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Abstract—Accurate recognition of human motion intention
(HMI) is beneficial for exoskeleton robots to improve the wearing
comfort level and achieve natural human-robot interaction. A
classifier trained on labeled source subjects (domains) performs
poorly on unlabeled target subject since the difference in individ-
ual motor characteristics. The unsupervised domain adaptation
(UDA) method has become an effective way to this problem.
However, the labeled data are collected from multiple source
subjects that might be different not only from the target subject
but also from each other. The current UDA methods for HMI
recognition ignore the difference between the each source subject,
which reduces the classification accuracy. Therefore, this paper
considers the differences between source subjects and develops
a novel theory and algorithm for UDA to recognize HMI,
where the margin disparity discrepancy (MDD) is extended
to multi-source UDA theory and a novel weight-aware-based
multi-source UDA algorithm (WMDD) is proposed. The source
domain weight, which can be adjusted adaptively by the MDD
between each source subject and target subject, is incorporated
into UDA to measure the differences between source subjects.
The developed multi-source UDA theory is theoretical and the
generalization error on target subject is guaranteed. The theory
can be transformed into an optimization problem for UDA,
successfully bridging the gap between theory and algorithm.
Moreover, a lightweight network is employed to guarantee the
real-time of classification and the adversarial learning between
feature generator and ensemble classifiers is utilized to further
improve the generalization ability. The extensive experiments
verify theoretical analysis and show that WMDD outperforms
previous UDA methods on HMI recognition tasks.

Index Terms—Multi-source unsupervised domain adaptation;
Human meotion intention recognition; Generalization bound
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PINAL cord injury, stroke and neuromotor impairment

have seriously reduced the quality of human life. Ex-
oskeleton robots, including rehabilitation robots [!]-[3] and
power-assisted robots [4], [5], have become one of the im-
portant ways to treat and recover these diseases. To improve
the wearing comfort level and achieve natural human-robot
interaction, human motion intention (HMI) has gained great
concerns in exoskeleton robots and human-robot interaction
[6]-[8]. Accurate recognition of the HMI is beneficial for
exoskeleton robots to improve the recovery effects.

HMI refers to the fusion of various biological signals (such
as electroencephalography, electromyogram, etc.) and non-
biological signals (such as speed, torque, etc.) to identify
movement patterns. Li et al. [9] provided a systematic review
of the HMI recognition research for exoskeleton robots. The
current methods for HMI can be divided into two types:
model-based and model-free. The model-based methods in-
volve the kinematics model [10], the dynamic model [! 1], and
the musculoskeletal model [12]. They establish the relationship
between sensing signals and motion parameters to recognize
HMI. The model-based methods are suitable for continuous
HMI recognition. However, it consumes more time for the
identification and calibration of parameters and is not robust
when the task is complicated [12].

The model-free methods map the sensing signals into target
HMI directly without parameter identification [13]-[15]. The
above model-free methods can achieve good performance on
specific subject but fail to perform well on cross-subjects. Due
to the difference in individual motor characteristics, such as
kinematic properties, most current methods require labeling a
large amount of data and training specific classifiers for each
individual, which is burdensome [9]. Unsupervised domain
adaptation (UDA) is a common method to solve the above
problem [16]-[19]. In this scenario, the source subjects (do-
mains) data are labeled, and the target subject (domain) data
are unlabeled. However, there is a discrepancy between the
source and target domains. To alleviate the performance reduc-
tion caused by this discrepancy, single-source UDA (SUDA)
utilizes the adversarial-based methods to align two domains
[20]-[22] or explores different metric learning schemes to
minimize this divergence [23]-[25].

In actual HMI recognition tasks, the labeled data are col-
lected from multiple source subjects that might be different
not only from the target subject but also from each other.
However, the above UDA methods for HMI recognition don’t
consider the difference between the source subjects, which
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Fig. 1. The overview of the weighted multi-source unsupervised domain adaptation (WMDD) method for human motion intention recognition. The training
data are from N source subjects with labels and one target subject without labels. The features of the sensor signal are extracted by feature generator ¢.
The final goal is to use feature generator and ensemble classifiers to classify the target subject intention accurately. Firstly, the j-th auxiliary classifier fj'
optimized by maximizing the discrepancy P. Secondly, the /N source domain weight cx is computed according to the estimated margin disparity discrepancy,
and then the feature generator ¢ and K classifiers f are trained to minimize total loss Lg 4. Then, motivated by adversarial learning, the classifiers and
generator are optimized by minimizing and maximizing classifiers discrepancy.

may result in a sub-optimal solution to the problem and hinder
the improvement of classifier performance [26]. Therefore, this
paper aims to propose a multi-source UDA (MUDA) method,
which considers the difference between the source subjects, for
HMI recognition to further improve the classifying accuracy
in the target subject. In MUDA field, there are following two
key challenges that need to be addressed.

1) How to accurately and effectively measure the discrep-
ancy between source domain (subject) and target domain
(subject)?

Since the gap between the each source domain and target
domain is different, how to integrate these differences to
improve the classification accuracy and generalization
ability?

2)

For challenge 1, Jensen Shannon Divergence [27], Maxi-
mum Mean Discrepancy [28] and Wasserstein Distance [29]
are widely employed to measure the discrepancy between
source and target domains in SUDA. Zhang et al [23]
proposed Margin Disparity Discrepancy (MDD) method to
measure this gap, which contains more generalization bound
information. Zhang et al. [24] aggregated the absolute margin
violations in multi-class classification and proposed Multi-
Class Scoring Disagreement Discrepancy based on MDD.
However, the above discrepancy-based methods are based on
the theory of SUDA. Further researches are required on the
MUDA theory for related discrepancies.

For challenge 2, the current MUDA methods are mainly
constructed based on the distribution-weighted hypothesis,
where the source domain is represented by a convex combi-
nation of multi-source domains [30]. Most scholars [31]-[34]
calculated the source domain weight through the estimated
discrepancy between source and target domains and optimized

the weighted sum loss of multiple sources to improve the
accuracy of classification. However, the weight learned by
the above method lacks interpretability and cannot capture the
complex relationship between domains [35], and there is a gap
between the divergence in theories and algorithms for MUDA
methods.

