arXiv:2404.15367v1 [eess.SP] 19 Apr 2024

Leveraging Visibility Graphs for Enhanced Arrhythmia
Classification with Graph Convolutional Networks

Rafael F. Oliveira!, Gladston J. P. Moreira!, Vander L. S. Freitas?,
Eduardo J. S. Luz!

lComputer Department, Federal University of Ouro Preto, 122, Diogo de Vasconcelos
Street, Pilar, Ouro Preto, 35402163, Minas Gerais, Brazil.

Contributing authors: rafael.fo@aluno.ufop.edu.br; gladston@ufop.edu.br;
vander.freitas@Qufop.edu.br; eduluz@ufop.edu.br;

Abstract

Arrhythmias, detectable via electrocardiograms (ECGs), pose significant health risks, emphasizing the
need for robust automated identification techniques. Although traditional deep learning methods have
shown potential, recent advances in graph-based strategies are aimed at enhancing arrhythmia detection
performance. However, effectively representing ECG signals as graphs remains a challenge. This study
explores graph representations of ECG signals using Visibility Graph (VG) and Vector Visibility Graph
(VVQ), coupled with Graph Convolutional Networks (GCNs) for arrhythmia classification. Through
experiments on the MIT-BIH dataset, we investigated various GCN architectures and preprocessing
parameters. The results reveal that GCNs, when integrated with VG and VVG for signal graph
mapping, can classify arrhythmias without the need for preprocessing or noise removal from ECG
signals. While both VG and VVG methods show promise, VG is notably more efficient. The proposed
approach was competitive compared to baseline methods, although classifying the S class remains
challenging, especially under the inter-patient paradigm. Computational complexity, particularly with
the VVG method, required data balancing and sophisticated implementation strategies. The source
code is publicly available for further research and development at https://github.com /raffoliveira/
VG_for_arrhythmia_classification_with_GCN.
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Early detection of heart diseases is essential to
enable preventive measures. The electrocardio-
gram (ECG) [1] is the primary diagnostic tool
for heart conditions. Arrhythmias are heart issues
detectable via ECG that impair the heart’s abil-
ity to pump sufficient blood, potentially affecting
the brain and other organs. Arrhythmias can
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be life-threatening, necessitating continuous car-
diac activity monitoring for appropriate medical
response [2, 3.

The intricate and challenging task of manu-
ally identifying and classifying arrhythmias high-
lights the essential need for further research
into automated solutions. Techniques involving
Machine Learning, such as Artificial Neural Net-
works (ANNs) and Deep Neural Networks (DNNs),
have been increasingly adopted [4-6]. However,
achieving stringent and rigorous outcomes remains
challenging, particularly within the inter-patient
paradigm, where training and testing sets include
distinct patient data [4, 7, 8]. In contrast, the intra-
patient paradigm may encounter overestimated
outcomes when training and testing sets consist
of data from the same patient. De Chazal et al.
[8] have articulated the importance of standard
protocols for the sake of comparability among pub-
lished studies, highlighting that those not adhering
to such benchmarks might not fully realize their
practical potential and could present results with
a degree of bias [4, 9].

Numerous neural network-based methodolo-
gies proposed in the literature aim to address the
automated classification of arrhythmias. [10, 11].
Studies such as those conducted by Essa and Xie
[11] and Mousavi and Afghah [10] have shown
significant success in adhering to the AAMI [7]
standards and the inter-patient paradigm. Both
used Convolutional Neural Networks (CNNs) in
their machine learning models, albeit with dis-
tinct approaches. Essa and Xie [11] proposed a
hybrid architecture that combined CNN-LSTM
and LSTM networks using heartbeat segments,
whereas Mousavi and Afghah [10] introduced a
Recurrent Neural Network (RNN) structure con-
sisting of an encoder-decoder with a CNN, applied
to sequences of heartbeats. Garcia et al. [12]
even introduced an innovative approach utilizing
a temporal vectorcardiogram with feature selec-
tion through complex networks paired with an
SVM classifier. When tested under the inter-patient
paradigm, this method achieved an overall accuracy
of 92.4%

Despite these advancements, exploring and rep-
resenting ECG signals as graphs and applying
Graph Neural Networks (GNNs) to this represen-
tation remains an underexplored area. This gap
presents an opportunity for our proposal: lever-
age the Visibility Graph algorithm to transform

ECG data into a graph structure, enabling the use
of GNNs. This approach combines the inherent
advantages of graph representation with the robust
feature extraction capabilities of GNNs, potentially
setting a new benchmark in ECG-based arrhythmia
classification.

Focusing on the proposed approach of employ-
ing a visibility graph (VG) for ECG signal repre-
sentation, one question that encapsulates the core
objective of the study can be formulated:

® How does the integration of the visibility graph
(VG) approach to map ECG signals into graph
structures and the incorporation of multi-lead
ECG data in vector visibility graph (VVG)
representations influence the classification perfor-
mance and diagnostic accuracy of graph neural
networks in identifying cardiac arrhythmias
within the inter-patient evaluation protocol?

Interestingly, our results show that simpler
GCN architectures are more effective than their
complex counterparts, emphasizing efficiency and
the accurate capture of ECG signal morphology.
The study also highlights the significant impact of
the inter-patient and intra-patient paradigms on
classification performance.

2 Background

Network science [13] has proven its value in extract-
ing significant insights from various domains,
including time series and sequential data, enabling
the characterization of nonlinear dynamic behav-
ior in diverse contexts. Researchers have proposed
several approaches for determining the spatial
connectivity of data over time through complex
networks. As highlighted by Ren and Jin [14], there
are three primary methodologies prominent in the
literature:

® Mapping of sequential data or pseudoperiodic
time series into complex networks, where net-
work vertices represent each cycle of the time
series. The connectivity between vertices relies
on the temporal similarity or correlation between
cycles [15, 16];

® Recurrence networks that treat phase space
vectors as vertices, with connectivity between
vertices determined by the distance of the
corresponding vectors [17, 18];



® Direct definition of time series data as network
vertices, where connectivity among vertices is
determined based on the temporal sequence of
data points such as a visibility criteria [19-21]
or temporal neighborhood [22].

Among the commonly used approaches in the
literature, this article focuses on mapping ECG
signals into graphs using two methods: the VG
method proposed by Lacasa et al. [19] for univari-
ate time series (ECG signals with one lead) and
the VVG method proposed by Ren and Jin [14]
for multivariate time series (ECG signals with two
leads).

2.1 Visibility Graph (VG)

The samples from an ECG lead curve over time
can be conceptualized as a one-dimensional time
series, which can then be transformed into a graph
using the Visibility Graph (VG), as depicted in
Figure 1. In this representation, each point in the
series becomes a node in the graph, and two nodes
are connected if they satisfy a visibility criterion,
as follows: given two points, (t4,y.) and (tp, ys),
represented by vertices a and b, where t, and t; rep-
resent time and y, and y; their associated values,
a connection is established between them if
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for any points (t.,y.). In simpler terms, if each
point in the series is a vertical bar in a bar chart,
two bars a and b would connect if there is no bar ¢
between them whose height would prevent drawing
a straight line between the peaks of a and b.

According to Lacasa et al. [19], the graph gen-
erated using the Visibility Graph (VG) method
consistently demonstrates certain intrinsic fea-
tures. First, it is a connected graph wherein each
vertex maintains visibility to its immediate neigh-
bors, encompassing both left and right adjacencies.
Second, the graph is undirected, a characteristic
inherent to the algorithm’s construction. Finally,
the graph maintains invariance under data trans-
formations of the series, with the visibility criterion
remaining unaffected by horizontal and vertical
axis rescaling and translations.

2.2 Vector Visibility Graph (VVG)

Expanding on the Visibility Graph (VG) method
for univariate time series, Ren and Jin [14] pro-
posed the Vector Visibility Graph (VVG) method
for mapping multivariate time series into a directed
complex network. In this approach, a multidimen-
sional data vector is defined as a node, and the
connectivity between nodes is established based on
the visibility criterion applied to the corresponding
data vectors.

Consider X; = {z{},, a multidimensional m-
dimensional® time series, where N is the size of
each dimension and Xt is a vector representing
the space of the multivariate time series, given by
Xt [x1,22,...,2™"]. For any two vectors X, and
Xb in the Vector space Xt, the projection of X
onto Xb can be defined as follows:
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Assuming that each vector in the vector
sequence is represented as a node in the network,
the visibility criterion between vectors is defined
as follows:

151 = (2)
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where t, < t. < tp, ||X§|| represents the projec-
tion of X, onto X, and || X2|| is the projection of
X, onto X,. Thus, if the criterion (3) is fulfilled,
a connection will be established from the vertex
represented by Xa to the vertex represented by X,
in the resulting complex network. When m = 1,
the VVG method becomes equivalent to the VG
method. Figure 2 demonstrates the application of
the VVG method. In this illustrated example, mul-
tivariate time series data, such as dual-lead ECG
signals, are represented by a graph structure in
which each series point corresponds to a network
node. The visibility between these points, as deter-
mined by the VVG criteria, is illustrated to show
how connections are formed within the graph. This
representation highlights the complex relationships
within the multivariate data and underscores the
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Fig. 1: Example of the VG method application. (a) Visibility among the points of a univariate time series
(ECG signal with one lead). (b) Graph generated by VG. (c) Graph visualization.

potential of the VVG method in capturing complex
patterns in biomedical signals like ECG.

2.3 Rationale for using VG and VVG

The rationale behind employing the Visibility
Graph (VG) methodology for analyzing electro-
cardiogram (ECG) signals in our application is
motivated by the nature of the ECG waveforms.
ECG signals are characterized by prominent and
well-defined waves, notably the P wave, QRS com-
plex, and T wave, reflecting specific electrical
activities within the heart. These waves form pat-
terns that can indicate various cardiac conditions,
including arrhythmias.

