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Abstract—Machine learning techniques have shown remark-
able accuracy in localization tasks, but their dependency on vast
amounts of labeled data, particularly Channel State Information
(CSI) and corresponding coordinates, remains a bottleneck. Self-
supervised learning techniques alleviate the need for labeled
data, a potential that remains largely untapped and underex-
plored in existing research. Addressing this gap, we propose a
pioneering approach that leverages self-supervised pretraining
on unlabeled data to boost the performance of supervised
learning for user localization based on CSI. We introduce two
pretraining Auto Encoder (AE) models employing Multi Layer
Perceptrons (MLPs) and Convolutional Neural Networks (CNNs)
to glean representations from unlabeled data via self-supervised
learning. Following this, we utilize the encoder portion of the
AE models to extract relevant features from labeled data, and
finetune an MLP-based Position Estimation Model to accurately
deduce user locations. Our experimentation on the CTW-2020
dataset, which features a substantial volume of unlabeled data
but limited labeled samples, demonstrates the viability of our
approach. Notably, the dataset covers a vast area spanning over
646 x 943 x 41 meters, and our approach demonstrates promising
results even for such expansive localization tasks.

Index Terms—User Localization, Pretraining, Self-Supervised
Learning, Deep Learning

I. INTRODUCTION

User localization is crucial in the domain of wireless
communication systems, enabling a broad spectrum of ap-
plications including navigation, smart factories, surveillance,
security, and the Internet of Things (IoT) [1]. Accurate posi-
tioning not only augments user experience but also bolsters
vital aspects of wireless technology such as radio resource
management, beamforming, and channel estimation. Existing
work has leveraged deep learning to perform user localization
[?1, [2]-[10]. However, the prevalent machine learning-based
localization methods, while adept at achieving high accuracy,
encounter significant hurdles in data acquisition. Specifically,
these methods require substantial quantities of labeled data,
particularly Channel State Information (CSI) paired with cor-
responding coordinates.

The emergence of self-supervised learning heralds transfor-
mative potential in the realm of user localization. Algorithms
under this learning paradigm are adept at extracting valuable
features and patterns from data, such as CSI measurements, to

construct rich and context-aware embeddings. These learned
representations encapsulate a profound understanding of the
inherent structure and semantics of CSI features, such as
multipath characteristics and signal variations within wireless
environments. This encapsulation inherently embodies rich
spatial and temporal information that can be harnessed for
location prediction. The allure of self-supervised learning
largely lies in its capability to serve as a pre-training step
for supervised learning tasks. By transmuting the knowledge
encapsulated in these representations to downstream super-
vised models, self-supervised learning substantially augments
them with a data-driven intuition. This often translates to en-
hanced performance, robustness, and generalization, especially
in tasks constrained by limited labeled data.

In the prevailing research landscape, there exists a notable
gap, as the lion’s share of studies predominantly relies on
labeled data for user localization. Although the acquisition of
CSI data is relatively straightforward, securing accurate user
location labels necessitates extensive resources and substantial
time. To the best of our knowledge, no prior research has ex-
plored the untapped potential of utilizing extensive unlabeled
data.

Our paper aims to bridge this gap by introducing an
innovative approach. We harness self-supervised learning tech-
niques on unlabeled CSI data to enhance the performance of
supervised learning models in predicting user locations. By
uncovering latent patterns and representations within unlabeled
CSI data, we aim to improve the generalization and robustness
of supervised models, reducing the need for extensive labeled
datasets and providing more reliable location predictions. This
study underscores the synergistic potential of self-supervised
learning and supervised learning, highlighting how the former
can catalyze advancements in user location prediction.

Our contributions can be summarized as follows: (1) We
are the first to build a pretrain model to learn representations
from CSI, enabling the full utilization of the large unlabeled
data. (2) We develop four models based on supervised and
self-supervised learning using Multi-Layer Perceptron (MLP)
and Convolutional Neural Network (CNN). Experiment results
show that pretraining in our approach significantly improves
the user localization prediction. (3) Our approach highlights



the effectiveness of self-supervised learning using unlabeled
data as a powerful tool to augment the performance of super-
vised learning when the labeled data is scarce.

II. RELATED WORKS

Recent research has explored the possibility of utilizing
massive multiple-input multiple-output (MIMO) CSI data for
user localization due to its ability to provide rich spatial
information and high resolution. In this section, we review
some existing works that use deep learning techniques to infer
user location coordinates based on CSI data.