To solve the above problems, we extend the margin disparity
discrepancy in SUDA theory to MUDA and propose a novel
weighted MUDA algorithm (WMDD) motivated by the margin
disparity discrepancy [23] and distribution-weighted hypoth-
esis [30], where the new generalization bound of MUDA
is proven and the new method for determining the source
domain weight is given. Moreover, this paper theoretically and
empirically validates that WMDD can learn diverse features
and adapt well to unknown target subject in HMI recognition
tasks. Fig. 1 shows the overview of the proposed WMDD. The
contributions of this paper are given below.

1) A theory of MUDA is developed based on margin
disparity discrepancy and a novel weight-aware-based
MUDA algorithm is proposed for HMI recognition.
The MDD between each source domain and target
domain is estimated by auxiliary classifiers, which can
adjust the source domain weight adaptively.

A lightweight network is designed to guarantee the real-
time of classification and adversarial learning is utilized
to further improve the generalization ability.

2)

3)

The framework of this paper is as follows: Section II intro-
duces the related works about HMI recognition and MUDA.
Section III develops the new theory of MUDA, where the
generalization bound for MUDA is proven. Section IV bridges
the gap between MUDA theory and algorithm, and gives the
detailed training steps of proposed method WMDD. Section



V presents the performance of WMDD on HMI recognition
tasks and verifies the advantages of the designed mechanism.
Section VI further discusses the multi-source UDA theory and
algorithm. Section VII summarizes the entire work.

II. RELATED WORKS

This section presents a brief overview of the literature in
the area of human motion intention (HMI) recognition and
multi-source unsupervised domain adaptation (MUDA).

A. Human Motion Intention Recognition

Model-free methods based on deep networks, which can ob-
tain higher-level features from sensor signals without domain-
specific knowledge, have achieved great success in recent
years, such as CNN [36], LSTM [37], CNN-BiLSTM [38].
However, the above methods are difficult to perform well on
cross-subjects due to individual differences. Domain adaption
is an effective method to cross-domain (subject) problems.
Zhang et al. [18] incorporated an unsupervised cross-subject
adaptation method to predict the HMI of the target subject
without labels. Zhang et al. [16] proposed a novel non-
adversarial cross-subject adaptation method for HMI recogni-
tion. The ensemble diverse hypotheses method was designed to
mitigate the cross-subject divergence [17]. However, the above
methods ignore the difference between each source subject,
essentially a single-source UDA method, which may cause a
sub-optimal solution to the problem. Few multi-source UDA
studies have focused on recognizing HMI. Therefore, this
paper aims to propose a novel multi-source UDA method for
HMI recognition. To the best of our knowledge, WMDD is the
first work about multi-source UDA used for HMI recognition.

B. Multi-source Unsupervised Domain Adaptation

Domain Adaptation Theory: Ben-David et al. [39], [40]
conducted the pioneering theoretical works in domain adap-
tation field. They used the HAH divergence to replace the
traditional distribution discrepancies and overcame the diffi-
culties in estimation from finite samples. Mansour et al. [41]
extended the zero-one loss of [39] to the general loss function
of binary classification and developed a generalization theory.
Kuroki et al. [42] proposed a more tractable source-guided
discrepancy by fixing the hypothesis of [41] to the ideal source
minimizer. Zhang et al. [23] extended the theory of [40] to
multiple classes by introducing margin disparity discrepancy
(MDD), which can characterize the difference of the multi-
class scoring hypothesis. Zhang et al. [24] proposed multi-
class scoring disagreement divergence based on MDD [23],
that can characterize element-wise disagreements of multi-
class scoring hypotheses by aggregating violations of absolute
margin.

Multi-source Unsupervised Domain Adaptation Algo-
rithm: Existing MUDA algorithms focused on aligning the
distribution of each pair of source and target to reduce
their domain shift by minimizing the combined discrepancy
between source and target domains. Wen et al. [43] proved
that the target loss is bounded by the weighted source loss

and weighted discrepancy distance, and optimized networks by
minimizing source loss and discrepancy. Yao et al. [44] quanti-
fied the importance of different source domains and aligned the
source and target distributions by minimizing maximum mean
discrepancy. Liu et al. [45] integrated multi-source domains
into a single domain and aligned this distribution with the
target distribution. Chen et al. [46] optimized the networks
through minimizing the source loss and the Hellinger distance
between source and target domains. Chen et al. [47] optimized
the mixing weights and the network by minimizing the source
mixture loss and the Pearson divergence.

Our work is different from the above ones in several key
aspects. 1) The source domain weight is adaptively adjusted
through the margin disparity discrepancy estimated by aux-
iliary classifiers instead of optimized constantly by solving
unconstrained problem [47], which reduces the computation
cost and enhances algorithm stability. 2) The theory and algo-
rithm of WMDD are based on each single source distribution
instead of the whole multi-source class-conditionals [44] or
the whole multi-source joint distributions [46]. WMDD fully
considers the differences between each source subject, which
is beneficial for improving classification accuracy. 3) The
distribution disparity metric is margin disparity discrepancy
that contains more generalization bound information, rather
than maximum mean discrepancy [44], the Hellinger distance
[46], or Pearson divergence [47]. 4) A lightweight network is
employed to guarantee the real-time of classification, instead
of using multiple complex networks [43], [45] that is difficult
to guarantee the real-time.

III. THEORETICAL ANALYSIS OF MULTI-SOURCE
UNSUPERVISED DOMAIN ADAPTATION

In this section, we give the basic notations and gener-
alization bound for multi-source UDA based on the theory
of single-source UDA. The theoretical analysis follows the
previous work [23], where margin disparity discrepancy was
used to measure the generalization bound.

A. Problem Formulation

Fig. 2 compares single-source unsupervised domain adap-
tation (SUDA) and multi-source unsupervised domain adap-
tation (MUDA). In MUDA, we consider C class, N source
domains {D;; };V: , and one target domain D, problem. There
are two different but related distributions over X x )/, namely
the j-th source P; and target (), where X denotes input
space and ) denotes output space, which is {0,1} in bi-
nary classification. The learner is trained on labeled data
D,y = {(=,y]) LZT' = (X,;,Y,;) sampled from source
distribution P; and unlabeled data D, = {a:ﬁ}li’ll = X
sampled from target distribution ). The goal of MUDA is to
learn the hypothesis space H of labeling function h : X — Y
to minimize expected target error