The hypothesis driving this approach is that
in a normal cardiac rhythm, especially observable
in lead II of the ECG, the peaks of these waves
(P, QRS, and T) will exhibit a specific pattern
of interconnectivity. The VG method transforms
these time-series data points into a network of
vertices (representing the wave peaks) and edges
(representing the visibility or direct line of sight
between these peaks). One expects to observe a
consistent pattern of connections between these
peaks in a regular heartbeat.

Conversely, these patterns will likely deviate
from the norm in an arrhythmic beat. Arrhyth-
mias often manifest irregularities in the timing,

sequence, and morphology of ECG waves. For
instance, atrial fibrillation may be characterized
by an irregular rhythm and the absence of P
waves, whereas ventricular tachycardia may show
aberrant QRS complexes. By applying the VG
method, we hypothesize that these disruptions
in the waveform will result in distinctly different
graph structures compared with those derived from
normal heartbeats. This difference in graph topol-
ogy is investigated through graph neural networks
(GNNs).

The VG approach offers a way to encapsulate
the intrinsic characteristics of ECG waveforms into
a graph structure, providing another perspective
for ECG analysis. By translating the ECG signal
into a visibility graph, we capture the individual
features of each wave and the contextual relation-
ships between them. This could enhance our ability
to detect and classify cardiac arrhythmias more
accurately, leveraging the complex interplay of
ECG wave characteristics that are otherwise chal-
lenging to discern through traditional time-series
analysis methods.

2.4 Graph Neural Networks

The emergence of Graph Neural Networks (GNNs)
dates back to the 1990s [23], starting with recur-
sive neural networks [24] applied to directed
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Fig. 2: Example of the VVG method application. (a) Multivariate time series represented as two ECG
signals from different leads. (b) Graph generated by the VVG. (c) Visibility among the vectors. Source:

Adapted from Ren and Jin [14].

acyclic graphs. Subsequently, Recurrent Neural
Networks (RNNs) [25] and Feed-Forward Neural
Networks (FFNNs) [26] are introduced for cyclic
graphs. With the advancement of deep learning,
mainly through Convolutional Neural Networks
(CNNs) [27], GNNs have also undergone significant
enhancements.

According to Wu et al. [28], GNNs can be cat-
egorized into four main types: Recursive GNNs
(RecGNN), Graph Autoencoders (GAE), Spatial-
Temporal GNNs (STGNN), and Convolutional
GNNs (ConvGNN) or Graph Convolutional Net-
works (GCN). Convolutional GNNs (ConvGNN5s)
or Graph Convolutional Networks (GCNs) are
the primary approaches for automatic arrhythmia
classification through mapping ECG signals onto
graphs in this work.

Convolutional GNNs (ConvGNNs) extend the
concept of convolutional operations from the

Euclidean domain, typically represented in grid
formats, to graph-structured data. The core idea is
to generate a representation for a node v by aggre-
gating its attributes x, and the attributes of its
neighboring vertices x,,, where u € N(v), in which
N (v) is the set of neighbors.

ConvGNNs employ multiple convolutional lay-
ers to extract high-level representations of nodes.
This means that a single convolutional layer aggre-
gates information from the first-order neighbors of
a node, two layers aggregate information from two-
hop neighborhoods, and so on. Consequently, the
more convolutional layers used, the more exten-
sive the information aggregated from a node’s
neighbors. Thus, ConvGNNs play a central role
in developing complex GNN models because they
effectively capture and integrate local and extended
neighborhood information [28].



As detailed by Wu et al. [28], Convolutional
Graph Neural Networks (ConvGNNs) are primar-
ily distinguished into two methodologies. The
first, spectral-based, defines graph convolutions by
introducing filters in the realm of graph signal pro-
cessing [29], conceptualizing graph convolution as
a means to remove noise from graph signals. The
spatial-based one builds upon the propagation con-
cept from Recursive GNNs (RecGNNs) and focuses
on defining graph convolutions through disseminat-
ing information across neighborhoods. This latter
approach has seen rapid development due to its
efficiency, flexibility, and general applicability [30].

In this study, we chose the spatial-based
methodology for Convolutional Graph Neural Net-
works (ConvGNNs) as the foundation for our
proposed automatic ECG signal classification
method. This decision is grounded in several key
factors that align with the specific requirements
and characteristics of ECG data analysis, such
as (i) localized feature learning because ECG sig-
nals exhibit localized features, such as particular
waveforms and intervals, that are crucial for iden-
tifying arrhythmias. In addition, (ii) convolution
operations are highly efficient. ECG-derived graphs
can exhibit diverse and complex connectivity pat-
terns, reflecting the intricate nature of cardiac
electrical activity. The spatial approach allows for
efficient processing of these graphs, adapting to
the unique topology of each ECG-derived graph
without the need for complex spectral transfor-
mations. (iii) The spatially-based ConvGNNs are
robust to graph structure and size variations, mak-
ing them suitable for ECG signals, which can vary
significantly between individuals. This robustness
ensures the model can generalize well across dif-
ferent patients, enhancing its utility in real-world
clinical settings. (iv) Spatial-based ConvGNNs
operate by directly aggregating features from neigh-
boring nodes, potentially offering clinicians more
intuitive interpretations.

Graph Convolutional Networks (GCNs) receive
as input a graph that is represented as G(V, E),
where V' is the set of vertices and E the set of
edges, with each vertex connected to itself to
include its attributes in aggregation with its neigh-
bors’ attributes. The attribute matrix X € R"*¢
contains attribute vectors for each vertex. The adja-
cency matrix A and the diagonal degree matrix
D, with D;; = Zj A;;, are modified by adding
the identity matrix to A for loops, resulting in

A = A+ \I,,. A GCN with multiple layers captures
information from a wider range of neighborhoods,
following the propagation rule [30]:

HEY = o(D 2 AD 2 HOW®),  (4)

where A is the adjacency matrix with loops, D the
degree matrix with loops, W the weight matrix,
and o the activation function, such as ReLU, with
HO = X.

Because the number of neighbors of a vertex
can vary from one to thousands, it is sometimes
inefficient to consider the entire neighborhood. For
this problem, a network called GraphSAGE [31]
samples a fixed number of neighbors for each vertex.
The convolution operation is given by:

WP = oW £ (R, Vu € Sy }),
(5)
where f is an aggregation function, o the activa-
tion function, Sy, the sampled neighbor of vertex

v and hg,l) € R4 the attribute vector of vertex v of
the [-th layer with hS,O) = X,. GraphSAGE aggre-
gates information from local neighbors, enhancing
the classification process with each iteration. The
aggregated information is concatenated and nor-
malized in each iteration, incrementally enriching
the vertex representation.

GNNs analyze different levels of graph tasks,
as outlined by Zhou et al. [23]. Node-level tasks
include classification, regression, and clustering of
vertices. Edge-level tasks involve classifying or pre-
dicting edges, whereas graph-level tasks encompass
classification and regression for the entire graph. In
this study, heartbeats are mapped into graphs, and
the graph-level learning mechanism classifies each
heartbeat by considering the graph as a whole.

3 Related Works

This section summarizes studies from 2017 to 2023
that explored deep learning techniques for the prob-
lem of arrhythmia classification in ECG signals, as
seen in Table 1.

Hannun et al. [6] introduces a landmark devel-
opment in arrhythmia classification through ECG
signals, utilizing a basic CNN architecture. This
study stands out because it uses a large private
dataset encompassing ECGs from 53,549 patients,
demonstrating that deep learning techniques can



Table 1: State-of-the-art DL works for arrhythmia classification.

Reference Dataset # Classes Method Performance (%) AAMI Inter-patient
Cao et al. [32] MIT-BIH 4 Pre-trained ResNet18 Acc* = 90.8, Pry = 95.3, Rey = 95.1 +* v
Prg = 13.0, Res = 9.0, Pry = 68.2,
Rey = 88.4, Prrp = 1.3, Rep = 0.3
Gai [33] MIT-BIH 5 Pre-trained ImageNet Pr* = 98.62, Re* = 98.65, + v
Wigner-Villee distribution F1* = 98.62, Acc = 98.65
Essa and Xie [11] MIT-BIH 4 CNN-LSTM Acc = 95.81, Sp* = 94.56, Se = 69.20, v v
RR-HOS-LSTM F1 = 71.06, +P* = 74.97, s* = 0.79
Hannun et al. [6] Own dataset 12 DNN AUC* = 97.0, Sp= 752 X v
F1=83.7
Mousavi and Afghah [10] MIT-BIH 4 Sequence-to-sequence CNN Ace = 99.53, Se = 96.18 v v
+P = 97.2, Sp = 98.58
Garcia et al. [12] MIT-BIH 3 TVCG* + Complex Networks and SVM  Acec = 92.4 v v
Mathews et al. [34] MIT-BIH 2 Restricted Boltzmann Machines (RBM)  Acc = 95.2, Se = 80.5 v v

Deep Belief Network (DBN)

+P = 4797, FPR = 4.65

*Acc = Accuracy, Se = Sensitivity, Sp = Specificity, +P = Positive Prediction, FFPR = False Positive Rate, Pr = Precision,
Re = Recall, F'1 = Fl-score, AUC = Area Under the Curve, k = Kappa, £ = Partially met AAMI standard, TVCG =

Temporal Vectorcardiogram.

