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Abstract— Biometric Verification (BV) systems often exhibit
accuracy disparities across different demographic groups, lead-
ing to biases in BV applications. Assessing and quantifying these
biases is essential for ensuring the fairness of BV systems. How-
ever, existing bias evaluation metrics in BV have limitations,
such as focusing exclusively on match or non-match error rates,
overlooking bias on demographic groups with performance
levels falling between the best and worst performance levels,
and neglecting the magnitude of the bias present.

This paper presents an in-depth analysis of the limitations
of current bias evaluation metrics in BV and, through ex-
perimental analysis, demonstrates their contextual suitability,
merits, and limitations. Additionally, it introduces a novel
general-purpose bias evaluation measure for BV, the “Sum of
Group Error Differences (SEDG)”. Our experimental results
on controlled synthetic datasets demonstrate the effectiveness
of demographic bias quantification when using existing metrics
and our own proposed measure. We discuss the applica-
bility of the bias evaluation metrics in a set of simulated
demographic bias scenarios and provide scenario-based met-
ric recommendations. Our code is publicly available under
https://github.com/alaaobeid/SEDG.

I. INTRODUCTION

Biometric Verification (BV) systems suffer from demo-

graphic biases that manifest in the form of different accuracy

levels influenced by demographic factors such as skin colour,

age, and gender [7], [3], [1]. These biases are transferred

to real-world BV applications, such as unconstrained face

verification [13] in mobile phone access [11], biometric

authentication [2] in identity-to-selfie matching [17], and

identity verification [15] in border control [5]. However, there

is no agreement over which metrics to use to quantify the

amount of bias in a BV system [16]. Nevertheless, current

bias evaluation methods and metrics suffer from at least

one limitation at a time. Differential performance methods

such as the fairness index measures [10], and the analysis of

Receiver Operator Characteristics (ROC), False Match Rate

(FMR), and False Non-Match Rate (FNMR) curves [12],

[19] do not reflect real-world scenarios where a decision

threshold is required. Methods that do not account for global

performance and cross-demographic impostors such as the

genuine and impostor distributions [19], the demographic

group verification accuracies [6], [22], the Standard De-

viation (STD) in Group Equal Error Rates (EERG) [16],

and the Gini Aggregation Rate for Biometric Equitability

(GARBE) [8], lack a global reference point for measuring

bias and neglect the scenario where the impostor does not

share demographic attributes with the genuine identity. The

absence of a reference point for bias measurement can make

it impossible to know the magnitude of the bias. Metrics that

quantify bias in the form of maximum and minimum error

rates, such as the Skewed Error Rate (SER) [20], the Inequity

Rate (IR) [8] and the Fairness Discrepancy Ratio (FDR) [4]

disregard demographic groups that exhibit intermediate error

rates. Hence, a system biased against one group is given

the same score as a system biased against multiple groups

as long as their minimum and maximum error values are

identical. Additionally, most of these metrics require that an

operational scenario is defined beforehand and may not be

suitable for studying biases in systems in a manner that is

independent of application.

This paper aims to highlight the limitations of current

bias evaluation metrics in BV, evaluate their suitability and

merits, and introduce a general-purpose bias evaluation mea-

sure that overcomes the identified limitations. The proposed

bias evaluation measure captures deviations of demographic

group error rates from global error rates, treats false matches

and non-matches equally, and considers all demographic

groups while calculating errors and when setting a suitable

threshold. Our main contributions are as follows:

• We provide an analysis of bias evaluation metrics in the

BV literature and identify their limitations.

• We evaluate the effectiveness and behaviour of the bias

evaluation metrics through experimental analysis in a

range of simulated scenarios with different levels and

types of bias.

• We provide a detailed analysis of the strengths, weak-

nesses, and appropriateness of each metric in different

bias scenarios.

• We propose a novel dual-metric bias evaluation measure

that overcomes the limitations of existing bias evalua-

tion metrics in BV.

II. BACKGROUND AND RELATED WORK

We first introduce the basics of generic Biometric Verifi-

cation (BV) before discussing related research on bias and
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discrimination in BV.

A. Biometric Verification Problem Formulation

The generic BV problem is an application-independent

formulation of various BV tasks that use an individual’s

biological traits to verify their identity. Therefore, it applies

to various biometric data types, such as face images, finger-

prints, speech, and iris data. BV is typically considered as

a binary classification task, where the goal is to determine

whether a pair of inputs is a genuine pair, meaning that

the input pair genuinely belongs to the same person, or an

impostor pair meaning that the pair belongs to different

persons. In some cases, impostor pairs are selected to share

the same demographic attributes. These are referred to as

Within-Demographic Impostors (WDI) in contrast to Cross-

Demographic Impostors (CDI), which do not necessarily

share any demographic attributes.

