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Abstract—Digital Pre-Distortion (DPD) enhances signal quality
in wideband RF power amplifiers (PAs). As signal bandwidths
expand in modern radio systems, DPD’s energy consumption
increasingly impacts overall system efficiency. Deep Neural Net-
works (DNNs) offer promising advancements in DPD, yet their
high complexity hinders their practical deployment. This paper
introduces open-source mixed-precision (MP) neural networks
that employ quantized low-precision fixed-point parameters for
energy-efficient DPD. This approach reduces computational com-
plexity and memory footprint, thereby lowering power consump-
tion without compromising linearization efficacy. Applied to a
160MHz-BW 1024-QAM OFDM signal from a digital RF PA,
MP-DPD gives no performance loss against 32-bit floating-point
precision DPDs, while achieving -43.75 (L)/-45.27 (R)dBc in
Adjacent Channel Power Ratio (ACPR) and -38.72dB in Error
Vector Magnitude (EVM). A 16-bit fixed-point-precision MP-
DPD enables a 2.8x reduction in estimated inference power.
The PyTorch learning and testing code is publicly available at
https://github.com/lab-emi/OpenDPD,

Index Terms—digital pre-distortion (DPD), quantization,
power amplifier (PA), deep neural network (DNN), digital trans-
mitter (DTX)

I. INTRODUCTION

HE rapid evolution of wireless communication technolo-
gies has spurred an increased demand for higher data
rates, improved spectral efficiency, and reduced error rates.
Non-linear distortions, predominantly caused by wideband
Radio Frequency (RF) Power Amplifiers (PAs), significantly
compromise signal integrity, affecting both communication
reliability and energy efficiency. Digital Pre-Distortion (DPD)
has emerged as a crucial technique to mitigate these issues,
enhancing signal integrity. In contemporary radio digital front-
ends, the DPD module is a major contributor to power
consumption [1]. This challenge might be further exacerbated
by the potential integration of Machine Learning (ML) algo-
rithms, such as Deep Neural Networks (DNNs), which, despite
their potential, add to the power demands.
Recent advancements of ML-based long-term DPD in state-
of-the-art RF System-on-Chip (SoC) products are given in [2].
Nevertheless, the substantial computational complexity and
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memory requirements of ML-based DPD systems, especially
those using DNNs, pose significant obstacles to their effi-
cient deployment in wideband transmitters, particularly in the
context of future 5.5G/6G base stations or Wi-Fi 7 routers,
where limited power resources constrain real-time DPD model
computation.

Prior approaches to address DPD energy consumption in-
clude reducing the sample rate [3], employing a sub-Nyquist
feedback receiver in the observation path [4], dynamically
adjusting model cross-terms based on input signal character-
istics [S]], and devising simpler computational pathways for
DPD algorithms [6]]. This work presents a novel approach
by implementing mixed-precision (MP) arithmetic operations
and model parameters in a gated Recurrent Neural Net-
work (RNN)-based Digital Pre-distortion model for wideband
PAs. The proposed method curtails the DPD model infer-
enceﬂ power consumption by substituting most high-precision
floating-point operations with low-precision fixed-point oper-
ations through quantizing neural network weights (W) and
activations (A). This strategy reduces the energy of arithmetic
operations and memory access and facilitates the design of
energy-and-area-efficient DNN computing hardware suitable
for DPD deployment in power-sensitive environments [7]. Ad-
ditionally, our method is compatible with existing strategies,
allowing for further power savings when combined.