surpass even cardiologists in arrhythmia detec-
tion and classification. The innovative approach of
using single-channel ECG signals without extensive
preprocessing highlights the effectiveness of deep
learning despite data and signal limitations. How-
ever, the dataset’s exclusivity limits the results’
replicability, in contrast with the ANSI/AAMI [7]
norm recommending the use of public datasets,
such as the widely recognized MIT-BIH, for more
standardized and comparable evaluations.
Studies employing the MIT-BIH Arrhythmia
Database for evaluation, such as in [11, 32-34], are
distinguished for adhering to the ANSI/AAMI stan-
dard, ensuring reproducibility and fair comparisons
with other techniques. Nevertheless, De Chazal
et al. [8] identified a lack of standardization in using
the MIT-BIH, particularly when not employing an
inter-patient scheme for evaluation. Intra-patient
schemes, such as cross-validation, may yield clini-
cally unrealistic results. For example, Gai [33] does
not strictly follow the De Chazal et al. protocol and
uses a limited number of beats for testing, making
comparisons with other methods challenging. This
lack of standardization and non-adherence to the
protocol underscores the need to reevaluate and
reimplement other methods for a fair comparison.
State-of-the-art studies following the De Chazal
et al. protocol and the ANSI/AAMI standards
include [10, 11, 32, 34]. These studies are dis-
tinguished by using deep learning in a fair
and robust approach, employing an inter-patient
scheme in constructing training and test datasets.
For instance, Mousavi and Afghah [10] study used

a sequence-to-sequence approach, processing multi-
ple heartbeats simultaneously, which is crucial for
inferring cardiac rhythm from a chain of beats. The
model combines Convolutional Neural Networks
(CNN) for feature extraction and Recurrent Neural
Networks (RNN) with LSTM units for encoding
and decoding these sequences. The results demon-
strate the proposed model’s superior performance
compared with other algorithms, achieving high
accuracy, sensitivity, and positive predictive value
for the analyzed arrhythmia categories in both
intra-patient and inter-patient paradigms.

In [34], a novel approach is proposed for the
classification of ECG signals using deep learn-
ing, explicitly employing Restricted Boltzmann
Machines (RBM) and Deep Belief Networks (DBN)
for detecting ventricular and supraventricular
arrhythmias. This study utilizes the MIT-BIH
database and conducts preprocessing of ECG sig-
nals through filtering artifacts such as baseline
wander, power line interference, and high-frequency
noise. The authors implemented two feature extrac-
tion techniques to produce feature sets, including
RR intervals, heartbeat intervals, and segmented
morphology. The results demonstrate high accu-
racy in detecting ventricular ectopic beats (93.63%)
and supraventricular ectopic beats (95.57%).

In [11], an automatic system for cardiac
arrhythmia classification is proposed using deep
learning models that combine CNN (Convolutional
Neural Network) and LSTM (Long Short-Term
Memory) to capture local features and temporal
dynamics in ECG data. This model integrates clas-
sic features such as RR intervals and Higher Order



Statistics (HOS) with the LSTM model to high-
light abnormal heartbeat classes effectively. These
models are trained on different data subsets to
address class imbalance and then combined using
a meta-classifier. Another model further verifies
the outcome of the meta-classifier to reduce false
positives. Experimental results obtained from the
MIT-BIH Arrhythmia Database and following a
“subject-oriented (a.k.a. intra-patient)” indepen-
dent patient evaluation scheme revealed that the
proposed method achieves an overall accuracy of
95.81%. The average F1 score and positive predic-
tive value exceeded all other methods by over 3%
and 8%, respectively.

The study in [32] introduces a method for car-
diac arrhythmia classification using deep learning
with the ResNet-18 model. The preprocessing of
the MIT-BIH data included filtering to remove
noise and segmentation into heartbeats. The
method employs a Short-Time Fourier Transform
(STFT) to convert 1D ECG signals into 2D time-
frequency spectrograms suitable for pre-trained
CNN classifiers. Oversampling and undersampling
techniques are used to address class imbalance in
the dataset. The results showed an accuracy of
90.8%, with high precision and recall for the nor-
mal class (N) and varied performance for other
types of arrhythmias, such as supraventricular (S),
ventricular (V), and fusion (F).

These studies highlight the potential of deep
learning when applied in a standardized and rig-
orous manner, following established protocols to
ensure reliable and comparable results in detect-
ing and classifying cardiac arrhythmias. However,
as extensively discussed in [4], even methods that
evaluate according to the inter-patient protocol
can still improve the analysis of results and repro-
ducibility by adding an ablation study in the
preprocessing and class imbalance compensation
phases. These phases are crucial and can often
make more difference than the feature extraction
and classification techniques themselves; however,
these phases are usually neglected and not well
detailed/described in the articles [4].

The present article explores deep learning tech-
niques based on graphs, specifically Graph Neural
Networks (GNNs), for which transforming ECG
signals and heartbeats into graph representations is
essential. Prior research has investigated the trans-
formation of ECG signals into graphs, as done in

[12], where a novel ECG representation based on
a Temporal Vectorcardiogram (TVCG) is intro-
duced, coupled with a complex network for feature
extraction and resource selection using a Particle
Swarm Optimization (PSO) algorithm. An SVM
classifier is finely tuned in this approach. The pro-
posed method proved effective in the inter-patient
paradigm, with results comparable to the state-
of-the-art in the MIT-BIH database, achieving
53% positive predictivity for the supraventricu-
lar ectopic beat class and 87.3% sensitivity for
the ventricular ectopic beat class. The TVCG is
a set of points representing two derivations and
time in this method. A network is built by consid-
ering these points as vertices and the Euclidean
distance between each pair of points as edges,
forming a square matrix. Initially, each beat is
transformed into a regular network (where all ver-
tices are connected), and graph construction occurs
through the dynamic removal of edges according to
a threshold chosen during training. These graphs
extract features, including the Mean connectiv-
ity degree, Maximum connectivity degree, Joint
degree entropy, Joint degree energy, and Mean joint
degree. An SVM classifier is then trained, thus not
exploring GNNs for the classification task.

The study in [35] presents an innovative
methodology for recognizing abnormalities in 12-
lead ECGs using a graph-based neural network
(GNN). The methodology comprises two main
modules: a feature extractor and a graph neural
network module. The feature extractor transforms
raw ECG signals into feature vectors, which are
used to initialize the graph nodes. The Graph Con-
volutional Neural Networks (GCN) module then
performs convolution and pooling operations on
graphs to generate new subgraphs and graph-level
representations. For graph construction, each ECG
sample is represented by an arbitrary graph with
12 vertices, where each vertex represents a lead. A
lead-level attention mechanism was also applied to
highlight leads with features most relevant to spe-
cific heart diseases. The graph’s adjacency matrix
describes the connection information between the
leads, and the node feature matrix represents the
attributes of each lead. The evaluation used the
PTB-XL and ICBEB2018 datasets containing 12-
lead ECG records with various annotations and
diagnostic categories.



In [36], the classification of electrocardiogram
(ECG) signals is addressed using an innovative
approach that combines edge detection and Graph
Neural Networks (GNN). This methodology encom-
passes two main phases: data transformation and
classification. Initially, the ECG is processed as a
64 x 64 x 1 image to construct graph-formatted
data. This process includes applying the Sobel
operator for edge detection on the curve images.
Each pixel with a grayscale intensity value of 128
or higher is converted into a graph node, and the
intensity of that pixel becomes an attribute of the
node. Edges are employed to connect vertices that
group neighboring pixels. A graph is constructed
from a single image with nodes and edges derived
from the image. The grayscale intensity values of
the vertices are normalized for each graph. This
normalization involves subtracting the mean of all
attributes under each graph from the original value
of the preprocessed image, followed by division
by the standard deviation. Various graph network
architectures are considered for evaluation and
conducted on two datasets, the MIT-BIH and PTB-
XL. The authors compare their approach with that
proposed in [35], claiming superiority as a 100%
result is achieved in various graph network archi-
tectures. However, inter-patient evaluation is not
considered in both approaches proposed in [36] and
[35], which may explain the significant results. In
addition, recommendations from the ANSI/AAMI
EC57 standard for grouping heartbeat classes are
not considered.

The evaluation we propose in our study adheres
to the ANSI/AAMI EC57 standard and follows the
inter-patient evaluation protocol. We also envision
conducting experiments without preprocessing the
signals or techniques to address class imbalance,
as these techniques can significantly influence the
final results. By adopting this strategy, we aim to
assess the raw and inherent potential of GNNs in
discerning arrhythmia patterns directly from ECG
data.

Furthermore, we extend this concept by explor-
ing multivariate visibility graphs to incorporate
multiple ECG leads. This advancement aligns with
clinical practices, where various leads are analyzed
for comprehensive cardiac assessment and enriches
the data representation, potentially capturing a
more complete picture of cardiac rhythm. We have

developed an efficient implementation of this mul-
tivariate visibility graph method 2 that enhances
computational feasibility without compromising
the integrity of the ECG signal representation.
Compliance with the ANSI/AAMI EC57 standard
and the inter-patient evaluation protocol ensures
that our findings are not only scientifically rigor-
ous but also hold practical relevance and can be
reliably compared with existing methodologies.

4 Experimental methodology

Here, we present the proposed methodology, sum-
marized in Figure 3. No noise-reducing filters are
applied to the ECG signals used in their original,
unprocessed form.

4.1 Dataset and ANSI/AAMI EC57

Evaluation of automatic arrhythmia classification
methods in the literature necessitates a dataset
with heartbeats grouped into patient records.
The Association for the Advancement of Medical
Instrumentation (AAMI) developed a standard,
outlined in ANSI/AAMI EC57:1998/(R)2008 [7],
to standardize the evaluation of the methods,
ensuring reproducibility and comparability. This
standard recommends using one of the following
five datasets:

e MIT-BIH: The Massachusetts Institute of Tech-
nology - Beth Israel Hospital Arrhythmia
Database (48 records of 30 minutes each).