Lqo(h) =Egy~L [h(x),y], (1)

where L is the loss function. Ben-David et al. [40] used zero
one loss of the form I[h(x) # y] to represent L, where I is the
indicator function. Following [24], we consider the hypothesis
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Fig. 2. The comparison of single-source unsupervised domain adaptation
(SUDA) and multi-source unsupervised domain adaptation (MUDA). The
source and target distributions of SUDA are not matched well. For MUDA, the
target distribution hardly matches all subject distributions, and the discrepancy
between the target distribution and each subject distribution might be different.
Different shapes represent different data categories.

space F that contains scoring function f : X — Rl = RC,
where the outputs denote the prediction confidence. Then the
labeling function can be induced

hy(x) = arg I;1€a)>;< fy(x), 2)

where f, denotes the y-th component of vector function
f. Zhang et al. [23] defined the margin of a hypothesis
f at a labeled sample (z,y) as wge(x,y) = [fy(x) —
maxy £y [, (2)]/2. Then, the margin loss of f can be denoted
as

£l}é(f) = E(m,y)wP{Wu [Wf ($7 y)] }7 (3)

where W, is ramp loss defined as

0, p=<v
W,(w):=<1—-v/p, 0<v<p. “)
1, v<0

Margin disparity discrepancy (MDD) [23], which contains
more generalization information, is used to measure the dis-
tribution divergence between P and @, defined as

4 (P.Q) = sup {EQ[W, (wp)] — Ep[W, ()]}, )
where Eq[Wy, (wpr)] = Ean@{Wyu [wys (z, hy())]}. Thus
the gap between the j-th source distribution P; and target
distribution @ for MUDA can be defined as d’f‘(Pj7 Q).
For single-source UDA, we have the following cross-domain
generalization bound between source distribution P and target
distribution Q:

Theorem 1: Fix p > 0. For any scoring function f € F,

Lq (hg) < L (f) +ds (P.Q) + A, (6)

where the constant A is the ideal combined margin loss,
defined as A = minge #{L%(f) + L ()}

The proof for Theorem 1 can be found in Appendix A. In
the following section, we give the cross-domain generalization
bound for MUDA based on Theorem 1.

B. Generalization Bound for MUDA

In MUDA, some source domains, which are more relevant
to target domain than the others, might be more important to
classify. Therefore, we use domain weight a; > 0 to describe
this and give following theorem.

Theorem 2: Fix p > 0 and the N source domain datasets
{X;, Y]}é\’:1 For any scoring function f € F and @ € A =
{acia; > 0,57, a; = 1}, the following holds:

N
Lq(hg) <D0y (L (1) +d} (PL@Q)) +8, ()
j=1

where « is the weight of N source domain, [ is the weighted
margin loss combination, 8 = minfef{zyzl ozjﬁlfjj(f) +
L{(f)}, which can be reduced to a rather small value if the
hypothesis space is enough.

Remark 1: The proof of Theorem 2 can be found in
Appendix B. Given the fixed (3, the target error (generalization
error) Lg (hy) is determined by the distribution discrepancy
d's(Pj, Q) between P; and Q and the expected loss L7 (f)
over the j-th source domain. In Eq. (7), the term d;(Pj7 Q)
bounds the performance gap caused by domain shift. The
smaller C’;j (f) indicates better performance of scoring func-
tion f on the j-th source domain. Note that, the above theorem
only considers the ideal and complete distribution. However,
the collected data fails to cover the entire distribution space
in actual learning.

Therefore, we further consider the sampling error and
give the empirical form of Theorem 2. First, Rademacher
complexity that is widely used in the generalization theory
is introduced to measure the richness of a certain hypothesis
space [23], [48]. The definition is given below:

Definition 1 (Empirical Rademacher complexity): Let G
be a family of functions mapping from Z to R and § =
{#z1,...,27} be a fixed sample of size T drawn from the
distribution S over Z. The empirical Rademacher complexity
of G for sample S is defined as

T
A 1
%A(g):Ea{sup Ug(z)}7 8)
S P T ; t t
where o = (o1,...,0r) are independent uniform random

variables taking values in {—1,+1}.

Definition 2 (Induced Scoring Function Families): Given
for a space F of scoring function f, two induced scoring
function families 21 (F) and Q2(F) are defined as

WF) ={@y - f@|FeF) O

0(F) = {2 = @ | feF.f e F}

where 21 (F) is the union of projections of F onto each
dimension, and 3(F) can be seen as the space of inner
products from F and F. Based on the above definition, the
generalization bound of MUDA is given below.

(10)

Theorem 3: Let ]Sj and @ be the corresponding empirical
distributions of P; and Q. D,; and D; are empirical datasets



sampled from the i.i.d. samples D,; = (X;,Y;) and D; = X,
of size m, respectively. Then, for any 6 > 0 and € A =
{acia; > 0,3, a; = 1}, with probability at least 1 — 34,
the following holds for any scoring function f € F ,

ot =30, {25, 51+ (7, 0) } o 20
C

T (0(F) + e (0} + 5,

where C dengtes the llumber of classes, (3 is constant indepen-
dent of f, D, and D are datasets sampled from the mixture
distribution Z 0P and Q + N =15 Pj, respectively.

Remark 2: The proof of Theorem 3 can be found in
Appendix C. Theorem 3 indicates that the expected error on
target domain Lq (hy) is bounded by empirical margin error
on source domain C” empirical distribution gap d’; (P],S ),
the ideal error S and rademacher complexity terms. The
better generalization ability can be achieved by selecting an
appropriate margin p for margin loss. For relatively larger p
and rich hypothesis space F, the upper bound of target error
becomes tighter.

IV. CONNECTING THEORY AND ALGORITHM
Motivated by the upper bound of the expected error given in
Theorem 3, we bridge theory and algorithm for MUDA and
develop a new theoretical-ground MUDA algorithm, named
WMDD, and then the detailed training steps of WMDD is
givenare in this section.

A. Theoretical Optimization Goal

Given hypothesis space F and samples D, D;, margin p,
the ideal error 5 and complexity terms are assumed to be fixed.
Therefore, minimizing the target error Lo (hg) in Theorem 3
is equivalent to the below optimization problem.

Infin iaj{ﬁp (f)—|—d“ (1337@) }7
j=1

then by substituting Egs. (3) and (5) into Eq. (11), we have

(1)

N

min >0, {E gy, (W ot 0)

i=1 (12)

+max (Eg (W (wsy)] —Ep, [Wi(wg)]) }
J
The above optimization is a minmax game problem. This
problem can be regarded as stackelberg game model, where
auxiliary scoring function _fj'- is set as a leader and f is a
follower. The form of optimization is given below.