II. THE DPD COMPUTING’S ENERGY PROBLEM

To effectively correct the in-band signal and reduce out-of-
band emission, DPD systems typically operate at sample rates
ranging from 1.5x to 5x the baseband signal bandwidth [3].
As bandwidths in future radio systems expand, the energy
demands of DPD computation intensify. The energy consumed
per DPD model inference for each input I/Q sample is approx-
imated by:

Ene = Evur + Eapp + Evem (D

where EvuL, Eapp, and Eygy denote the energy consumption
of multiplications (MUL), additions (ADD), and memory
(MEM) access per DPD model inference, respectively. Since
each inference processes one I/Q data point of the input signal,

!Inference of a neural network model is the process of making predictions
based on the learned model parameters. Learning in a model involves training
the model to update the parameters with a dataset to classify patterns
(classification) or to track a time-varying discrete variable (regression).
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Fig. 1. (a) The Von Neumann architecture with energy costs. (b) Operation
and 8KB SRAM access energy in 45 nm [8]] and 7 nm [9] vs. precision.

the estimated dynamic power consumption of DPD model
inference is given as:

Pne = Eine - fs 2

where f, represents the DPD input I/Q data sample rate.

Utilizing 32-bit floating-point (FP32) arithmetic, while
beneficial for accuracy, can increase model size, negatively
impacting energy efficiency. Prior studies demonstrate that
DNNs with low-precision, fixed-point calculations effectively
minimize the memory footprint in demanding applications
such as image recognition and large language models. This
reduction is achieved with minimal accuracy loss, decreasing
power consumption in hardware implementations. As shown
in Fig. [I{b), Multiply-Accumulate (MAC) operations using
8-bit fixed-point integers (INT8) are up to 20x more energy-
efficient than FP32 MAC operations, across both 45nm [8]] and
7nm [9] technology nodes. Most neural network computations
occur on Von Neumann architecture-based hardware, depicted
in Fig. [T[a). This architecture often faces significant memory
bottlenecks, as highlighted in Fig. [I(b). The energy consump-
tion of on-chip Static Random Access Memory (SRAM) is up
to 12.2x higher than that of a MAC operation. Moreover, the
energy costs for off-chip memory access are roughly three
orders of magnitude greater than for arithmetic operations.
Therefore, the memory access demands, directly linked to the
DPD model size, play a crucial role in determining overall
power consumption.

III. MIXED-PRECISION NEURAL NETWORKS DPD

Building on these insights, this section describes how to
quantize weights and activations of gated Recurrent Neural
Networks (RNNSs) into low precision for energy reduction.

A. Gated Recurrent Unit-based DPD

Gated RNNs utilize gates to manage information flow
through their high-dimensional hidden states according to
new input stimuli. This approach effectively addresses the
vanishing gradient issue in modeling long sequences and
makes them widely adopted in prior research on long-term
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Fig. 2. Setup for dataset acquisition and DPD performance measurement.

DPDs [[10], [11]. In this work, the GRU-based DPD is defined
as:

ry =0 (Wi, + by + Wy hy 1 + bp,) 3)
2zt =0 (Wi @y +biz + Wihy 1 +by.) “4)
n; = tanh (W@, + by, +1: © (Wpohy—1 +bpy,))  (5)
h=01-2z)0n+2z,0h_, (6)

where ¢, is the input feature vector extracted from the I/Q
modulated signal X = {x;|x; = Ix¢ + jQx.t, Ixt: @xt €
R,t€0,...,T — 1} at time ¢. h; represents the hidden state
at time t. The W and b terms are the weight matrices and
bias vectors, respectively. The terms r;, z;, and n, correspond
to the reset gate, update gate, and new candidate state, re-
spectively. o represents the sigmoid activation. ® denotes the
element-wise multiplication. The GRU is followed by a fully-
connected (FC) layer to generate the DPD output 1/Q signal:

Vi = Wyh; + by @)

where §: € Y = {yily: = Iys +§Qys.t, 5.1, Qg € Ryt €
0,...,7 —1}.

B. Mixed-Precision DPD

To enhance the energy efficiency of DPD models, we
adopt a mixed-precision strategy utilizing low-precision fixed-
point integer arithmetic for inference. This method involves
a quantization scheme that converts the model’s weights and
activations, including other intermediate variables, to lower
precision while retaining full-precision operations for feature
extraction ¢ from I/Q signal x, effectively balancing accuracy
and computational complexity.