® CU: The Creighton University Sustained Ven-
tricular Arrhythmia Database (35 records of 8
minutes each).

e AHA: The American Heart Association
Database for Evaluation of Ventricular Arrhyth-
mia Detectors (80 records of 35 minutes
each).

e ESC: The European Society of Cardiology ST-T
Database (90 records of two hours each).

e NST: The Noise Stress Test Database (12 records
of 30 minutes each, plus three records with
excessive noise).

The MIT-BIH dataset® is most representative
in terms of arrhythmia types and is widely used

Zhttps://github.com /raffoliveira/ VG _for_arrhythmia_
classification_with . GCN

3https://physionet.org/content/mitdb/1.0.0/


https://github.com/raffoliveira/VG_for_arrhythmia_classification_with_GCN
https://github.com/raffoliveira/VG_for_arrhythmia_classification_with_GCN

oG > Segmentation > Heart
Dataset " < " Subsampling
Classes
N = !
S = Classification - Graph < Dataset
Conversion Division
V =

Fig. 3: Flowchart of our proposed methodology.

in literature [37, 38]. This dataset, also used in
this work, comprises 48 ECG signal records of 30
minutes from 47 patients sampled at 360 Hz. Each
signal contains two leads.

AAMT’s standard specifies annotation guide-
lines for each heartbeat in datasets, recommending
excluding pacemaker data, segments with ventric-
ular flutter or fibrillation (VF), and artificial data.
We removed data from four patients and grouped
them into five main classes: Normal (N), Supraven-
tricular ectopic beat (S), Ventricular ectopic beat
(V), Fusion beat (F), and Unknown beat (Q).

AAMI EC57 standard does not specify which
data (heartbeats from patients) should be used
for training and testing classification models. Data
division can follow either an intra-patient or inter-
patient paradigm [39]. Intra-patient uses ECG
signal data from the same patient for training and
testing, whereas inter-patient involves data from
different patients without overlap. Using data from
the same patient in training and testing often leads
to overestimated evaluations [4, 9].

To align tests with real-world scenarios,
De Chazal et al. [8] proposed dividing the MIT-BIH
dataset into two sets, DS1 and DS2, to ensure no
overlap. Table 2 shows the distribution of patient
records between the two sets.

Using the inter-patient paradigm and the divi-
sion proposed by De Chazal et al., Table 3
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Table 2: Distribution
records in two sets.

of MIT-BIH patient

DS1

101, 106, 108, 109, 112,

114, 115, 116, 118, 119,

122, 124, 201, 203, 205,

207, 208, 209, 215, 220,
223, 230

DS2

100, 103, 105, 111, 113,

117, 121, 123, 200, 202,

210, 212, 213, 214, 219,

221, 222, 228, 231, 232,
233, 234

summarizes the number of heartbeats per class
and their percentage in the MIT-BIH dataset. The
table also shows the heartbeat counts after segmen-
tation into training (DS1) and testing (DS2) sets,
with percentages of 50,65% and 49,35%. Classes F
and Q, with less than 1% presence, are excluded
from experiments because of their low occurrence.

4.2 Segmentation

ECG signal segmentation is carried out in sample
windows using the R-wave location metadata pro-
vided with the MIT-BIH dataset. This involved
capturing n points before the R-wave and n points
after it, resulting in heartbeats comprising N
points, where N = Npefore + Nafter- iach heartbeat
is then labeled according to the classes annotated
in the dataset. Experiments are conducted to deter-
mine this phase’s optimal value of n. In some



Table 3: Description of the number of beats in the training and test sets.

Beats % of total # Training (DS1) # Testing (DS2) # Total
N 89.47% 45844 44238 90082
S 2.76% 944 1837 2781
Vv 6.96% 3788 3220 7008
F 0.80% 414 388 802
Q 0.01% 8 7 15
Total 100% 50998 49690 100688
50.65% 49.35% 100%

Table 4: Description of sampling strategy.

Training (DS1) Testing (DS2)

Beats Before After Before After
N 45844 4584 44238 4423
S 944 944 1837 1837
A% 3788 3788 3220 3220
Total 50576 7732 49295 8057

experiments, ECG signals are also normalized to a
range between 0 and 1.

4.3 Heartbeat Subsampling

The preponderance of class N heartbeats, as
illustrated in Table 3, necessitates a substantial
computational effort due to the numerous graphs
required. A subsampling strategy is implemented
for class N heartbeats within the training (DS1)
and testing (DS2) datasets to facilitate a broader
range of experiments. A sampling rate of 10% is
adopted, selectively choosing the final heartbeat in
every sequence of ten to enhance diversity. Table 4
provides a comparative overview of the dataset
pre- and post-balance, including excluding the less
prevalent classes F and Q.

4.4 Dataset Division

Heartbeats segmented in the prior stage are divided
into a training set (DS1) and a testing set (DS2),
as detailed in Table 3. This division adheres to
the inter-patient paradigm, aiming to mirror a
more realistic scenario [8]. Furthermore, following
the subsampling of the predominant class N, as
shown in Table 4, it is observed that both the total
number of heartbeats and the number in class S
are higher in DS2 than in DS1. Consequently, two
additional experiments are idealized to examine
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how GCN models perform when the roles of DS1
and DS2 are reversed and when the data is divided
according to the intra-patient paradigm.

4.5 Conversion of Heartbeats into
Graphs

In this phase, heartbeats are transformed into
graphs using the VG and VVG methods. Figure 4
illustrates the conversion of a heartbeat from the
MIT-BIH training set (DS1) corresponding to
classes N, S, and V into a graph via the VG method
for one ECG lead. This process converts a heart-
beat P into a graph G(V, E), where V represents
the set of vertices and E the set of edges in a graph
G.

This study employs a graph-level approach,
where classification considers the graph as a whole.
This is similar to Kojima et al. [40], which predicted
protein structures using GCN. The use of GNNs
enables the incorporation of additional information
into the nodes or edges of the graph. Experiments
are designed to evaluate different sets of informa-
tion added to the nodes and their impact on the
performance of GCNs in classifying arrhythmias
from ECG signals.

4.6 Classification

Five Graph Convolutional Network (GCN) archi-
tectures are evaluated for heartbeat classification
alongside Convolutional Neural Networks (CNNs)
for comparative analysis. While CNNs are not
the focus of this study, they provide a benchmark
for comparing GCN performance in arrhythmia
classification.

In GCN architectures, the input layer takes
the attribute vector size (d) of each node (x, €
R%), i.e., the amount of information aggregated at
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Fig. 4: Example of mapping heartbeats from one lead (patient 118) corresponding to classes N, S, and V

using the VG method.

each node. The output layer features three neurons
corresponding to the three target classes (N, S,
V). For graph-level classification, a readout layer
aggregates attributes from all vertices in the last
iteration of processing, both during training and
testing:

ha = readout({h{|v € G}), (6)
where h,(f) is the attribute vector representation of
vertex v at the [-th iteration/layer with hY =X
The readout function can be a simple invariant
operation like sum or mean or a more sophisticated
graph-level aggregation function. Here, the mean
operation obtains a high-level representation of the
entire graph (hg) [41].

Following the methodology description, exper-
iments are designed to investigate the primary
question of this work: can graph representations of
ECG signals using VG and VVG methods enhance
arrhythmia classification performance using Graph
Convolutional Networks? The designed experi-
ments are as follows:
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Experiment 1: Explore new GCN architectures
using the VG method alongside various CNN
architectures.

Experiment 2: Investigate different window
sizes for ECG signal segmentation in the best
GOCN architectures using the VG method and
the optimal CNN architecture.

Experiment 3: Examine information aggre-
gation at graph vertices in the best GCN
architectures using VG and VVG methods.
Experiment 4: Investigate the swap of datasets
DS1 and DS2 in the best GCN architectures
using VG and VVG methods and the optimal
CNN architecture.

Experiment 5: Explore the intra-patient
paradigm in the best GCN architectures using
VG and VVG methods and the optimal CNN
architecture.

Experiment 6: Compare the proposed method-
ology with Garcia et al. [12].



5 Results and Discussion

This section presents the experiments’ findings to
address the research questions. The experiments
encompass the use of VG and VVG methods,
as well as the exploration of both inter-patient
and intra-patient paradigms and the reversal of
data sets. The objective is to analyze whether
both graph representations can enhance the per-
formance of arrhythmia classification in ECG
signals using Graph Convolutional Networks. The
source code is available for reproducibility pur-
poses at https://github.com/raffoliveira/VG_for_
arrhythmia_classification_with_GCN.

5.1 Experiment 1: New Architectures

This stage involves experimenting with various
GCN and CNN architectures. CNNs serve as a
comparative baseline for arrhythmia classification
performance across different architectures. The
aim is to assess the performance of the proposed
GCN architectures against CNNs, which are widely
used in the literature. Variations in GCN architec-
tures included the types of layers (traditional graph
convolutional layers (GraphConv) and specialized
layers (SAGEConv)) and the number of neurons
in hidden layers. Variations in CNN architectures
focus on the number of convolutional layers.

Table 5 details the proposed GCN architectures
for this experiment. Notably, a readout layer is used
to aggregate vertex attributes in the final iteration
of processing to achieve a high-level representation
of each entire graph, employing a mean operation.
Figures 5, 6, and 7 present the proposed CNN archi-
tectures, named CNN-2Conv, CNN-4Conv, and
CNN-6Conv, respectively, based on the number
of convolutional layers in each architecture. The
CNN models employed 1D convolutional layers,
with architectures based on an example of CNN
use in electroencephalogram signal classification
from the Keras library website*.

