision (highest score) is relative to the
other classes. The same cannot be said of classification neural
networks using a cross-entropy loss, where one-hot encoded
target outputs don’t model class similarities and lead to
overconfident predictions [29].

D. Dataset

We compiled an HD-EMG dataset collected from 10 able-
bodied users in accordance with relevant guidelines, regula-
tions, and experimental protocols, as approved by the Laval
University Research Ethics Committee (approbation number:
2019-268 A-1 R-3 / 23-11-2022). Informed consent was ob-
tained from all participants. We used the 64-channel wearable
sensor (4x16 array around the forearm) presented in [17],
using a 1 kHz sampling frequency and 16-bit analog-to-digital
resolution to record the data from each participant.

a) Static hand gesture data: A static set was created
by having each participant perform 6 hand gestures, pictured
in Fig. 3. Each gesture was held steady for 5 seconds, and
repeated 10 times. Only the steady-state portion of the hand
gestures were recorded.

b) Dynamic hand gesture data: For each participant, a
dynamic sequence was also recorded to include transitions
between gestures in the data. In a continuous recording, the
participant cycled through the 5 active hand gestures, holding

Fig. 3. Gesture classes used for classification: 0) close fist, 1) thumbs up, 2)
chuck grip, 3) rest, 4) fine pinch, 5) index extension.

them for 5 seconds each, and resting in neutral hand position
for 5 seconds in-between. The users were visually cued with
progress bars to indicate when to switch gesture states.

c) Signal processing: The analog EMG signals were
band-pass filtered with a low cutoff frequency of 20 Hz (1st-
order characteristic) and a high cutoff of 300 Hz (3rd-order
Butterworth characteristic). 60 Hz power line interference
was removed from the digitized signals using a second-order
infinite impulse response (IIR) notch filter with a quality
factor, Q, of 30. For each channel’s time-series signals, DC
offset removal was implemented as a 100 ms moving average
subtraction, and envelope smoothing was done with a 100 ms
mean absolute value (MAV) filter to enhance subsequent sam-
ples correlation in the 2D muscle-map representation [25]. For
the static dataset, the processing time windows for the MAV
and offset removal were non-overlapping (window increment
of 100 ms) to reduce training computation. A pilot experiment
showed no appreciable difference between using 1 ms and 100
ms increment because the overlap created by shorter strides
only added redundancy between the data points, providing
no additional information during training. For the dynamic
sequences, however, the processing time windows were made
to overlap, with increments of 1 ms, to better capture the
dynamics during gesture transitions.

E. Reference models

a) Deep Convolutional Neural Network: To verify the
efficacy of the proposed metric learning framework, a base-
line DCNN model was implemented using the exact same
convolution layers as the SDCNN (Table I). A classification
head was appended to the model using a 128-unit fully-
connected (FC) layer, with a leaky ReLU activation (negative
slope of 0.01), going into the C-unit FC output layer, where
C is the number of classes in the training dataset. During
training, 50% dropout was used after the 128-unit FC layer.
This model was trained in a typical classification framework
using the categorical cross-entropy loss. Given similar model
complexity in terms of parameters, the contribution of the
different learning frameworks can be directly compared. The
confidence estimation of the DCNN model was extracted using
the predictive probabilities of the softmax output activation.

b) Support Vector Machine: To also provide a non-DL
baseline, we implemented a support vector machine (SVM)
classifier, which has been shown to outperform other common
classifiers in confidence-based decision rejection [6]. The
employed SVM model uses a radial basis function (RBF)
kernel with parameters C of 550 and gamma of 5e-08, as
tuned for best accuracy in a pilot study with 1 user and 5-fold
cross-validation. The typical non-DL methods require feature
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engineering prior to classification; in our case, we present the
same preprocessed data to the SVM as with the other models,
but in a flattened vector of 64 elements (as opposed to the
4 by 16 array input representation for the 2D convolution
models). Therefore, it effectively sees the MAV feature for
each of the 64 channels for classification purposes. A variety
of other features have been studied in EMG PR [30], but
a uniform preprocessing stage was preferred in this work
for comparison purposes. During training, we obtained the
posterior probabilities and used them as confidence scores for
the SVM model.