One of the earliest works in this field was conducted by
Arnold et al. [2]. They proposed a deep learning based user
localization method using massive MIMO CSI data. They
reduced the required amount of measured training data by
first training DNNs on simulated line of sight (LoS) data and
finetuning on measured non-line of sight (NLoS) data. Cerar
et al. [[11]] focused on indoor positioning using CSI data. They
leveraged CNNs to improve the accuracy of indoor position-
ing, a crucial aspect in applications like indoor navigation
and tracking. Their work yielded mean errors between 2cm to
10cm across diverse scenarios, utilizing the CTW-2019 dataset
that spans an area of 4m x 2m and contains approximately
17,486 labeled samples. Additionally, Wu et al. [5] proposed
a DNN-based Fingerprinting (FP) system employing a singu-
lar DNN to learn the mapping from CSI measurements to
receiver positions. They employed a stack of autoencoders
to learn pretrained weights. In a related vein, Hsieh et al.
[3] used deep learning for indoor localization, segmenting
a room into 2D blocks treated as classes. Using MLPs and
1D CNNs, they simplified location estimation by predicting a
subject’s presence in a block rather than precise coordinates.
Furthermore, Foliadis et al. [4] employed Deep Learning on
CSI fingerprints and multiple base stations to attain accurate
localization in wireless networks. They proposed a two-stage
localization methodology: initially predicting the user’s po-
sition for each base station independently, then aggregating
predictions to yield a more accurate and reliable localization
estimate. Notably, the uncertainty in the User Equipment’s
(UE’s) localization at each base station was factored in while
aggregating the predictions.

From the summaries of previous research, it’s clear that
most of them depend on labeled data for user localiza-
tion. Some even simplify it by using 2D block classifica-
tion. However, collecting labeled data is time and resource-
intensive. Hence, our work investigates using abundant unla-
beled data for self-supervised learning to enhance supervised
learning when labeled data is scarce. We demonstrate that
self-supervised learning can significantly improve supervised
learning performance in low-labeled data scenarios.

III. METHODOLOGY

In this section, we outline our methodology of employing
self-supervised learning on a large unlabeled dataset for pre-
training to generate representations of CSI features, followed

by using supervised learning on a limited labeled dataset for
finetuning, thereby enhancing user localization performance.

A. Problem Formulation

User localization is to determine a user’s position precisely
based on Channel State Information (CSI). Each data sample
contains an estimated channel frequency response between
the user ¢ and an antenna array, denoted as x; € R®**5*™,
Here, a represents the number of working antennas, s is the
number of used subcarriers, and m is the total number of
measurements per location. Additionally, each data point is
accompanied by a ground truth position p; € R? representing
three dimensions in the Cartesian coordinate system. We aim
to build a neural network capable of taking CSI features x; as
input and predicting the 3D position y; € R3.

B. Pretraining via Reconstruction

In utilizing the extensive unlabeled dataset, we adopt a
self-supervised learning approach [[12] for pretraining, with
the aim to learn representations of the CSI. The objective
in our pretraining phase is set as the reconstruction of the
CSI information. We utilize an autoencoder (AE) structure
[13]], parameterized by 6, to derive compact and informative
representations from the CSI measurements, obviating the
need for manual labeling.

The AE comprises two essential components: an encoder
that takes CSI x as input and generates the latent represen-
tation z, and a decoder that reconstructs the CSI r from this
latent representation z. This process enables the extraction of
meaningful features. We train the model as a reconstructing
AE by minimizing the difference between the original and
reconstructed CSI. The loss with respect to 6. and 6, are
presented as follows:

L, =E[lx—r||)3 (1)

z = Encoderyg, (x), r = Decodery,(z) (2)

Specifically, we design two distinct types of architecture for
AE model, based on MLPs and CNNs:

1) MLP-based AE: Our MLP-based encoder contains kf,
fully connected layers with ReLU as the activation function,
and the decoder contains k¢, linear and ReL.U layers.

2) CNN-based AE: Within CNN-based AE, the encoder
contains k¢ convolutional layers followed by ReLU activation
and max pooling layers, the decoder operates k¢ layers of 2D
transposed convolution followed by ReL.U activation.

C. Finetuning via Position Estimation Model

Following the pretraining phase on the extensive unlabeled
dataset, the pretraining model becomes adept at capturing
meaningful representations from CSI features. We then shift to
supervised learning [14] for finetuning the model parameters
for the downstream task, user localization, employing a limited
labeled dataset, where the CSI measurements are paired with
corresponding ground truth user locations. Through this pair-
ing, the supervised model can learn the intricate relationship



between the observed channel characteristics and the physical
positions of users.