For the GCN experiments, each node is
enriched with the following information: values
from lead V1, values from lead II, and the relative
timestamp of each point. This experiment used
fewer aggregated data points to analyze different
information groups in Experiment 5.3. Both sets
of aggregated information are normalized between

“https://keras.io/examples/timeseries/eeg_signal_classification/
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[0, 1] using the min-max normalization technique®.
This technique is chosen to prevent the analyzed
architectures from being influenced by extreme
value data, as it preserves the order relationships
among the data. No additional information is
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min
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Table 5: GCNs Architectures.

GCN7 | GCN2 | GCN60 | GCN120 | GCN240
# Layer Shape ‘ # Layer Shape ‘ # Layer Shape ‘ # Layer Shape ‘ # Layer Shape
1  SAGEConv dxx20 |1 GraphConv dx20 |1 SAGEConv  dx60 |1 SAGEConv dx120 |1 SAGEConv ~ dx240
2 GraphConv  50x40 |2  GraphConv  20x3 | 2  SAGEConv 60x50 | 2 SAGEConv 120x40 | 2 SAGEConv 240x140
3  SAGEConv 40x30 |4  Readout - 3  SAGEConv 50x35 | 3  SAGEConv 40x20 | 3 SAGEConv  140x40
4 SAGEConv 30x20 |5  Softmax 4  SAGEConv 35x3 |4 SAGEConv 20x3 |4 SAGEConv 40x3
5 SAGEConv  20x10 5  Readout - 5  Readout - 5  Readout -
6  GraphConv 10x5 6  Softmax - 6  Softmax - 6 Softmax -
7 GraphConv 5x3
8  Readout -
9  Softmax -

*d indicates each vertex’s attribute/information vector size.

added to the CNN experiments, leaving the CNNs
to “learn” about the ECG signals independently.
For both CNN training and converting ECG sig-
nals into graphs using the VG method for GNN
training, lead II is used. A 10% sampling of class N
is performed, where only the last (tenth) heartbeat
in a sequence of ten is chosen.

As this experiment focused on parameter
adjustments, only the DS1 training set is used,
divided into 80% for training (DS1.1) and 20%
for validation (DS1.2). The inter-patient paradigm
avoids data overlap between training and valida-
tion sets, with the distribution of MIT-BIH records
as per Table 6. A fixed window of 280 points (100
points before and 180 points after the R peak)
is used for segmenting ECG signals based on the
state-of-the-art work of [10].

Table 6: Distribution of MIT-BIH records in the
DS1 dataset into training (DS1.1) and validation
(DS1.2) sets.

Training (DS1.1)

101, 106, 108, 112, 115, 116,
118, 119, 122, 124, 201, 203,
205, 208, 209, 215, 220 e 230

Validation (DS1.2)

109, 114, 207 e 223

In both GCN and CNN training, 150 epochs are
used with the Adam optimizer at a learning rate
0.001. For CNN training, the Categorical Cross
Entropy function is the loss function. Thus, the
CNN models continuously adjust their weights dur-
ing the loss minimization, leading to better results.
The mathematical expression that defines the loss
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function is:

N
Llyg) = = wilog@),  (7)

where y; is the actual label during training, 4; the
predicted label, and N the number of class labels.

Given the results presented in Table 7, the two
best GCN architectures and CNN architecture are
chosen for further analysis in the following exper-
iments. Table 7 summarizes the performance of
architectures on the validation set (DS1.2), with
GCN2 and GCNT7 architectures showing the best
results among GCNs and CNN-2Conv architec-
ture yielding the best result among CNNs. The
GCN2 and GCNT architectures exhibited average
Fs of 41% and 54%, respectively. The CNN-
2Conv architecture showed an average Fs of 63%.
There is significant underperformance in class S
for both architectures. As the architectures gener-
ally showed low performance, further experiments
will analyze other parameters and configurations
to improve the current performance.

5.2 Experiment 2: Assessing
Segmentation Width for
Heartbeat Analysis

This experiment investigated the influence of seg-
mentation width, measured as the number of points
per heartbeat, on the efficacy of automatic arrhyth-
mia classification architectures. A critical aspect
is that varying the segmentation width could lead
to information loss from the ECG heartbeat data.

To this end, three distinct segmentation sizes
— 230, 280, and 300 points per heartbeat — are
scrutinized, each selected for their prevalence in
the literature. The configurations for the dataset



Table 7: Summary of the performance of the GCN and CNN architectures.

Architectures N 5 v Weighted Average Acc*
+P* Se* FPR" F.* +P Se FPR Fq +P Se FPR Fq +P Se FPR Fq
GCN2 47.0 62.0 58.26 53.0 - - - - 40.0 36.0 43.02 38.0 39.0 44.0 45.18 41.0 44.0
GCN7 67.0 46.0 18.31 55.0 33.0 1.0 0.26 2.0 55.0 86.0 55.25 67.0 58.0 59.0 32.5 54.0 59.0
GCN60 35.0 43.0 64.29 39.0 1.0 1.0 6.52 1.0 32.0 28.0 46.28 30.0 30.0 320 50.05 31.0 32.0
GCN120 37.0 47.0 64.64 42.0 1.0 1.0 5.02 1.0 35.0 31.0 44.75 33.0 33.0 350 49.37 33.0 35.0
GCN240 36.0 43.0 6224 39.0 4.0 3.0 8.18 3.0 32.0 29.0 46.99 31.0 31.0 320 49.62 31.0 32.0
CNN-2Conv 82.0 50.0 8.89 62.0 43.0 16.0 2.64 23.0 60.0 94.0 48.83 73.0 70.0 65.0 25.69 63.0 65.0
CNN-4Conv 77.0 49.0 11.82 60.0 67.0 14.0 0.84 23.0 57.0 90.0 52.6 70.0 67.0 63.0 2847 60.0 63.0
CNN-6Conv 81.0 43.0 8.16 56.0 79.0 16.0 0.52 26.0 55.0 93.0 58.61 70.0 68.0 62.0 2941 59.0 62.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, FPR = False Positive Rate, Fs = Fl-score.

Note: Values in bold indicate the best performance.

(DS1.1 and DS1.2) and the training protocols
mirror those employed in Experiment 5.1.

As tabulated in Table 8, the findings reveal a
pronounced advantage at the 280-point segmen-
tation width. In the realm of GCN architectures,
GCNT7 stood out, registering an average Fg of
54%, while the CNN-2Conv model achieved an
average Fgs of 63%. Notably, both architectures
struggled with classifying class S, highlighting an
area ripe for further development. Regarding seg-
mentation width, GCN7 showed an upswing in
performance by 20% and 1.87% for average Fgs
compared to its counterparts at 230 and 300 points,
respectively. Similarly, CNN-2Conv demonstrated
enhancements of 23.53% and 16.67% in average Fig
relative to the 230 and 300-point windows, respec-
tively. Consequently, the 280-point window has
been identified as the optimal segmentation width
for heartbeat analysis in this study stage.

5.3 Experiment 3: Information
Aggregation at Graph Vertices

The capability to aggregate information within
graphs, both at vertices and edges, provides an
opportunity for incorporating auxiliary and extrin-
sic data into the graph structure, enhancing the
performance of GCNs. This phase assesses the
impact of information aggregation on GCN archi-
tectures, focusing on extrinsic graph data, as the
core purpose of GCNs is to learn from the inherent
structures of the graphs used during training. We
did not include the CNN model in this experiment.

For clarity in understanding the experiments
and the ensuing results, the aggregated vertex
information is categorized as follows:

® I1_V1: Values from lead II, lead V1, and the
timing of each point (03 pieces of information).
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® RR: Values from lead II, lead V1, preceding RR
interval, succeeding RR interval, and the timing
of each point (05 pieces of information).

e DiflII: Values from lead II, lead V1, preceding
RR interval, succeeding RR interval, the dif-
ference between values from lead V1 and lead
1T, and the timing of each point (06 pieces of
information).

e AvglIl: Values from lead II, lead V1, preceding
RR interval, succeeding RR interval, the differ-
ence between values from lead V1 and lead II,
division of lead V1 values by the mean of lead
IT, and the timing of each point (07 pieces of
information).

® StdII: Values from lead II, lead V1, preceding
RR interval, succeeding RR interval, the differ-
ence between values from lead V1 and lead 1II,
division of lead V1 values by the mean of lead
II, division of lead V1 values by the standard
deviation of lead II, and the timing of each point
(08 pieces of information).

® Stats: Values from lead II, lead V1, preceding
RR interval, succeeding RR interval, difference
between values from lead V1 and lead II, divi-
sion of lead V1 values by the mean of lead
II, division of lead V1 values by the stan-
dard deviation of lead II, statistical measures
(entropy, variance, standard deviation, mean,
median, 5th percentile, 25th percentile, 75th per-
centile, 95th percentile, RMS, kurtosis, skewness,
zero_crossings, mean_crossings) of the values
from lead II, and the timing of each point (22
pieces of information).

This categorization provides a comprehensive
view of how varying the amount and type of
information aggregated at the vertices affects the
performance of GCNs in arrhythmia classification.



Table 8: Summary of the GCN and CNN architectures’ performance regarding the segmentation width.