c) CNNSC: As a way to extend the discriminative
property of the features learned by the CNN, a center loss
function can be added to the traditional softmax loss [20].
This additional loss is measured using the features generated
by the penultimate dense layer of the DCNN model. This
loss function aims to penalize discrepancies between learned
features and their respective centers, encouraging samples
belonging to the same gesture to converge towards their
central point in the embedding space. The joint loss uses an
hyperparameter τ to help balance the two losses. The authors
claim that the softmax loss maximizes the distance between
different classes in the embedding space, while the center loss
minimizes the distance within the same class. Also for this
approach, the model’s confidence estimation is derived from
the softmax output activation.

d) ECNN: To evaluate the ability of the different models
to represent a measure of uncertainty compared to the SD-
CNN, we implemented an Evidential Convolutional Neural
Network (ECNN) [19] that extends the baseline DCNN model.
Instead of using softmax to directly extract class probabilities,
ECNN substitutes it with an activation layer like ReLU or
SoftPlus to generate evidence vectors that are passed through
a Dirichlet probability density function. The network is trained
using a custom sum-of-squares loss function that integrates an
additional Kullback-Leibler (KL) divergence term with a trade-
off coefficient λ that helps regulate the Dirichlet distribution.
With the proposed ECNN framework, four uncertainty mea-
sures are introduced: vacuity, dissonance, entropy and negative
maximum probability. The vacuity and dissonance are specific
to ECNN and represent its evidential uncertainty, describing
uncertainty due to lacking evidence and uncertainty due to
conflicting evidence. Regarding the classification accuracy,
using the negative maximum probability as an uncertainty
metric provided the best scores. It was thus used to obtain the
confidence scores for decision thresholding. The model was
trained using a ReLU function as the substitutes activation
layer and a λ coefficient of 0.1.

F. Experiments

For all experiments, the model training, validation, and test-
ing were completed for each user separately. Unless specified
otherwise, a per-trial leave-one-out cross-validation (LOOCV)
scheme was used for training and evaluation on the static
hand gesture dataset. With each gesture class repeated 10
times (i.e. 10 trials), the first trial was set aside for validation,
and the remaining 9 were used for the LOOCV. The four

neural network models used a training batch size of 128,
the Adam optimizer with a learning rate of 10−3 (SDCNN,
DCNN) or 10−4 (CNNSC, ECNN), and early stopping with
best epoch recall to halt training after 5 epochs of validation
loss improvements under 10−4. The triplet loss α parameter
for the SDCNN is set to 20.0. The τ parameter for the CNNSC
was set to 5 ∗ 10−5. For dataset consistency across the model
comparison, the SVM used the same training/test CV folds,
thus disregarding the validation trial. The main frameworks
and versions used are: TensorFlow v2.12.0, TensorFlow Ad-
dons v0.20.0, scikit-learn v1.2.2.

To evaluate the usefulness of the distance metric-based
confidence estimation, 3 offline experiments were conducted
to assess model performance in different test data conditions:
in-domain, domain-divergent, and out-of-domain. Then, to
showcase the expected real-time performance, the models’
behaviors were compared during a dynamic gesture sequence
featuring in-domain and domain-divergent segments.

1) In-domain misclassification rejection: This test assessed
the ability to discriminate between accurate and inaccurate
in-domain model predictions based on each model’s internal
confidence estimation. The test data were sampled from the
same domain as the training data, i.e. EMG signals from static
contractions of the same gesture classes.

2) Domain-divergent transient-induced error rejection:
The domain-divergent test assessed the ability to identify pre-
dictions on data falling just outside the training data domain,
due to confounding factors at the source. In this case, the
test data consisted of the dynamic EMG sequences. With
the training domain consisting of static contractions, the test
domain diverged due to the inclusion of EMG data from
gesture transitions [31]. These transitions cause uncertainty
and have been shown to induce prediction errors due to
domain divergence. We thus evaluate the models’ abilities to
discriminate in-domain from domain-divergent predictions for
decision rejection purposes.

3) Out-of-domain unforeseen class rejection: The out-of-
domain test assesses the ability to identify predictions made
on data unrelated to the training domain. For this experiment,
we introduce gesture classes in the test data that were not
part of the training classes ensemble. Predictions on un-
known/unforeseen classes are inherently inaccurate and should
thus lead to lower confidence than in-domain predictions.