The quantization process is defined as follows: for a data
point x, a quantization scale s, and a range [Qmin, @max]> the
fixed-point representation ¢ of x is calculated using:

g = s X Round (Clip (f, Quin, Qmax)) (8)

where Clip bounds the input and Round rounds to the
nearest integer. For n-bit quantization, unsigned data ranges
from Quin = 0 t0 Quax = 2" — 1, and signed data from
Qnin = —2"1 t0 Quax = 2"~ ! — 1. During training, each
neural network layer’s quantization scale s is optimized using
gradient descent and adjusted to the nearest power-of-two,
ensuring a fixed-point representation g. For precise fixed-
point computations and enhanced energy efficiency, we use a



TABLE I
ACPR AND EVM PERFORMANCE OF DIFFERENT DPD MODELS EVALUATED WITH 160-MHZ 4-CHANNEL x40 MHZ 1024-QAM OFDM SIGNALS
SAMPLED AT 640 MHZ ALONGSIDE THEIR ESTIMATED INFERENCE ENERGY AND DYNAMIC POWER CONSUMPTION IN 7 NM AND 45 NM [9].

Classes DPD ACPR EVM Number of Energy/Inference (nJ) | Dynamic Power (W) Power
Models? (dBc, L/R) (dB) MUL/ADD/MEM | 45nm Tnm 45nm Tnm Reduction
Without DPD - -31.69/-32.45 | -27.05 - - - - - -
GMP [14] -40.79/-40.86 | -29.27 2190/3668/517 11.44 6.20 7.32 3.97 -
FP32-DPDs VDLSTM |[10] -43.38/-43.02 | -36.19 538/1528/542 3.38 332 2.16 2.12 -
RVTDCNN [15] | -44.27/-43.50 | -36.70 500/2690/512 4.28 3.60 2.74 2.30 -
GRU -43.36/-45.30 | -38.46 502/1417/506 5.66 3.09 3.62 1.98 1x
W16A16-GRU -43.75/-45.27 | -38.72 502/1417/506 4.02 1.11 1.93 0.71 2.8%
WI12A16-GRU -43.03/-44.69 | -37.47 502/1417/506 2.29 0.85 1.46 0.54 3.7x
MP-DPDs? WI12A12-GRU -42.36/-43.79 | -37.45 502/1417/506 2.19 0.82 1.40 0.52 3.8%
(This work) W8A16-GRU -41.64/-42.80 | -36.24 502/1417/506 1.56 0.74 1.00 0.47 4.2x
W8A12-GRU -41.78/-42.90 | -36.17 502/967/506 1.49 0.72 0.95 0.46 4.3x
WEAS8-GRU -35.84/-35.70 | -28.89 502/967/506 1.42 0.69 0.90 0.44 4.5%x
2 The numbers of parameters are 495 (GMP), 502 (GRU), 538 (VDLSTM), 500 (RVTDCNN).
® Each MP-DPD has 14 and 17 FP32 MULs and ADDs for feature extraction, respectively.
quantization-aware training method [12] This approach main- ‘ GMP VDLSTM —— RVTDCNN —— FP32-GRU —— W16A16-GRU
tains full-precision variable copies updated during gradient
descent while using quantized values for forward propagation s8¢ 5
of the DNN model. The gradient of the Round function is g 500 parameters g0 500 parameters
approximated using the straight-through estimator [13|] for :i =
. ey [ [=2}
<= 42} =
trainability. g 4 ~ F N
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Memory Polynomial (GMP) [14]], GRU, Vector Decomposi-
tion LSTM (VDLSTM), and Real-Valued Time-Delay Con-
volution Neural Network (RVITDCNN). The configurations
for VDLSTM and RVTDCNN followed their optimal settings
in [10], [15]], with adjustments in model size through the
hidden LSTM and FC layer sizes.