N S

Vv ‘Weighted Average

Architectures Acc”
+P* Se* FPR" F.* +P Se FPR Fy +P Se FPR F, +P Se FPR Fy
230 points
GCN2 43.0 53.0 57.53 47.0 - - - - 37.0 37.0 50.25 37.0 36.0 40.0 48.01 38.0 40.0
GCN7 49.0 450 33.63 47.0 50 3.0 14.07 4.0 48.0 59.0 48.62 53.0 44.0 46.0 38.04 45.0 46.0
CNN-2Conv 59.0 43.0 249  50.0 40.0 150 2.7  21.0 50.0 72.0 56.07 59.0 53.0 52.0 36.1 510 52.0
280 points
GCN2 47.0 62.0 5826 53.0 - - - - 40.0 36.0 43.02 38.0 39.0 44.0 45.08 41.0 44.0
GCN7 67.0 46.0 1831 55.0 33.0 1.0 026 20 55.0 86.0 55.25 67.0 58.0 59.0 32.3 54.0 59.0
CNN-2Conv 82.0 50.0 889 62.0 43.0 160 2.64 23.0 60.0 94.0 48.83 73.0 70.0 65.0 25.69 63.0 65.0
300 points
GCN2 47.0 59.0 56.17 52.0 - - 40.0 39.0 44.95 40.0 38.0 43.0 45.18 40.0 44.0
GCN7 72.0 40.0 12.76  52.0 - 0.19 - 54.0 92.0 60.75 68.0 56.0 58.0 324  53.0 59.0
CNN-2Conv 61.0 54.0 2897 57.0 40.0 12.0 232 19.0 54.0 69.0 46.48 60.0 55.0 56.0 33.7  54.0 56.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, FPR = False Positive Rate, Fs = F1l-score.

Note: Values in bold indicate the best performance.

This experiment’s dataset configurations and
training settings align with those used in Experi-
ment 5.1. The key difference in this phase is the
division of the dataset into training (DS1) and
testing (DS2) sets, adhering to the inter-patient
paradigm outlined in Table 2 from Section 4.1. A
segmentation size of 280 points is employed by the
findings from Experiment 5.2.

Before segmentation, it is noteworthy that the
ECG signals underwent a normalization process
using the z-score technique. Normalization of a sig-
nal is an approach aimed at equalizing its levels
to achieve uniformity. In this context, statisti-
cal parameters such as mean (u) and standard
deviation (o) are used for calculating the z-score,
forming part of the process®. The strategic choice
of the z-score technique is driven by its ability to
preserve the distribution of points within the ECG
signals themselves, a feature that includes main-
taining fiducial points. Given that ECG signals can
exhibit a range of peaks with varying magnitudes,
applying methods based on distance or neural net-
works can pose challenges, mainly due to issues
related to gradient exploration [42].

Table 9 summarizes the performance of the
GCN2 and GCNT7 architectures with various groups
of information aggregated using the VG method
on the test set (DS2). For the GCN2 architecture,
the RR and Stats groups exhibited the best out-
comes, with average Fs scores of 68% and 73%,
respectively. In the case of the GCN7 architecture,

62 = T where p is the mean and o is the standard

deviation of the ECG signal points.
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the AvglIl and Stats groups led the performance,
achieving an average Fs of 77%.

Meanwhile, Table 10 presents the performance
of the GCN2 and GCNT7 architectures according
to each information group aggregated through
the VVG method. For GCN2, the RR and Stats
groups again emerged as the top performers, with
average Fs scores of 68% and 74%, respectively.
Notably, the performance in this architecture is
similar across both the VG and VVG methods. For
GCN7, the top groups were StdIl and Stats, with
average Fg scores of 68% and 74%, respectively.

The Stats group, which contains the most
aggregated information - primarily statistical data
from ECG signals totaling 22 pieces of informa-
tion - demonstrated the best performance in both
architectures. Conversely, the smaller information
groups showed variations in performance across
the two architectures. The RR group aggregates
five pieces of information, whereas the Avgll group
comprises seven. Hence, more extensive and smaller
quantities of aggregated information contributed
similarly to enhancing the performance of the
analyzed architectures.

The varying performance of GCNs across dif-
ferent information groups can be attributed to
a combination of factors. These include the rele-
vance of the aggregated information, the GCNs’
capability to capture each group’s distinctive fea-
tures, the complexity of the GCN architectures,
and the specific characteristics of the classified
arrhythmias. An additional observation is that in
the better-performing groups, the confusion matri-
ces highlighted a tendency of the architectures to
classify arrhythmic beats as normal less frequently



Table 9: Summary of the performance of GCN architectures regarding aggregating information in the

graphs using the VG method.

. N S \% ‘Weighted Average "
Information Acc
+P* Se* FPR" F," +P Se FPR F +P Se FPR F +P Se FPR Fq
GCN2
II_vV1 59.0 85.0 50.92 70.0 - - - - 68.0 66.0 16.15 67.0 51.0 62.0 29.24 55.0 62.0
RR 74.0 94.0 28.63 83.0 520 2.0 052 5.0 77.0 91.0 14.25 83.0 71.0 75.0 183 68.0 75.0
DifII 73.0 94.0 31.07 82.0 41.0 20 079 4.0 77.0 87.0 13.63 81.0 68.0 74.0 19.28 67.0 74.0
Avgll 73.0 93.0 30.65 82.0 37.0 2.0 077 4.0 75.0 87.0 14.55 81.0 67.0 73.0 19.39 66.0 73.0
StdII 73.0 920 299 81.0 480 1.0 038 3.0 74.0 88.0 16.2 80.0 68.0 73.0 19.53 66.0 73.0
Stats 75.0 94.0 27.61 84.0 50.0 12.0 2.85 19.0 85.0 92.0 832 88.0 74.0 77.0 16.26 73.0 77.0
GCN7
II_vV1 62.0 85.0 46.31 72.0 31.0 50 289 9.0 82.0 78.0 851 80.0 63.0 67.0 25.06 62.0 67.0
RR 75.0 90.0 26.72 81.0 62.0 30.0 4.44 41.0 88.0 89.0 6.31 88.0 77.0 78.0 1547 76.0 78.0
DifII 76.0 88.0 24.07 82.0 60.0 29.0 4.68 39.0 86.0 93.0 7.73 89.0 76.0 78.0 14.76  76.0 78.0
AvglI 74.0 92.0 279 820 58.0 320 5.7 41.0 94.0 86.0 2.89 90.0 78.0 79.0 14.68 77.0 79.0
StdII 76.0 89.0 25.05 82.0 58.0 30.0 5.39 40.0 89.0 91.0 575 90.0 770 78.0 151  76.0 78.0
Stats 75.0 92.0 262 83.0 62.0 27.0 4.02 38.0 92.0 93.0 4.42 92.0 78.0 80.0 14.5 77.0 80.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, FPR = False Positive Rate, Fs = F1l-score.

Note: Values in bold indicate the best performance.

Table 10: Summary of the performance of GCN architectures regarding aggregating information in the

graphs using the VVG method.

N S

Vv ‘Weighted Average

Information Acc”
+P* Se* FPR" F.* +P Se FPR Fq +P Se FPR Fq +P Se FPR Fs
GCN2
II.v1 63.0 83.0 4297 72.0 - - - 57.0 64.0 24.97 60.0 49.0 61.0 28.53 54.0 61.0
RR 75.0 920 2691 82.0 52.0 2.0 0.39 3.0 74.0 92.0 16.33 82.0 70.0 75.0 18.18 68.0 75.0
DifIT 75.0 92.0 26.83 82.0 42.0 3.0 1.07 6.0 74.0 91.0 16.07 82.0 68.0 74.0 1819 67.0 74.0
Avgll 74.0 920 27.53 82.0 29.0 1.0 0.8 3.0 74.0 91.0 16.37 81.0 66.0 74.0 1856 67.0 74.0
StdII 75.0 91.0 27.17 82.0 270 3.0 1.94 5.0 74.0 89.0 16.17 81.0 65.0 73.0 1854 67.0 73.0
Stats 76.0 93.0 2598 84.0 48.0 18.0 4.63 26.0 86.0 90.0 7.51 88.0 74.0 77.0 15.57 74.0 77.0
GCNT
II-v1 71.0 85.0 30.59 77.0 29.0 2.0 1.27 4.0 65.0 82.0 2251 73.0 61.0 68.0 2216 61.0 68.0
RR 75.0 91.0 2592 82.0 18.0 80 9.17 11.0 76.0 77.0 12.86 76.0 64.0 70.0 1824 67.0 70.0
DifIl 76.0 90.0 25.41 82.0 21.0 120 11.49 15.0 76.0 73.0 11.79 75.0 65.0 69.0 18.09 67.0 69.0
Avgll 74.0 93.0 2832 83.0 21.0 8.0 7.76  12.0 780 770 1137 77.0 65.0 70.0 18.58 67.0 71.0
StdII 76.0 92.0 25.69 83.0 21.0 12.0 11.12 16.0 79.0 74.0 1019 77.0 66.0 71.0 17.6 68.0 71.0
Stats 76.0 87.0 24.52 81.0 53.0 270 581 36.0 85.0 91.0 843 88.0 74.0 77.0 15.43 74.0 77.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, F PR = False Positive Rate, Fs = Fl-score.

Note: Values in bold indicate the best performance.

compared with the other groups. This suggests a
more accurate detection of arrhythmias, a crucial
aspect of practical ECG analysis.

5.4 Experiment 4: Swapping training
and test sets

In Experiment 4, the MIT-BIH dataset is divided
into a training set (DS1) and a testing set (DS2)
following the inter-patient paradigm (see Table 3).
It is observed that DS2 has a higher number of
class S heartbeats compared to DS1. Given that
class S presented challenges in performance with
the analyzed architectures, this experiment exam-
ines whether reversing the datasets—using DS2
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for training and DS1 for testing—can enhance the
performance of GCN and CNN architectures in
classifying class S.

The dataset configurations and training set-
tings are consistent with those used in Experiment
5.3. For CNN training, a validation set compris-
ing 10% of DS2 is used. In the case of GCNs, only
the training (DS2) and testing (DS1) sets are used.
The GCN architectures incorporated the two most
effective information groups identified in Experi-
ment 5.3 for each architecture under VG and VVG
conversion methods.