For this experiment alone, the LOOCV was performed
class-wise rather than trial-wise, setting aside each of the
6 classes from the training data. For each fold, the first
contraction trial of each training class was used for validation,
the last two for in-domain reference testing, and the rest for
training. The left-out data (10 trials of the left-out class) were
then passed as test data to obtain the out-of-domain predictions
and confidence scores. Each fold thus consisted of a ratio
of 50% in-domain/out-of-domain trials (2 trials × 5 known
classes and 10 trials of the left-out class).

IV. RESULTS

Where applicable, each experiment’s test accuracy is pre-
sented in Table II. For each experiment case, the distributions
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Fig. 4. In-domain test confidence score distribution. The vertical axes
represent the percentage of total test predictions. Close-up view with 100
bins, overview with 35 bins. Calibration curves, representing the percentage
of correct predictions for each bin, are overlaid (secondary Y-axis), with linear
trend shown as reference for ideal calibration (dotted line).

of confidence scores for decision rejection can be observed
on Fig. 4, 5, and 6. The KL divergences (DKL), or relative
entropy, are reported in Table II as a measure of probability
distribution difference. To evaluate the confidence-based de-
cision rejection ability, the curves for the receiver operating
characteristic (ROC), precision-recall (PRC), and accuracy-
rejection (ARC) are displayed in Fig. 7, with their area under
the curve (AUC) reported in Table II. The curves and AUC
are calculated for each user independently, and then averaged.

A. In-domain misclassification rejection

The in-domain test evaluated performance on the LOOCV
test folds. The test accuracy is presented in Table II. After the
LOOCV, all test predictions and their confidence scores are
aggregated and relabeled as true or false based on whether
they were accurate or not, with their distributions shown in
Fig. 4. The DKL, in this case, quantifies how the incorrect
distribution differs from the correct one.

All models performed well in this test condition, with
accuracies > 90% corroborating the existing body of work
[32]. The SVM had the highest accuracy, SDCNN had the
best DKL, AUROC, and AUARC; while the ECNN had the
best AUPRC. However, none of the metrics were significantly
different across the different classifiers in this case.

B. Domain-divergent transient-induced error rejection

In this experiment, the LOOCV test folds were used as
a reference for baseline model accuracy, and referred to as
reference accuracy in II. For each fold, the domain-divergent
test accuracy was calculated on the dynamic EMG sequence,
for each user respectively. For decision rejection, all dynamic
test predictions were relabeled as true or false based on
whether they were accurate or not, with their confidence score
distributions displayed in Fig. 5. The DKL measures how
much the incorrect distribution differs from the correct one.

Fig. 5. Domain-divergent test confidence score distribution. The vertical axes
represent the percentage of total test predictions. Close-up view with 100
bins, overview with 35 bins. Calibration curves are overlaid (secondary Y-
axis), with linear trend shown as reference.

Fig. 6. In & out-of-domain test confidence score distribution. The vertical
axes represent the percentage of total test predictions. Close-up view with
100 bins, overview with 35 bins. Calibration curves are overlaid (secondary
Y-axis), with linear trend shown as reference.

The overall accuracies across all classifiers dropped by
≈ 10% compared to the in-domain case. The ECNN had
the highest test accuracy, though like the in-domain case, the
accuracies across the different models were not substantially
different. The SDCNN was highest across all other metrics.
More noticeably, it had the highest DKL by a substantial
margin, indicating improved confidence estimation via better
separation in the confidence scores of correct and incorrect
decisions. This is particularly visible in Fig. 5, where the
confidence score distribution of incorrect predictions were
centered lower on the axis. All other models exhibited a higher
concentration of high confidence predictions for both correct
and incorrect ones.

C. Out-of-domain unforeseen class rejection

The out-of-domain test evaluated the model behavior with
unforeseen classes passed in the testing phase. With predic-
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(a) ROC, in-domain test. (b) ROC, domain-divergent test. (c) ROC, out-of-domain test.

(d) PRC, in-domain test. (e) PRC, domain-divergent test. (f) PRC, out-of-domain test.