N
. 4
Sl 04 )
j=1 (13)
st. fj €argmax  PL S (f. ),
freF PiQ
where the maximization of P~ 0 = =Ex (W ) —E B, (Wu)

is the estimated MDD. In the Stackelberg game, the auxiliary

function f7 is first updated, and then f is updated based on
the result of fj( . The key of the next step is to determine the
value of a. Intuitively, the source domain with a small gap
to the target domain should have a large weight. Therefore, o

can be defined as
eXp{ — ’ng’@ (fmf_;) ‘}
Z;.V:l exp{ — ’ng@ (.ﬁf;) |}

The source domain weight ¢ can be adjusted dynamically
by the estimated MDD, that is weight-aware-based. Then
combining Eqgs. (13) and (14), we can achieve final theoretical
optimization goal of MUDA.

(14)

ay; =

B. Bridging Theory and Algorithm

There is a gap between theory and algorithm since it is
impractical to solve the above optimization problem directly.
Firstly, considering the complexity of input space &X', we utilize
the feature extractor ¢(-) to map the input space X into feature
space 2 = {@(x) | © € X}. Then label function can be again
defined as hy : ¢(x) — argmaxyey fy(P(x)).

Secondly, since the ramp loss used in margin loss easily
causes gradient vanishing, it is difficult to optimize Eq. (13)
through stochastic gradient descent (SGD) [24]. Therefore, we
want to find a surrogate function, denoted as 7 (f(¢(x)),y)
here, for margin loss, which can be easily trained by SGD and
keep the main property of the margin. Then, the two terms in
Eq. (13) can be written as

L (f) =E (), | T(F(6(2)). 1)

Ph o (£.8) =Eog [T(F6(@), hy0(a))] - (15)
B, p, [T(F6@)hyy(6(@))]

where ~ is used to attain margin x4 of margin loss similar
to [23]. The cross-entropy loss is used to represent surrogate
function 7 (-,-) following [23], [24]. On source subjects, the
standard cross-entropy loss is employed, that is

T(£(6(@)),y) = —log [0, (F(6(2))]
T(£(6(2)). hy; (6(2))) = ~log [O,, (£(6(2)))]

where ©,( f) is the softmax function, denoted as ©,(f) =
exp(fy) / P i=1€xp(f;). On the target subject, the modified
cross-entropy loss is used to prevent gradient vanishing and
exploding for adversarial learning [49]. Then, we have

T((6(2)). hy;(6())) = log [1 = On,, (fe(@))]. (1D

Therefore, the optimization problem (13) can be stated as
two-stage optimization problem:

Pr o =K, o log [1-0n, (F(6))]}
+9E,. 5, { log [@hf, (f((b(:n)))} }’

N

Lro=o{eh (N+PL S (£.8) ) 19

j=1

(16)

max

7 (18)

min
o, F



where Ulgj (f) = E( -5, {—1log [6,(f(¢(x)))]}. During
the iterative optimization process, the auxiliary function f;
is firstly updated and then scoring function f and feature
extractor ¢ are updated.

Theorem 4: For optimization problem defined in Eq. (18),
fixing the classifier f, then the estimated margin disparity dis-
crepancy between source distribution P and target distribution
@ is equivalent to

ylogy — (1 +7)log(1+7) +yKL(P||Z) + KL(Q||Z),

where K L denotes the Kullback—Leibler divergence and Z =
(vP + Q)/(y+ 1) is the mixed distribution of P and Q.

Remark 3: The proof of Theorem 4 can be found in
Appendix D. Since the Kullback-Leibler divergence between
two distributions is always non-negative and zero only when
they are equal, ylogy — (1 + 7)log(1 + ) is the global
minimum of MDD and that the only solution is P = Q.
This indicates the different choices of v do not result in the
mismatch between source distribution P and target distribution
Q. When the ~ is fixed, the estimated MDD can effectively
reflect the gap between P and Q.

C. Adversarial Learning Between Generator and Classifier

In practical implementation, feature extractor ¢(-) is approx-
imated by a convolution neural network (CNN). The scoring
function f and auxiliary function f] (j = 1,..,N) are
approximated by a fully connected neural network (NN). The
f and f]’» have the same network frame. In the following, we
denote ¢(-) as the feature generator, f as the classifier, and
f; as the auxiliary classifier.

Due to the high real-time requirements of human intent
recognition in practical applications, a lightweight NN is used
here. Zhang et al. [17] pointed out that lightweight NN may
have a better generalization ability, but may not fit the training
dataset as accurately as a large NN. The ensemble method
is commonly used to solve the above problem since it can
enhance weak learners to make precise predictions [50].

To trade off generalization ability and fitting ability, one tiny
feature generator ¢(-) and K tiny classifiers F' = {1}/,
are employed here. Then, the classification results can be
represented as

y=M {hsw (¢(w))}fi1 ) (20)

where M denotes finding the mode from set. To further
enhance the generalization of classifiers in ensemble learn-
ing, we firstly introduce classifier discrepancy Dg (f), which
measures the classification difference between K classifiers on
target dataset (), denoted as

D5 (f) = Eong || F(¢(x)) — mean(F)||, 1)

where F(-) = {fM (), ..., f5 ()} and || - ||, is Ly norm.
Then, motivated by generative adversarial network (GAN)
[51], adversarial learning (two-player zero-sum game) is in-
troduced to further update feature generator ¢ and classifiers
{f@}K || described as

max m(gn D§ (f). (22)

Algorithm 1: WMDD
N

1: Input: N source datasets {Ds; };_,, one target dataset
D;, feature generator ¢, K classifiers { £}/, and N
auxiliary classifiers { £/} ;.

2. Initialization: Randomly initialize all networks.
3:fort=1,2,--- , Njer do

4:  Draw batch samples from target dataset D;.

5: forj=1,2,--- N do

6: Draw batch samples from j-th source dataset Ds;.
7: Update auxiliary classifier f; according to Eq. (18).
8:  end for

9:  Compute source weight o according to Eq. (14).