Table 11 presents the performance of the archi-
tectures in terms of the dataset reversal between
DS1 and DS2 using the VG method. The reversal



notably improved the performance in class S for
both architectures, with a more significant increase
observed in the sensitivity (Se) and Fg metrics,
especially in the GCNT architecture. This enhance-
ment in class S performance positively impacted
the overall performance of the architectures, lead-
ing to an increase in the average overall Fs, ranging
from 75% to 84%. This suggests that training with
a dataset with a higher representation of challeng-
ing classes like class S can result in better learning
and generalization capabilities for the models.

The GCNT architecture with the AvgIl informa-
tion group exhibited the best overall performance,
achieving an 84% average Fs score. Comparing
this result with the data from Table 9, the reversal
of the datasets led to a performance increase of
9.09%. Similarly, for the CNN-2Conv architecture,
there is an improvement in class S performance
and overall effectiveness. The sensitivity (Se) and
Fs for class S increased by 153.33% and 193.75%,
respectively, while the general performance saw a
20.31% rise in the F's metric.

Evaluating the performance of GCN architec-
tures with the reversal of DS1 and DS2 datasets
using the VVG method, results from Table 12 indi-
cate that although there is not a significant increase
in class S performance, the overall Fg scores
improved compared to the results in Table 10. In
the GCN2 architecture, the RR and Stats informa-
tion groups showed an improvement of 11.76% and
5.4%, respectively, while in the GCNT architecture,
the StdIl and Stats groups exhibited increases of
5.88% and 8.10%, respectively. Comparing VG and
VVG methods across Tables 11 and 12, the VG
method outperformed the VVG method. There-
fore, using two leads to convert ECG signals into
graphs, within the context of this research and with
MIT-BIH DB, did not contribute as significantly
as using a single lead to enhance the architectures’
performance in the dataset reversal scenario. This
finding suggests that, in this context, the GCN
architectures studied cannot take advantage of an
extra lead.

5.5 Experiment 5: Intra-patient
Paradigm

In Experiment 5, the intra-patient paradigm is
explored in contrast to the inter-patient approach.
Unlike the inter-patient paradigm, where there
is no overlap of data from the same patient
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between training and testing sets, the intra-patient
approach allows for the presence of heartbeat data
from the same patient in both training and test-
ing datasets. This experiment, therefore, serves
as a comparative analysis of the architecture
performance across these two paradigms.

The dataset configurations and training set-
tings follow those used in Experiment 5.3, with the
distinction that the training and testing sets are
randomly determined, allowing for the possibility
of the same patient’s data appearing in both sets.

Analyzing the results in Table 13 concerning
the GCNs and VG method, the GCN2 architecture
showed mixed performance changes with differ-
ent information groups. The RR group showed a
performance decline of 7.35% in the Fs metric com-
pared with the inter-patient paradigm performance
(Table 9), whereas the Stats group exhibited a
performance increase of 2.74%. In the GCN7 archi-
tecture, the Avgll and Stats information groups
demonstrated improvements of 2.6% and 12.98%
in the Flg metric, respectively.

When comparing the two paradigms in the
CNN-2Conv architecture, a substantial perfor-
mance increase is observed in both class S and over-
all performance. The overall performance increase
for the CNN-2Conv, measured by the Fg metric, is
50%. This significant improvement indicates that
the intra-patient paradigm, where data from the
same patient can appear in training and testing
sets, may lead to better learning and adaptation
of the models to the specific characteristics of
individual patients’ ECG signals.

Regarding the VVG method as shown in
Table 14, the GCN2 architecture experienced a
general performance decrease in both the RR and
Stats information groups, with declines of 2.94%
and 1.35%, respectively, compared with the results
in Table 10. Conversely, in the GCN7 architecture,
the StdIl and Stats information groups showed
improved performance with increases of 2.94% and
16.21% in the Fs metric, respectively.

This variation in performance between the
GCN2 and GCN7 architectures under the intra-
patient paradigm using the VVG method suggests
that different information groups and GCN archi-
tectures respond uniquely to the challenges posed
by this paradigm. Specifically, while some archi-
tectures and information groups may struggle to
adapt to the overlapping patient data in the intra-
patient setting, others, such as GCN7 with the



Table 11: Summary of the performance of GCN and CNN architectures regarding the datasets DS1 and

DS2 reversal using the VG method.

. N S A% ‘Weighted Average "
Information Acc
+P* Se* FPR™ F* +P Se FPR Fy +P Se FPR F, +P Se FPR F;
GCN2
RR 82.0 85.0 18.66 83.0 27.0 270 833 27.0 79.0 74.0 13.57 77.0 75.0 75.0 15.54 75.0 75.0
Stats 89.0 84.0 10.38 86.0 39.0 50.0 872 44.0 90.0 90.0 7.18 90.0 84.0 83.0 891 83.0 83.0
GCN7
Avgll 86.0 90.0 14.22 88.0 63.0 57.0 3.74 60.0 85.0 83.0 9.64 84.0 83.0 84.0 11.3 84.0 84.0
Stats 86.0 84.0 12.7  85.0 55.0 51.0 4.68 53.0 83.0 88.0 12.52 85.0 82.0 82.0 11.81 82.0 82.0
CNN-2Conv
No reversal 64.0 67.0 33.28 65.0 18.0 150 16.54 16.0 88.0 90.0 6.44 89.0 63.0 65.0 20.92 64.0 65.0
Reversal 86.0 73.0 11.45 79.0 62.0 38.0 2,57 47.0 740 950 233 83.0 79.0 78.0 1537 T77.0 78.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, F PR = False Positive Rate, Fs = Fl-score.

Note: Values in bold indicate the best performance.

Table 12: Summary of the performance of GCN and CNN architectures regarding the datasets DS1 and

DS2 reversal using the VVG method.

N S

v ‘Weighted Average

Information Acc”
+P* Se* FPR® F.* +P Se FPR Fyq +P Se FPR Fyq +P Se FPR Fyq
GCN2
RR 87.0 91.0 13.1 89.0 9.0 2.0 2.71 4.0 74.0 84.0 19.92 79.0 74.0 84.0 14.82 76.0 79.0
Stats 82.0 81.0 16.76 82.0 20.0 21.0 9.35 20.0 88.0 89.0 796 89.0 79.0 78.0 1243 78.0 78.0
GCNT7
StdII 81.0 77.0 17.1 79.0 14.0 170 1251 15.0 77.0 77.0 1554 T77.0 73.0 71.0 16.0 720 71.0
Stats 81.0 88.0 19.55 84.0 36.0 35.0 7.1 35.0 90.0 82.0 6.51 85.0 80.0 80.0 12.99 80.0 80.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, F PR = False Positive Rate, Fs = F1l-score.

Note: Values in bold indicate the best performance.

Table 13: Summary of the performance of GCN and CNN architectures regarding the intra-patient

paradigm using the VG method.

. N S A\ ‘Weighted Average .
Information Acc
+P* Se* FPR" F,* +P Se FPR F, +P Se FPR F +P Se FPR F
GCN2
RR 76.0 87.0 24.64 81.0 40.0 - 0.08 - 63.0 85.0 25.8 73.0 64.0 70.0 20.27 63.0 70.0
Stats 77.0 91.0 23.75 83.0 65.0 21.0 2.7 320 82.0 93.0 10.61 87.0 76.0 78.0 15.21 75.0 78.0
GCNT7
Avgll 77.0 94.0 243  85.0 93.0 31.0 0.56 46.0 86.0 94.0 7.62 90.0 83.0 82.0 14.03 79.0 82.0
Stats 85.0 93.0 13.88 89.0 87.0 60.0 215 71.0 90.0 95.0 5.54 92.0 87.0 87.0 877 87.0 87.0
CNN-2Conv
Inter-patient 62.0 72.0 38.07 67.0 21.0 14.0 12,57 17.0 88.0 86.0 6.1 87.0 63.0 66.0 2227 64.0 66.0
Intra-patient 950 97.0 4.11  96.0 94.0 90.0 1.4 920 99.0 98.0 0.69 98.0 96.0 96.0 242 96.0 96.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, FPR = False Positive Rate, Fs = Fl-score.

Note: Values in bold indicate the best performance.

StdIl and Stats groups, appear to thrive, show-
ing significant performance improvements. This
observation highlights the importance of selecting
the appropriate combination of architecture and
information groups to optimize performance in a
clinical or experimental setting.

Overall, the results underscore that the intra-
patient paradigm generally yields better outcomes
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than the inter-patient paradigm in the performance
of the examined architectures despite not repre-
senting a scenario closer to real-world conditions
where data from a new patient are not used during
model training.

Throughout the experiments, it is observed that
the VVG method exhibits high computational com-
plexity in terms of both time and space due to



Table 14: Summary of the performance of GCN and CNN architectures regarding the intra-patient

paradigm using the VVG method.

N S

v ‘Weighted Average

Information Acc”
+P* Se* FPR™ F* +P Se FPR Fy +P Se FPR Fy +P Se FPR Fy
GCN2
RR 75.0 86.0 24.48 80.0 96.0 8.0 0.09 15.0 67.0 89.0 22.65 76.0 76.0 72.0 19.13 66.0 72.0
Stats 76.0 93.0 25.11 84.0 68.0 14.0 1.6 23.0 81.0 94.0 11.25 87.0 76.0 78.0 15.85 73.0 78.0
GCNT7
StdII 75.0 87.0 25.45 81.0 81.0 18.0 1.06 30.0 70.0 85.0 18.75 T77.0 74.0 73.0 18.45 70.0 73.0
Stats 87.0 91.0 11.67 89.0 80.0 62.0 3.81 69.0 88.0 94.0 6.61 91.0 86.0 86.0 843 86.0 86.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, F PR = False Positive Rate, Fs = Fl-score.