(g) ARC, in-domain test. (h) ARC, domain-divergent test. (i) ARC, out-of-domain test.
Fig. 7. Receiver operating characteristic, precision-recall and accuracy-rejection curves (ROC, PRC, ARC) for confidence-based decision rejection. The ARC
shows the trade-off between the amount of rejection and the active accuracy (classification accuracy among the non-rejected predictions).

tions being inherently wrong, only the accuracy from the in-
domain reference testing is reported in Table II. From the
CV folds, the out-of-domain test predictions are aggregated
with the in-domain reference predictions, and relabeled as true
or false based on whether they are in or out of the training
domain. The confidence score distributions (Fig. 6) and the
DKL (Table II) show how much the out-of-domain confidence
distribution differs from the in-domain one.

Similar to the domain-divergent case, the SDCNN was
highest across all models for most metrics, notably for our

metric of interest for confidence estimation, the DKL.

D. Online decision rejection

To provide a more detailed understanding of the models’
online behavior, we selected one of the gesture sequence from
the domain-divergent test to illustrate the corresponding pre-
dictions and confidence scores obtained in Fig. 8. We assessed
their proficiency in evaluating and abstaining from uncertain
predictions through a comparative analysis of decisions before
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Fig. 8. Online predictions and confidence-based rejection (CBR). For each model, confidence scores were scaled to a common range of 0 to 1 for visualization
purposes. The dotted lines and color overlays represent the target predictions. The confidence plots display the assigned score for every potential gesture
prediction, with the top score depicted in solid color and the others in transparency.
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TABLE II
EXPERIMENTAL RESULTS

Experiment Model Acctest Accref DKL AUROC AUPRC AUARC
In-domain SDCNN 0.9385 - 1.7043 0.9245 0.9890 0.9901

DCNN 0.9189 - 1.3155 0.8944 0.9847 0.9806
SVM 0.9411 - 1.6840 0.9220 0.9892 0.9897

CNNSC 0.9289 - 1.4890 0.9060 0.9871 0.9847
ECNN 0.9373 - 1.3437 0.9156 0.9894 0.9891

Domain-divergent SDCNN 0.8174 0.9385 0.9229 0.8598 0.9581 0.9464
DCNN 0.7948 0.9189 0.6157 0.8029 0.9322 0.9108

SVM 0.8053 0.9411 0.5513 0.7806 0.9082 0.8972
CNNSC 0.8121 0.9289 0.6070 0.8257 0.9421 0.9232

ECNN 0.8289 0.9373 0.5611 0.8393 0.9573 0.9401
Out-of-domain SDCNN - 0.9404 0.8338 0.8138 0.8001 0.7154

DCNN - 0.9147 0.3445 0.7237 0.7083 0.6455
SVM - 0.9349 0.6015 0.7446 0.7149 0.6474

CNNSC - 0.9376 0.5171 0.7703 0.7465 0.6792
ECNN - 0.9436 0.4462 0.7550 0.7711 0.6666

Fig. 9. Feature space visualization with PCA. Top row displays the SDCNN’s 224-dimensional space projected onto the first 2 principal components. Bottom
row displays the same for the input feature space. Correct predictions are labeled with an ’o’ marker, incorrect ones with an ’x’.

and after rejection. For the comparison, the threshold was
established so as to attain a consistent rejection rate across
each model. Going up from 0 with 1% increments, we stopped
when one of the models first reaches a false positive rate (FPR)
of 0. This process led to a rejection rate of 28%, at which
point the SDCNN had reached the 0 FPR. The SVM is the
only other model able to reach a FPR of 0 on this sequence,
but at a 48.98% rejection rate. The other models were unable
to do so at any rejection rate.