10:  Update feature generator ¢ and classifiers { ()},

according to Eq. (19).
11:  Update classifiers {15, according to Eq. (23).
12:  Update feature generator ¢ according to Eq. (24).
13: end for

Since employing a classifier that is trained on the source
domains with labels and the target domain without labels
to predict target labels has high uncertainty, we maximize
classifier discrepancy to improve “exploration ability” of en-
semble classifiers on the target domain while ensuring the
fitting ability on source domains. Therefore, the learning goal
of ensemble classifiers in this stage can be denoted as

min Ly = LE(f) =D (£),

where 7 trades off fitting ability and generalization ability. The
goal of feature generator ¢ is to maximize “universal ability”
of extracted features through ¢. That is minimizing classifier
discrepancy when inputting extracted features into ensemble
classifiers, that is

(23)

; K
m(;n Ly = ’DQ (). (24)
In adversarial learning (two-player game), the ensemble
classifiers are updated firstly fixing the feature generator, and
then the feature generator is trained. The fitting ability and
generalization ability can achieve a balance through constant

learning.

D. The Details of Algorithm

According to the above analysis, we propose a new
Weighted multi-source UDA algorithm based on Margin
Disparity Discrepancy (WMDD). To further improve the gen-
eralization of lightweight networks, the idea of adversarial
learning is introduced to training steps. The detailed training
steps are given below.
o Step 1: The j-th auxiliary classifier f]'- is optimized to
maximize discrepancy between j-th source distribution
P; and target distribution () defined in Eq. (18).

e Step 2: The source domain weight o is obtained by
estimated MDD according to Eq. (14).

o Step 3: The feature generator ¢ and classifiers { f(V}X
are optimized to minimize generalization error (target
source) L¢ 4 in Eq. (19).



TABLE I
BASE HYPERPARAMETERS OF WMDD.

Parameter Value
Optimizer Adam
Batch size 256
Learning rate 2x 1074
Number of iterations 7, 400
Number of ensemble classifiers K 5
Trade-off coefficient 7 )
Margin coefficient vy 0.1

o Step 4: Fixing feature generator L4, then classifiers
{fOV K are updated by maximizing classifier discrep-
ancy through Eq. (23).

« Step 5: Fixing classifiers { f(/} |, then feature genera-
tor ¢ is updated by minimizing classifier discrepancy L4
according to Eq. (24).

Algorithm 1 gives the pseudo-code of the proposed method
WMDD. The diagram of network updating can be found in
Fig. 1. The final trained WMDD method can use a feature
generator and ensemble classifiers to classify the target subject
intention accurately.

V. EXPERIMENTS

This section gives the details of dataset and algorithm imple-
mentation, and focuses on answering the following questions
through experiments:

e Q1: How does WMDD compare with current unsu-
pervised domain adaptation methods for human motion
recognition in standard benchmarks?

e Q2: How much does WMDD performance improve with
source domain weight o and adversarial learning between
feature generator and classifier?

e Q3: How do hyperparameters margin coefficient -, the
number of classifiers K and trade-off coefficient 7 affect
the performance of the WMDD algorithm?

A. Experimental Setup

Datasets: In this paper, two public datasets are utilized to
answer the above questions. One is the encyclopedia of able-
bodied bilateral lower limb loco-motor signals (ENABL3S)
collected by Northwestern University [52]. The other is the
daily and sports activities data set (DSADS) collected by
Bilken University [53].

For the ENABL3S dataset [52], ten subjects are invited
to walk on several terrains and switch locomotion modes
between sitting, standing, level ground walking, stair ascent,
stair descent, ramp ascent, and ramp descent. It contains 7
class motion intentions in total, that is the above 7 activities.
Each subject is asked to repeat walking on a circuit ten
times. ENABL3S contains filtered EMG, IMU and joint angle
signals, which are segmented by a 300 ms wide sliding
window, and the segmented signals are used to recognize
human motion intention [17].
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Fig. 3. The visualization of t-SNE projection of non-adapted input features

and the hidden features adapted by the feature generator. All features are
extracted from the training set for ENABL3S (a) and DSADS (b). The
different color points represent different classes. The dark-color and light-
color points denote the target and source features, respectively

For the DSADS dataset [53], eight subjects are asked to
perform 19 activities, including sitting, standing, running,
riding a bike, jumping, and playing basketball. The DSADS
contains five 9-axis IMU signals and the captured signals are
segmented by 5 wide sliding window segments. Since there is
no transition between different activities, the DASDS dataset
is only utilized to classify the human motion modes [I8].

Experimental Details: In MUDA experiments, a target sub-
ject (domain) is selected first and then the remaining subjects
are used as source subjects. ENABL3S and DSADS datasets
contain 22,000 and 9000 signal segments, respectively. The
data from each subject are randomly shuffled and divided into
a training set (70%) and a test set (30%). Table I gives the base
hyper-parameters of the WMDD method. The learning rate is
setas 2x 1074, the optimizer is Adam, the number of iterations
is 400 and the batch size is set as 256. The margin coefficient
v is set to 0.1. Note that WMDD sets the same parameters
for ENABL3S and DSADS datasets, which is different from
previous methods that need setting different parameters for
different datasets. This is also the advantage of the proposed
method WMDD.

The network framework information is as follows. The net-
work is composed of one feature generator, K classifiers and
N auxiliary classifiers, where the feature generator contains 3
convolution layers and the classifier includes 3 fully connected
layers. The performance of WMDD has a close connection
with domain weight o, number of ensemble classifiers K and
margin coefficient . The related experiments can be found in
part C in this section. The code for WMDD is available at
github.com/xiaoyinliu0714/WMDD. The code is run under an
Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz and an NVIDIA
GeForce RTX 4090 GPU.

B. Feature Alignment and Classification Results

Since several subjects are in one dataset, each subject is
selected as a target subject sequentially to build training and
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TABLE II
THE DETAILED RESULTS FOR DIFFERENT TARGET SUBJECTS ON ENABL3S AND DSADS DATASETS. STD INDICATES THE STANDARD DEVIATION. S1
REPRESENTS THE SUBJECT 1, WHICH MEANS THE FIRST SUBJECT IS THE TARGET SUBJECT AND OTHER SUBJECTS ARE SOURCE SUBJECTS.

Dataset S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Means Std

ENABL3S 97.8 953 949 915 94.6 942 91.3 954 96.7 94.5 94.6 2.0

DSADS 99.1 99.7 98.8 99.7 99.4 994 98.2 97.7 - - 99.0 0.7
TABLE III TABLE IV

THE MEAN ACCURACY OF CLASSIFICATION FOR THE TARGET SUBJECT OF
ENABL3S AND DSADS USING DIFFERENT DOMAIN ADAPTATION
METHODS. STD INDICATES THE STANDARD DEVIATION.