Specifically, the pretrained encoder in the AE extracts latent
representations z from CSI features x in the labeled data.
These representations are then processed by an MLP-based
position estimation model, which comprises a series of linear
layers with ReLLU activation to predict the user’s location y.
The finetuning process is trained by minimizing the loss L,
which measures the discrepancy between ground truth and
predicted 3D coordinates:

Ly =Ellp -yl

IV. EXPERIMENTS

y = MLP(z) 3)

A. Dataset

We utilize the IEEE CTW-2020 dataset available on IEEE
Machine Learning for Communication website [15]]. This
dataset contains an unlabeled dataset and a labeled dataset,
both of which can be downloaded from the same source.
Figure [I] illustrates the positions of the User Equipment
(UE) in the XY plane relative to the base station situated
at coordinates (0,0). The covered area spans a substantial
dimension of 646 x 943 x 41 meters.
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Fig. 1. User Equipment position on the XY plane with dimensions in meters
and base station at (0,0).

The unlabeled data comprises a total of 36,192 samples,
each containing the real part of estimated channel matrices as
the CSI features. These matrices are structured with dimen-
sions of [56,924,5]. The labeled data also has CSI features
sharing the same dimension with unlabeled data. Besides, it
augments this information with the target positions as the
ground truth positions of the transmitter. It is represented in
the Cartesian coordinate system, each sample has the shape of
[, y, z]. In both labeled and unlabeled data, CSI features are
averaged over the last dimension because they are basically
five measurements for a single data sample. After taking the
mean, each sample in both datasets has a shape of [56,924].

During the pretraining phase, the unlabeled data is randomly
partitioned into training and validation sets in an 8:2 ratio.
The model weights yielding the minimal validation loss are
preserved. During the finetuning phase, the labeled data is
randomly divided into the training, validation, and test datasets
with a ratio of 90:5:5. Hyperparameters tuning is performed
based on validation data. Accordingly, we save the best model
weights and then test them on the test dataset to evaluate their
performance.

B. Baselines

To thoroughly evaluate the impact of unlabeled data, the
potential of pretraining, and the influence of different model
structures, we carry out a set of four experiments, each serving
a distinct purpose:

1) Supervised learning using labeled data only: In this
category, we employ two models for supervised learning, using
labeled data only to directly predict the user’s z, y, and z axis
by learning from the available CSI features. Figure 2] shows
the two supervised models that we use.

Supervised Learning
Framework

Model 2

CS| Features

Fig. 2. Model 1 and Model 2 architecture for Supervised Learning with
labeled data.

e Model 1 is an MLP-based neural network model. It
contains 3 linear layers with hidden dimensions of 128,
64, and 3 and ReLU activation.

o Model 2 is a CNN-based model. It contains 2 layers of
CNN with kernel sizes of 3 and 2 and hidden dimensions
of 32 and 64, and ReLU, max pooling, and linear layers.
The architecture of CNN can capture spatial information
from coordinates.

2) Pretraining on unlabeled data and finetuning using
labeled data: In this category, two models first leverage
unlabeled data for pretraining via unsupervised learning and
then use the encoder of the pretraining model to extract
features from the labeled data. These features are then given as
input to an MLP-based position estimation model to predict the
user location via supervised learning. Figure 3] shows the self-
supervised framework which uses pretraining with unlabeled
data and finetuning with labeled data.

e Model 3 employs an MLP-based AE model in the
pretraining phase to learn the informative representations
from the unlabeled data. The encoder consists of 4 linear
layers with hidden dimensions of 256, 128, 64, and 32
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Fig. 3. Model 3 and Model 4 architecture for pretraining and finetuning with
unlabeled and labeled data.

as well as ReLU. The decoder consists of 4 linear layers
in the opposite order.

e Model 4 utilizes a CNN-based AE pretraining model
to extract the CSI feature representations. The encoder
contains 2 convolutional layers with hidden dimensions of
32 and 64, kernel sizes of 3 and 2, followed by ReLU and
MaxPooling layers. The decoder includes 2 convolution
transpose layers with hidden dimensions of 32 and 1, and
kernel sizes of 3, followed by ReLU.

The structure of position estimation models in Model 3 and
4 during the finetuning phase are the same as in Model 1.

All models are trained on a Nvidia Titan RTX. The batch
size is set to 64. We choose Adam optimizer with a learning
rate of 0.001. Models are trained for 100 epochs with early

stopping.

C. Evaluation metrics

The performance of the proposed models is evaluated by
the following metrics. Each metric is computed in three
dimensions within the Cartesian System. To fully evaluate
the performance, we also record the metrics that are averaged
across all three dimensions:

1) Mean absolute error (MAE) measures the absolute
error between predicted and true positions.
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2) Normalized mean absolute error (NMAE) calculates
the mean absolute error averaged by the range of coor-
dinates in each axis.
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3) Root mean squared error (RMSE) calculates the
squared root of the variance in the difference between
prediction and ground truth.
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4) Normalized Root mean squared error (NRMSE)
normalizes the RMSE normalized by the range of each

dimension.
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Here n represents the total number of users in the test labeled
dataset, m € {x,y, 2z} indicates the single dimension, and a
denotes the metric averaged across the dimension. These met-
rics offer a comprehensive assessment of model performance
in user localization.