E. Feature space visualization

A deeper look into the model’s embedding space further
demonstrates its semantic reasoning and decision making.
Shown in Fig. 9 is one example of the training and test
sets in the SDCNN and input feature spaces. To keep the
comparison consistent across sets, the out-of-domain class
was also left out from the training in-domain and domain-
divergent sets. For visualization purpose, the data were linearly
projected to 2 dimensions with principal component analysis
(PCA), down from 224 and 64 (flattened 4x16 HD-EMG
frames) for the SDCNN and input space, respectively. In
each case, the PCA was fit exclusively with the training set.
To improve visibility, the 45465 data points in the domain-

divergent sequence set were downsampled to 456 (keeping 1
of every 100 predictions). While there was already an apparent
structure to the input space, noticeable re-arrangements can
be seen in the model’s embedding space, such as a better
separation of classes 1 (thumb up) and 3 (rest). On the other
hand, classes 2 (chuck grip) and 4 (pinch grip) remain closely
located, reflecting their semantic similarity. Errors within the
in-domain and domain-divergent sets occurred mostly between
clusters in the continuous distance-based feature space, as
expected. Confidence-based decision rejection can then discard
these predictions on the basis of their increased distance
to the nearest class centroid. Despite being unseen during
training, the out-of-distribution class maintains its distinct
cluster structure. This supports our hypothesis that meta-
learning encourages learning generalizable patterns, i.e., based
on data similarity rather than class labels.

V. DISCUSSION & CONCLUSION

In this work, we explored the use of deep metric-based
meta-learning as an alternative to the typical classification
framework used in EMG PR applications. We developed a
framework based on a Siamese network architecture trained
using a contrastive triplet loss function, and combined it with
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centroid classification and decision rejection. We conducted a
series of experiments to assess the approach’s performance
in comparison to a CNN trained with standard categorical
cross-entropy, a non-DL SVM model, and two other solutions
proposed in the field (CNNSC and ECNN). Our experiments
show that despite fairly similar baseline accuracies between
most models and test cases, the SDCNN provided better
performance across the other metrics in almost all cases.
The most notable difference was its consistently higher DKL,
which consequently yields better decision-rejection perfor-
mance (AUARC). In other words, it was able to better identify
domain-divergent and out of domain samples. This is further
exemplified with sequential predictions and confidence esti-
mation scores. The obtained results show that models trained
with the metric learning framework yield better generalization,
and supports the findings in the literature that conventional
cross-entropy framework leads to poor generalization [9]. Our
work also corroborates and brings EMG PR research up to
speed with recent trends in the broader field of deep learning
focusing on training backbone networks more specifically
to produce useful representations for better performance in
downstream tasks, in terms of generalization, transferability,
or explainability for instance [33], [34].

In addition, the output of the Siamese model holds human-
level interpretable meaning as it gives proximity information
between gesture classes, which other models do not inherently
encode. This enables the identification of potentially confound-
ing gestures, either with quantified contextual distances in the
model’s output, or by visualizing the feature space as in 9.
With an intuitive EMG PR model that is more robust and
transparent, our work sets the stage for a better integrated
holistic myoelectric control solution. As suggested in [3], other
key pieces for myoelectric neural interfaces are additional
sensor modalities and sensory feedback. The latter will be
particularly important to close the loop, in terms of human-in-
the-loop bionic control systems, and achieve prosthetic limb
embodiment [35]. In the same vein, our model builds towards
more seamless bidirectional information transfer in the human-
machine interface. The transparent and interpretable learned
feature space can provide useful information to users and clin-
icians on neuromotor capabilities during the training process.
Gesture cluster visualization could help improve contraction
pattern consistency or indicate confounding gesture classes to
omit as a control mode [36].

At this time, our research has focused on offline and post-
hoc online validation of our model, showing its performance in
an open-loop system. The next steps are to integrate and fully
leverage user performance when such a system is deployed for
real-time operation, where the user is closing the loop and can
adapt dynamically to model predictions [37]. In addition, this
EMG metric-based meta-learning framework is amenable to
further optimization through architectural or hyperparameter-
oriented explorations.

In conclusion, this research advocates for a paradigm shift
in deep learning for EMG PR, from classification frameworks
to deep metric-based meta-learning. Proposing the utilization
of a Siamese Deep Convolutional Neural Network (SDCNN)
and contrastive triplet loss, the study shows its effectiveness

for improved generalization and enhanced usability of EMG
PR models in unconstrained domains. By focusing on learning
meaningful and interpretable EMG feature representations,
coupled with a confidence estimator based on class proximity,
the research enables better rejection of incorrect decisions,
which is especially effective when divering from the training
data domain. This advancement paves the way for more
reliable and practical EMG-based applications in real-world
settings.
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