Method ENABL3S DSADS
Mean(%) Std(%) Mean(%) Std(%)
DANN [20] 88.5 4.8 91.1 5.2
MMD [21] 92.7 2.2 95.4 3.3
MCD [22] 93.9 1.8 95.3 4.5
DFA [55] 91.8 3.0 92.5 3.3
GFA [16] 93.7 1.7 96.9 3.3
EDHKD [17] 94.4 1.7 97.4 4.9
WMDD (Ours) 94.6 2.0 99.0 0.7

testing datasets. Therefore, the average classification accuracy
of each target subject is used as the final evaluation indicator.
The Results of Feature Alignment. The dimensional re-
duction method t-SNE [54], which can keep the clustering
of high dimensional space, is used to visualize the results
of feature extraction following previous work [17]. Fig. 3
shows the t-SNE projection of the non-adapted input features
and the hidden features adapted by WMDD. It can be found
that the input features are not clustered, and the source
distribution is not aligned with the target distribution. After
feature alignment, the features of the same class almost cluster
together for two datasets. For DSADS dataset, source and
target features that belong to the same class are almost in the
same region. However, for ENABL3S dataset, some source
and target features that belong to the same class aren’t in
the same region, which causes the classification accuracy of
ENABL3S dataset is worse than that of DSADS dataset. The
reason is that about 30% of data for ENABL3S are transition
activities instead of steady activities, where the activity is
defined as a transition activity if the locomotion mode of the
current activity is different from that of the last activity.

The Classification Results on ENABL3S and DSADS: To
answer QQ1, we compare different domain adaptation methods
in ENABL3S and DSADS datasets, including DANN [20],
MMD [21], MCD [22], DFA [55], GFA [16] and EDHKD
[17]. The classification results on ENABL3S and DSADS
of these methods come from article [17], where EDHKD is
the state-of-the-art method for HMI using domain adaptation
technology. Table II The detailed results for different target
subjects on ENABL3S and DSADS datasets. Table III com-
pares the mean accuracy of classification on the target subject
for different domain adaptation methods. The test time of

THE ABLATION EXPERIMENTS FOR DOMAIN WEIGHT AND ADVERSARIAL
LEARNING. NO-W AND NO-A REPRESENT THAT THE DOMAIN WEIGHT
METHOD AND ADVERSARIAL LEARNING ARE NOT EMPLOYED,
RESPECTIVELY. NO-W-A REPRESENTS BOTH METHODS ARE NOT USED.

Name Weight o« Adversary ENABL3S DSADS
No-W-A 93.1+£2.2 92.7+4.2
No-W v 93.6 £2.3 98.0 £ 2.1
No-A v 93.0 £ 2.6 92.3+44
Ours v v 94.6+2.0 99.0+0.7

methods on this table is close to 1 ms, which guarantees the
real-time of the test.

Table III shows that WMDD achieves the accuracy of
94.6% + 2.0% and 99.0% + 0.7% for target subject in EN-
ABL3S and DSADS datasets respectively, which are 0.2%
and 1.6% higher than the state-of-the-art HMI result using
domain adaptation methods. This verifies that WMDD can
achieve a better performance than previous methods in both
ENABL3S and DSADS datasets. However, the improvement
in ENABL3S is not significant despite that the samples of
ENABL3S are larger than DSADS. The reason lies in the
effects of transition activities. This results of classification are
consistent with that of feature alignment.

C. Ablation Experiments

Effects of Weight o and Adversarial Learning: To answer
Q2, the ablation experiments for two parts are designed (see
Table 1V). The weight o reflects the discrepancy between
different source domains and target domain. The adversarial
learning is used to improve the classifier’s performance. From
this table, the performance in ENABL3S and DSADS is
improved by 1.07% and 1.02% respectively when considering
the difference between source domains. The performance is
improved by 1.72% and 7.25% respectively when introducing
the adversarial learning between the feature generator and clas-
sifier. Therefore, the usage of domain weight and adversarial
learning can both improve the performance of the classifier,
and the effect of adversarial learning is more significant.

Effect of Margin Coefficient v: The margin coefficient ~y
determines the margin disparity discrepancy between source
and target distributions and influences the classification ac-
curacy on the target subject, that is generalization error.
Theorem 4 gives the equivalent form of MDD. It reflects the
minimum of MDD is vlogy — (1 4+ ) log(1 + ) when the
source distribution equals the target distribution. The margin
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coefficient v only influences the value of MDD and doesn’t
affect the gap between source and target distributions.

To answer Qg, we give the training curve and MDD under
margin coefficient v = 0.01,0.1,1 on ENABL3S and DSADS
datasets. Fig. 4 shows that the method WMDD achieves better
classification accuracy under margin coefficient v = 0.1 for
ENABL3S and DSADS datasets. The recognition accuracy are
91.6%, 94.6%, 92.0% under v = 0.01, 0.1, 1 respectively for
ENABL3S dataset, and are 97.9%, 99.0%, 97.5% for DSADS
dataset. The final average MDD values are 0.06, 0.34, 2.20
under v = 0.01, 0.1, 1 respectively for ENABL3S dataset, and
are 0.06, 0.35, 3.84 for DSADS dataset. The results indicate
that the average MDD between each source subject and target
subject increases as margin coefficient v increases. However,
for too large , the recognition accuracy cannot be improved.
This shows that the margin p in Theorem 3 cannot be set too
large.

Effects of the Number of Classifiers K and Trade-
off Coefficient n: To answer Qg, the more experiments for
the number of classifiers K and trade-off coefficient n are
conducted below. The more classifiers often consume more
computation cost. It is a necessity to choose an appropriate

number of classifiers to achieve a balance between the classi-
fication performance and computation cost. The coefficient n
is used to trade off the fitting ability and generalization ability
of the network.

Fig. 5 (a) gives the relationship between classification
accuracy and the number of classifiers K on ENABL3S
and DSADS datasets. This shows that it’s not that the more
classifiers there are, the better the classification performance.
Compared with the accuracy of 5 classifiers, the accuracy of
25 classifiers decreases by 1.56% and 5.61% for ENABL3S
and DSADS datasets respectively. For lightweight networks,
only by selecting an appropriate number of classifiers can
classification performance be effectively improved. Fig. 5 (b)
shows the relationship between classification accuracy and
trade-off coefficient  on ENABL3S and DSADS datasets.
The results indicate that too large or too small trade-off
coefficient 17 will decrease the performance of the algorithm.
The relatively optimal parameters for K and 7 are both 5 on
ENABL3S and DSADS datasets.