V. RESULTS AND DISCUSSION

The quantitative results of our model are presented in
Table [l The table yields several notable insights: (1) Models
employing supervised learning only (Model 1, 2) consistently
underperform those self-supervised based pretrained models
(Model 3, 4). (2) Across different implementations, CNN-
based models consistently outperform MLP-based models.

In a direct comparison between Model 1 and Model 2, (1)
the CNN-based model (Model 2) outperforms MLP based on
Model 1 by a significant margin. Notably, MAE for x and y
in Model 1 are more than twice as high as those in Model
2, while for z axis, it is as much as 7 times higher. On
average, the MAE for Model 1 (60.9031) exhibits an MAE
approximately 3 times that of Model 2 (21.6608). (2) A similar
trend is observed in the NMAE values as well, with Model
1 displaying values for x and y axis approximately six times
higher on average than Model 2; for z it is about 7 times
higher. The NMAE value averaged across three dimensions
for Model 2 is almost 6 times higher than that of Model 1.
(3) The RMSE values are also consistently much higher for
Model 1 compared to Model 2, with the average RMSE of



TABLE I
NUMERICAL RESULTS

M Implementation MAE NMAE
odel — - - - - - - - -
Pretraining  Finetuning X-axis y-axis Z-axis average | x-axis  y-axis z-axis  average
Model 1 MLP 46.0527  73.8419  62.8147 60.9031 | 0.0713 0.0783 1.5371  0.5622
Model 2 CNN 26.2827  30.5357  8.1639  21.6608 | 0.0407 0.0324  0.1998  0.0909
Model 3 MLP MLP 38.3670 50.6702  8.4476  32.4949 | 0.0594 0.0537 0.2067  0.1066
Model 4 CNN MLP 18.4095 21.2148 10.9803 16.8682 | 0.0285  0.0225 0.2687  0.1065
Model ImP]ementation RMSE NRMSE
Pretraining  Finetuning X-axis y-axis Z-axis average X-axis y-axis z-axis ~ average
Model 1 MLP 63.6843  106.6284  91.1460  89.0806 | 0.0985  0.1131  2.2303 0.814
Model 2 CNN 35.0762  44.4942 10.8762  33.3804 | 0.0543 0.0472 0.2661  0.1225
Model 3 MLP MLP 54.1198  81.9006  10.0560  57.1584 | 0.0837 0.0869 0.2461  0.1389
Model 4 CNN MLP 29.4605  31.4541 12.9957  26.1507 | 0.0456 0.0334 0.3180 0.1323

Model 1 being almost 2.6 times higher than that of Model 2
(89.0806 compared to 33.3804).

In examining Model 3 and Model 4, both models utilize
pretrained frameworks to enhance user localization. The fol-
lowing observations are made: (1) Interestingly, Model 3,
an MLP-based self-supervised model, does not exhibit better
performance compared with Model 2, which utilizes a CNN-
based model without pretraining. A detailed comparison shows
that MAE for the = and y axes are higher for Model 3 than for
Model 2, and while Model 3 fares better than Model 1 for the
z axis, it still falls short compared with Model 2. This trend
suggests that CNNs can better capture spatial relationships
compared to MLPs. (2) In contrast, Model 4 overcomes this
limitation by employing a CNN-based AE model. Model 4
achieves the minimal MAE for = axis (18.4095) and y axis
(21.2148) and consequently the minimum average MAE of all
the models (16.8682 meters). (3) Notably, Model 4 records
a higher MAE for z axis compared with both Model 3 and
Model 2, potentially indicating overfitting, even though we
did not encounter such issues during training. Simpler models
perform more effectively on z axis. (4) In terms of RMSE and
NRMSE, Model 4 clearly outperforms all other models except
for MAE on z axis, but it is able to achieve significantly lower
average values across all the models.
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VII. CONCLUSIONS

This paper has effectively highlighted the potential of self-
supervised learning in enhancing supervised learning perfor-
mance for user localization using CSI data. We designed four
distinct models: two utilized only supervised learning with
labeled data, while the other two leveraged self-supervised
pretraining with unlabeled data, followed by supervised fine-
tuning with labeled data. Remarkably, our findings indicate
the superior performance of the CNN-based pertaining model
with an average MAE of 16.8682 meters, surpassing all
other models by a considerable margin. Additionally, our
research underscores the suitability of CNNs over MLPs for

both Self-Supervised and Supervised Learning in this context.
Furthermore, we demonstrate that leveraging unlabeled data
through Self-Supervised Learning can effectively facilitate
user localization when dealing with large geographical areas.
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