Note: Values in bold indicate the best performance.

the utilization of two leads for mapping ECG sig-
nals. More efficient data structures (organization of
programming codes) address the time complexity,
allowing for heartbeats of 280 points to be mapped
in approximately 0.3 seconds. However, space
complexity remains challenging in mapping ECG
signals and processing the generated graphs during
training and testing. Although data sub-sampling
is initially applied to mitigate this issue, exploring
other solutions that allow the full potential of graph
convolutional networks to be leveraged is necessary.
This exploration might involve investigating alter-
native data representations or optimizing graph
processing algorithms to enhance the efficiency of
space utilization while maintaining the integrity
and effectiveness of the analysis.

5.6 Experiment 6: Comparison of
the Proposed Method

In this final experiment, a comparative analysis
is conducted between the method proposed in
this work and the study by Garcia et al. [12],
which employed a graph modeling and SVM clas-
sifier. The rationale for selecting this study for
comparison stems from its status as a significant
baseline reference in this work and its methodolog-
ical parallels with the approach presented herein.
Modifications have been made to the original study
by [12] to enable direct comparison. Notably, this
included a 10% subsampling of class N heart-
beats; specifically, only the tenth beat in every
sequence of ten is selected. Furthermore, the same
datasets, DS1.1 and DS1.2, as detailed in Table 6,
are employed for tuning the SVM model parame-
ters. The comparison extended across three distinct
scenarios:

e Garcia et al. (2017) [12]:
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— Scenario 1: Features extracted from the
graph network based on complex networks;

— Scenario 2: Features extracted from the
graph network based on complex networks
along with RR interval features;

— Scenario 3: Features extracted from the
graph network based on complex networks,
RR interval features, and statistical character-
istics of the graph network;

® Proposed Method:

— Scenario 1: Experiment 3 of the GCN7 archi-
tecture with information from the II_V1 group
and the VG method;

— Scenario 2: Experiment 3 of the GCN7 archi-
tecture with information from the RR group
and the VG method;

— Scenario 3: Experiment 3 of the GCN7 archi-
tecture with information from the Stats group
and the VG method;

The comparative results in Table 15 highlight
the efficacy of our introduced method when con-
trasted with the findings of [12]. In both Scenario
1 and Scenario 2, the proposed method delivered
improved results for minority classes, specifically
the arrhythmic categories, but encountered chal-
lenges with class N, where it displayed a modest
reduction in performance in Positive Prediction
(+P) and Fy metrics. A similar trend is evident
in Scenario 3, with class N exhibiting a decline in
performance concerning the +P, Sensitivity (Se),
and F metrics. However, it is essential to acknowl-
edge that in Scenario 3, the statistical features
used by [12] differ from the information used in the
proposed method. Despite this disparity, a compar-
ative analysis enables an approximate evaluation
of the proposed scenario.



Table 15: Comparison of the proposed method with the work of Garcia et al. [12].

N

S A%

Scenarios Work Acc”
+P* Se* FPR” F.* +P Se FPR Fq +P Se FPR Fg

1 Garcia et al. [12]  79.60 74.2 60.83 76.80 0.40 0.20 7.90 0.30 39.40 719 15.13  50.90 65.20
Proposed method 62.0 85.0 46.31 7147 31.0 5.0 2.89 8.61 82.0 78.0 8.51 79.95 67.0

2 Garcia et al. [12]  86.60  87.40 43.36 87.0 21.10 2.80 1.38 4.90 46.80 83.90 13.05 60.10 77.0
Proposed method 75.0 90.0 26.72 81.81 62.0 30.0 4.44  40.43 88.0 89.0 6.31 88.50 78.0

3 Garcia et al. [12]  90.20 95.30 48.90 92.70 55.30 17.70 1.37  26.80 68.20 7840 3.48 7290 87.0
Proposed method 78.0 92.0 26.20 84.82 62.0 27.0 4.02 37.62 92.0 93.0 4.42  92.49 80.0

*Acc = Accuracy, Se = Sensitivity, +P = Positive Prediction, FPR = False Positive Rate, Fs = F1l-score.

Note: Values in bold indicate the best performance.

A key observation is that the proposed method
demonstrates superior performance in the arrhyth-
mic classes (S and V) compared with the normal
class (N). This underscores its effectiveness in
differentiating between normal and arrhythmic
heartbeats, essential for minimizing false predic-
tions. This aspect is of significant concern in clinical
applications and impacts the method’s reliability.

5.7 Experimental Decisions

Acknowledging the stochastic nature of neural net-
work training, we conducted each experiment only
once. This decision was guided by preliminary tests,
wherein selected architectures were run ten times
each, revealing minimal variation and deviation in
the outcomes, as detailed in Table 16. These ini-
tial experiments, focusing on the GCN2 and GCN7
architectures with the Stats information set and
employing the VG method, demonstrated signifi-
cant consistency in standard deviation and variance
across evaluated metrics, even with the introduc-
tion of randomness through varied training seeds.”
Given the observed stability and the high compu-
tational cost of multiple runs, we concluded that
a single execution would suffice, ensuring efficient
resource use while maintaining confidence in the
reliability and reproducibility of our results.

6 Conclusion

This study proposed a method for classifying
arrhythmias in ECG signals by mapping them
into graphs and classifying them using Graph
Convolutional Networks (GCNs), following the

"We introduced randomness via the torch.manual_seed (
random.randint(1,100000) command, utilizing the torch and
random libraries to generate a random number between 1 and
100000 for each execution.
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inter-patient paradigm and AAMI standards. The
central research question is whether graph repre-
sentations of ECG signals, through VG and VVG
methods, could enhance arrhythmia classification
performance using GCNs.

The findings indicated that simpler GCN archi-
tectures yielded better results than more complex
ones, suggesting that simplicity in GCN structures
can more effectively capture essential data charac-
teristics and avoid unnecessary noise. The results
presented in Section 5.1 showed that GCN2 outper-
formed GCN240 in most metrics, obtaining 25.8%,
37.5%, 24.4%, and 37.5% in +P, Se, Fs, and Acc
of increase, respectively.

Simpler architectures are computationally more
efficient, a necessary factor in resource-constrained
scenarios. Including extrinsic information in the
graphs improved the VG and VVG methods, as
the selected information accurately captured the
ECG signal morphology. While both VG and
VVG showed promise, VG is more efficient for the
explored GCN architectures. When we observe,
the results of Experiment 3 showed that VG
exhibited better performances than VVG when
comparing the weighted average metric means,
with a more pronounced increase of 13.67%, 8.3%,
9.79%, and 8% for +P, Se, Fs, and Acc, respec-
tively, in the GCN7 architecture. However, the
challenge of classifying the S class remained, espe-
cially under the inter-patient paradigm, even when
reversing the DS1 and DS2 data sets. Conversely,
the intra-patient paradigm achieved better out-
comes, although it does not fully reflect real-world
scenarios. The results suggest that it is feasible to
classify arrhythmias in ECG signals using GCNs
with VG and VVG for signal graph mapping, with
the advantage of requiring no preprocessing or
noise removal from ECG signals. Still, there is room



Table 16: Results of experimental decisions.

#Execution Acc” +P* Se* FPR* F.  Time(s)
Experiment 1: GCN2_Stats
#1 77.56 74.62 77.56 16.33  72.17 5408
#2 77.33 73.41 77.33 16.07  72.78 5435
#3 78.05 75.50 78.04 16.21  72.84 5528
#4 77.40 73.84 77.40 16.41  72.56 5521
#5 77.70 74.29 77.70 16.04  72.96 5528
#6 77.80 74.41 77.80 1598  73.05 5555
#7 77.37 73.64 77.37 16.23  72.32 5567
#8 77.48 73.50 77.48 15.95  72.90 5578
#9 76.88 72.77 76.88 16.20  72.75 5598
#10 77.48 73.71 77.48 16.22  72.48 5617
Average 77.50 73.97 77.51 16.16  72.68 5533
Standard Deviation 0.003 0.007 0.003 0.14 0.003 63.53
Variance 8.8e-6  5.23e-5  8.8e-6 0.02 7.5e-6 4.04e3

Experiment 2: GCN7_Stats

#1 78.15 76.33 78.15 15.17  75.52 8124
#2 79.42 78.32 79.42 15.16  76.95 8174
#3 79.56 78.20 79.58 14.30 77.74 8290
#4 80.06 79.66 80.06 15.0 77.26 8337
#5 78.86 77.21 78.86 14.50  76.83 8390
#6 79.75 78.21 79.75 14.09  77.56 8370
H#7 79.04 77.66 79.04 15.17  76.37 8378
#8 78.62 77.00 78.62 15.19  75.08 8395
#9 78.37 77.33 78.37 15.26  77.76 8462
#10 79.64 78.49 79.64 14.65  77.56 8437
Average 79.15 77.84 79.15 14.84  76.66 8335
Standard Deviation 0.006 0.009 0.006 0.405 0.009 104.26
Variance 3.66e-5  7.90e-5 3.66e-5 0.16 8.0e-5 1.09e4

* Acc = Accuracy, Se = Sensitivity, + P = Positive Prediction, FFPR = False Positive Rate, Fs; = F1l-score.

for improvement and further research to harness signal mapping time. For space constraints, data
GCNs’ potential fully. balancing is applied to lessen the number of gener-

A significant limitation encountered in develop- ated graphs, allowing experiments on a data subset.
ing this method is the computational complexity However, further alternatives could be explored to

of the VVG method in mapping ECG signals and address this challenge.
training the GCNs, which is related to process-
ing time and required space. More efficient data
structures are initially used to reduce the ECG
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