VI. DISCUSSION

This paper aims to extend MDD theory to multi-source
UDA, and propose a novel multi-source UDA algorithm for
HMI recognition based on the derived theory. In the below
part, we give further discussions for multi-source UDA theory
and algorithm.

A. The Discussion for Theory

The developed theory in this paper is based on [23], [40].
It can effectively answer the challenges listed in section I.
Challenge 1: The margin disparity discrepancy is used to mea-
sure the gap between source and target domains. The MDD
has below features. 1) The MDD contains more generalization
bound information. Theorem 3 shows the generalization bound
is influenced by the margin u. The better performance on
the the target subject can be achieved through choosing
appropriate margin . 2) The MDD can accurately measure
the gap between different distributions. Theorem 4 shows the
estimated MDD reflects the gap through KL divergence, which
avoids the error brought by estimating KL divergence.

Challenge 2: The dataset is collected from multiple source
domains that might be different not only from the target



domain but also from each other. The source domain weight
determined by MDD is incorporated into Theorem 1 to mea-
sure the difference between source domains, where the source
domain with the small gap to the target domain should have
a large weight. The weight is adjusted adaptively by MDD
according to Eq. (14). Since the training data is randomly
selected, the drawn data hardly fully describe the entire distri-
bution characteristic. Adjusting weight dynamically according
to the drawn data is beneficial to improving performance on
the target domain. Table IV also verifies this conclusion.

B. The Discussion for Algorithm

Since the margin loss easily leads to gradient vanishing,
the cross-entropy loss is employed to replace the margin loss
in this paper. The v in Eq. (18) reflects the margin x in
MDD. Theorem 4 shows that the result of using a surrogate
function can better measure the discrepancy between different
distributions and maintain the main characteristics of MDD
through ~. The algorithm is essentially a two-stage game
problem. The first stage is stackelberg game, and the second
stage is zero-sum game. The details are given below.

1) Stackelberg game: Eq. (12) can be regarded as stackel-
berg game model, where auxiliary classifiers f]’- is set as leader
and classifiers f is follower. In this stage, the auxiliary classi-
fiers are first updated and the MDD between source and target
domain is estimated. Then classifiers and feature generator are
updated together through minimizing the generalization error.
2) Zero-sum game: Eq. (22) can be regarded as two-player
zero-sum game model, where feature generator ¢ and classi-
fiers { f( )} +, are the adversarial parties. The generalization
ability (performance on target domain) is improved through
constant adversarial learning between feature generator and
classifiers.

VII. CONCLUSION

This paper developed a new theory for multi-source UDA
based on margin disparity discrepancy and derived a novel
generalization bound for multi-source UDA. Motivated by
generalization bound, a novel weight-aware-based multi-
source UDA algorithm (WMDD) was proposed for HMI
recognition. The proposed method WMDD can improve clas-
sification accuracy of HMI recognition tasks through con-
sidering the difference between each source subject, where
the source domain weight can be adjusted adaptively by the
estimated discrepancy. WMDD can also guarantee the real-
time of HMI recognition by utilizing a lightweight network.
Extensive experiments confirmed that WMDD can achieve
state-of-the-art accuracy on HMI recognition tasks. We expect
the proposed theory and algorithm can provide reference and
inspiration for other multi-source UDA theories and cross-
subject application fields.

APPENDIX
A. Proof of Theorem 1

Before proving the Theorem 1, we firstly give the below
Proposition similar to the previous work [23].

Proposition 1: Fix u. For any scoring function f € F,

Wy [wp (2, hs(2))] < W [wy (2,9)] + W [wp (2,9)],

where wg(x,y) = [fy () — max, =, f,/(x)]/2 is the margin
of f in sample (x,y), and W,(v) is the ramp loss that is
defined in Eq. (4).

Proof. For any sample (z,y), if hg(z) # y or hy(x) # y,
wg(z,y) or we(x,y) is small than zero, implying the right
side of above equation reach 1, and further deducing that the
inequality always holds. Otherwise h¢(x) = y and hy/(2) =
y, then we can derive

W [wpr (2, hp ()]
W lwy (2, hy(2))] + W lws (2,y)]
Wy [wp (2,9)] + Wilwy (2,9)].
This completes the proof of Proposition 1. Next we give the

proof for Theorem 1. The proof follows the previous works

(23], [24].

(25)

The Proof for Theorem 1: Let be the ideal scoring function
f* which minimizes the combined margin loss,

= argmln{ﬁl (f)+ L5 () }
Then, for any f € F,
Lq (hy) =Eq{I[hys(x) #y] }
<Eq{L[hs(x) # hg(x)] } + Eq{L[hg~(z) # y] }
<EQ{Wy [wy- (2, hy(2))]} + Eo{W, [wf* (af y)] }
=L (F*)
+Ep{W,[ws (2,9)]} —Ep{W,[ws(w.y)]}
=Lp(f)
<L (f) + LG (£7) + Ep{W, [ws- (z,9)] }
=L (f%)
)]} —Ep{Wy[ws- (z,hs(2))]}
Eq. (5)

(26)

Proposition 1

+ B {W,[wp- (2, hs(x

<L (F) +d4 (P,Q) + )\,

where the second inequality is the important property of
margin loss for any p and f, and A = Lj, (f*) + L (f*) =
minge 7 {Lf) (f)+Lp (f)}. Therefore, the proof of Theorem
lis completed

B. Proof of Theorem 2

The Proof for Theorem 2: Let P be the mixture distribu-
tion of the N source domains, denoted as P = Zj\;l o P,
and D; be the combined samples from N source domains.
We denote P and @ as the source distribution and the target

distribution in Theorem 1, respectively. Then, we have

Lo (hy) < £4(F) +df (P.Q) + 27)
On the one hand, for any f € F, the following holds
N
= a4l (f) (28)
j=1



then X = mlnfe]-'{z _1 0Ly (f) + L5(f)}, we denote it
as 3 here. On the other hand, according to Eq. (5) the term
d’Ji(P, Q) can be upper bounded by

" (13, Q) — sup {JEQ [W,] - E5 [WM]}

Fer
N
= sup {Eq[w,] —;aﬁp] W,] }
N
= s A2 (Bl ~En )] )
N
<> {Bal] ~ o 7]
N
=> a;d} (P;,Q)
j=1

where the first inequality is by the sub-additivity of the sup
function. Then bringing the Egs. (28) and (29) into Eq. (27),
we can get

-

Il
—

Lo (hy) <30y (L (5 +d5 (PLQ)) +5. (O)

J

This completes the proof of Theorem 2.