The test signal’s Peak-to-Average Power Ratio (PAPR) is
10.38dB, and the DPA outputs at 13.75dBm. The dataset,
comprising 491,520 samples of 160-MHz 4-Channel x40 MHz
OFDM signals sampled at 640 MHz, was split into a 60%
training set for DPD learning, a 20% validation set for early
stopping, and a 20% test set for performance evaluation. The
DPD learning process involves backpropagation through a pre-
trained PA model using our OpenDPD [|17] with the collected
dataset in an end-to-end approach. All PA models consist
of approximately 500 parameters, except for those used in
parameter scan experiments. For both PA modeling and DPD
learning, the models are trained for 100 epochs using the
ADAM optimizer with a learning rate of 1E-3 and a batch
size of 3200 samples.

B. Results and Discussion

Table |l compares the ACPR and EVM results for different
DPD models, alongside the number of MUL, ADD operations,

The number (of) parameters Weight (W) and Aﬁ}i)vation (A) Precision
C

Fig. 3. Parameter scan of DPD models vs. (a) ACPR (left) (b) ACPR (right)
(c) EVM; (d) EVM (left Y-axis) and energy per inference (right Y-axis) vs.
precision.
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Fig. 4. Measured spectrum and constellation map on the 160 MHz signal.

and 8KB SRAM accessesE| in feature extraction and model
inference (Eqs. (3) ~ (7)). The amplitude/phase (arctan?)

2Each input 1/Q sample necessitates 2 input fetches, #parameter fetches,
and 2 output write-backs between the arithmetic units and the 8KB SRAM
cache. Intermediate results are buffered locally, thus bypassing cache access.



group, tanh, and sigmoid functions can be computed using
the COordinate Rotation DIgital Computer (CORDIC) algo-
rithm over 15 iterations (30 ADDs) despite that state-of-the-art
gated RNN hardware [18]] uses look-up tables to approximate
them with less energy and chip area overhead. The 502-
parameter W16A16-GRU DPD model demonstrates the best
performance among all tested models, achieving an ACPR of
-43.36/-45.30dBc and an EVM of -38.72 dB while consuming
1.13nJ per inference in 7nm technology and 0.72 W dynamic
power at 640 MHz. Lower power can be achieved by using
a smaller model size or lower precision at the price of worse
accuracy, as shown in Fig. 3]

Figs. B(a)-(c) show the correlation between model size and
ACPR/EVM, covering 100 to 3200 parameters. The W16A16-
GRU DPD model notably outperforms FP32 models in many
settings due to the regularization effect by training with
quantization noise [[12]. Fig.[3[d) presents the energy efficiency
versus performance trade-offs in MP models. The W8AS
model achieves a 4.5x power reduction over the FP32 model
in 7nm technology at the expense of linearization performance.
The W12A16 and W16A16 configurations present a balanced
compromise, offering 3.7x and 2.8 less power consumption
than the FP32 GRU baseline DPD model while sustaining
competitive EVM. Hence, W12A16 and W16A16 are optimal
for power-critical applications demanding high accuracy.

Fig.[]displays the measured spectrum and constellation map
with and without DPDs. The spectrum analysis confirms that
the W16A16-GRU model achieves no ACPR performance loss
compared to the FP32-GRU model.

These findings underscore the effectiveness of our MP-
DPD approach in reducing DPD power consumption while
sustaining linearization performance.

C. Power Consumption Comparison to Prior Works

Prior hardware implementations of DPD hardly reported
any power consumption numbers [19], [20]. To our best
knowledge, the only work we found is a sub-sampling DPD
Field-Programmable Gate Array (FPGA) implementation [5],
which consumes 1.875W to linearize 100 MHz signal with
a 150MHz sampling rate and 320 parameters. For a fair
comparison, we normalized it to the sample rate we used
in this paper, which is 640MHz. By adopting our proposed
mixed-precision A16W16-GRU DPD with 502 parameters,
the power consumption can be reduced by 3.9x/10.6x to
1.93 W/0.71 W on a 45 nm/7 nm process, respectively.

V. CONCLUSION

This work proposes the MP-DPD method for wideband RF
power amplifiers using the OpenDPD framework [[17]. This
approach reduces the computational complexity against the
full-precision baseline, thereby contributing to power savings
while preserving superior linearization performance for more
sustainable and energy-efficient wireless communication.
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