C. Proof of Theorem 3

Lemma 1: Let G be a family of functions mapping from
X to [0,1] and D be empirical datasets sampled from an i.i.d.
sample D of size m. Then, for any § > 0, with probability at
least 1 — ¢, the following holds for all g € G,

- log(2/6
En o]~ Bplo] | < 25(0) + 3,/ 20 @
where E5[g] = L 3", [g(x;)] is the empirical form of

Ep [g]. This proof can be found in Theorem 3.3 of work [56].

Lemma 2: Let G be a family of functions, denoted as G =

{max{f1, fo,... fu} | fi € F,i € {1,2,...,k}}. Then, for
any sample D of size m, the following holds for all g € G,

~

R5(G) < kR5(F). 32)
This Lemma is the modified version of Lemma C.6 in
previous work [23].

Proposition 2: Let G be a family of margin loss functions
defined in Eq. (3) and €24 (F) be a family of functions defined
in Definition 2. Then, for any sample D = {(x;, )},
where y; € {1,...,C}, the following relation holds between
the empirical Rademacher complexities of G and Q;(F):

Rp(G) < Rz (U(F)). (33)

Proof. According to Definition 1, the empirical Rademacher
complexity of G can be written as:

R5(G) =E {SHPZUZ ulws "’“%ﬂ]

Ferm

Lo Sy(x;) — maxfy (x;)
E, { . Y #Yi }
ferm 2p

(34)

»:%ml(f))

—Ea sup— almaxf x; }

=A

Because Eq [supscr— > 7" 0;W,(v)] = 0 holds for
©# < vorwv < 0, so here we only consider the case of
0< v < L. Let Ql(fc_l) = {max{fl,...,fc,l} ‘ fj S
Q1 (F),j €{1,...,C — 1}}. Then according to Lemma 2, the
term A can be rewritten as:

A =E, {supZo max f- ch}

ferm y' #Yi
1 m
=E 5 — 4 j\Li
o btelg m 2 o {fflué’gfl}fg(w )} (35)

Therefore, %ﬁ(g) < 2%9?{5
proof of Proposition 2.

(©241(F)). This completes the

Proposition 3: Let G be a family of margin loss functions
defined as Egp, {W, [wf/(cc hg(x))]} and Qa(F) be a
family of functions defined in Definition 2. Then, for any

sample D, = = {(x;}™, the following relation holds between
the empirical Rademacher complexities of G and Qo (F):

~ C ~

Rp, (@) < ﬂmﬁw(gﬂ}_)) (36)

Proof. The proof is similar to Proposition 2, the empirical
Rademacher complexity of G can be written as:

R, (G

{fbfl}g}‘mzal wlwps (@i, f(z ))ﬂ
m fhf(w)( x;) — ;I}la)(( ).fy (), (37)
|: sup — ag; ; A :|
F.fer m K
C
— (Qz(f))

2

This completes the proof of Proposition 3.

Proposition 4: Let P and @ be the corresponding empirical
distributions for sample D, = (X,Y;) and D, = X. For any



0 > 0, with probability at least 1 — 26, the following holds for
any scoring function f € F,

4(P.Q) 5 (P.Q)| < L5, 0(F) + 3 [F2D
55 log(2/0)
+umbt(ﬂ2(}—))+3 2|ﬁt| )

Proof. Eq. (5) gives the margin disparity discrepancy

dl; (P,Q) = suppcr {EQ Wy (ws)] — Ep[W, (ws) ] },
then we have,

4 (P.Q) -3 (P.)|
W, (ws)] ~ Eq Wy (wp) |

W, (wp)] —Ep[W, (Wf’)]‘-

< sup
frer

+ sup ‘EP[
freF

[Eol (38)

By applying Lemma 1 and Proposition 3, then

w(w)] —Eg[W, (wp)]|
Ca log(2/9)
<= ((F)) +3 o
(@r)] = Ep[W, (wp) ]|

C 4 log(2/4)
p p,(Q2(F)) 2D

[Eq[w

(39)
[Ep[W,

Combing Eqgs. (38) and (39), we can get the final result,
which completes the proof of Proposition 4. Next, we give
the proof for Theorem 3.

The Proof for Theorem 3: First, according to Lemma 1
and Proposition 2, for L(f) = E(gy~p{W,[ws(z,y)] }.
we have

(1)~ 25,0 < SRp@ )+ [P0 a0

Then, combining Theorem 2 and Proposition 4, we have

hfgz_:{

C C 4
+Efﬁﬁsj (QQ(.F)) + ;%53]_

C log(2/6)
FERS (Q(F)) + 3, 2B
p i (22(F)) 2\D|

)+d5 (P.Q)

(Q(F))+6 log(f/d)} 41)

2|Ds;l

+ 6.

Since ﬁsj and Zst are empirical datasets sampled from the
iid. sample D,; = (X,,Y;) and D; = X; of size m, the
above equation can be written as

log(2/4)

2m

where 23 and D are datasets sampled from the mixture
distribution Z 0P and Q + Z _, a; P;, respectively.
Therefore, the proof of Theorem 3 is completed

D. Proof of Theorem 4

The Proof for Theorem 4: This proof follows the previous
works [23], [49]. Since the function f(y) = alog(y) +
blog(1l — y) achieves its maximum in [0,1] at a/(a + b),
for the below optimization problem: max~Ep[log D(x)] +
Eg[log(1 — D(x))], the optimal D(x) is

1P(x)
YP(z) + Q(x)
Then, under the optimal D*(x), the maximization of

~vEp[log D(x)] + Eg[log(1l — D(x))] can be denoted as

VEp[log D(z)] + Eq[log(1 — D(x))]
*/ vP(x)log [P(—}
dx

Q(x)
/ Q) os |5y oy )4
Pla
_/EEX Pz )log[%}dx
[ awe [Wff)?m]dw
+/wEX7P(ac) logy — [vP(x) + Q(x)] log(y + 1)dx
) eri(e]| )
+vlogy — (v + 1) log(y +1).

Therefor, when the above D(x) represents the function
On,, (f(¢(z))), fixing the classifier f, the theorem 4 can be
proven.

D*(x) = (42)

(43)

e
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