More formally, the BV problem can be expressed as

follows: Given a pair of biometric data samples s1 and s2, a

biometric feature extraction model M is used to extract two

embedding vectors e1 and e2, which represent these samples

and the distance between the pair of embedding vectors in

our case the Euclidean Distance (ED) is then calculated as

follows:

e1 = M(s1)

e2 = M(s2)

ED (e1, e2) =

√
√
√
√

n∑

i=1

(e1i − e2i)2

The goal of the generic BV problem is to determine

whether the pair of samples s1 and s2, which are being

represented by the embedding vectors (e1, e2), belong to

the same individual or not. It can be expressed as follows:

D =

{

True, if ED (e1, e2) is less than or equal to T.

False, otherwise.

where:

• D is the decision indicating whether the pair of sample

embeddings (e1, e2) belong to the same individual or

not.

• ED (e1, e2) is the Euclidian distance between the pair

of biometric sample embedding vectors e1 and e2.

• T is the decision threshold used for verification.

In this problem, errors are usually quantified in terms

of False Match Rates (FMR) and False Non-Match Rates

(FNMR), which can be formulated as follows:

FMR =
Number of false matches

Total number of impostor pairs
(1)

FNMR =
Number of false non-matches

Total Number of genuine pairs
(2)

where:

• False matches are impostor pairs falsely flagged as

genuine pairs.

• False non-matches are genuine pairs falsely flagged as

impostor pairs.

Here, we define the True Match Rate (TMR) and the True

Non-Match Rate (TNMR) as they are both used in our dataset

generation process described in Section III.

TMR =
Number of true matches

Total Number of genuine pairs
(3)

where:

• True matches are genuine pairs correctly flagged as

genuine pairs.

TMR can also be expressed in terms of FNMR as:

TMR = 1− FNMR (4)

Similarly, the TNMR can be expressed in terms of FMR as:

TNMR = 1− FMR (5)

B. Bias and Discrimination in Biometric Verification

Bias in BV can be studied independently of any decision

thresholds, referred to as Differential Performance, or by

studying error rates at a decision threshold with a desired

performance, referred to as Differential Outcomes. Both of

those terms were introduced by [9]. Bias evaluation in terms

of differential performance studies the differences in ROC

curves or genuine-impostor distributions of the different de-

mographic groups [12], [19], [10] independent of application.

However, the practicality of current differential performance

approaches is questionable because, in real-world operational

scenarios, a threshold needs to be determined in advance.

Taking this into consideration, differential outcome methods

are, by design, more representative of real-world verification

scenarios and, therefore, are the focus of our paper.

In the remaining part of this section, we discuss some of

the shortcomings of current differential outcome methods.

Standard deviation-based measures: The use of the STD

in demographic group-specific error rates computed on WDI

such as the EER [16], TMR [12], [19], [6], [22], FMR

[20], [21], [14], and FNMR [18] has been widely observed.

However, by not accounting for CDIs, such approaches fail

to reflect real-world scenarios where impostors may not

always share demographic attributes with the genuine pairs.

Additionally, quantifying biases in the form of the STD in

group error rates obscures the magnitude of the bias. In

other words, not using the global performance on WDIs and

CDIs as a reference leads to loss of information about the

significance of the bias. For instance, a model that performs

three times worse than the global performance on a set of

demographic groups would be treated the same as a model

that performs five times worse than the global performance

on the same set of groups. Depending on the fairness context,

such behaviour may be undesirable.

Maximum disparity-based measures: In some metrics,

bias is studied in terms of maximum discrepancy in error

rates, such as the ratio of maximum and minimum values

of FMRs in SER [20] or FMRs and FNMRs in IR [8] or

the maximum absolute difference in FMRs and FNMRs in



Method C1 C2 C3 L1 L2 L3

STD in FMR [20], [21], [14] ✓ ✗ ✗ ✓ ✓ ✓

STD in FNMR [18] ✓ ✗ ✗ ✓ ✓ ✓

STD in TMR [12], [19], [6], [22] ✓ ✗ ✗ ✓ ✓ ✓

STD in EERG [16] ✓ ✗ ✗ ✗ ✓ ✗

IR [8] ✗ ✓ ✗ ✗ ✓ ✓

FDR [4] ✗ ✓ ✗ ✗ ✓ ✓

SER [20] ✗ ✓ ✗ ✓ ✓ ✓

MAPE [20] ✗ ✗ ✓ ✓ ✗ ✓

GARBE [8] ✗ ✗ ✓ ✗ ✓ ✓

SEDG (Our method) ✓ ✗ ✓ ✗ ✗ ✗

C1: Standard deviation-based measure
C2: Maximum disparity-based measure
C3: Summative aggregation-based measure
L1: Accounts for a single error type
L2: Exclusively uses WDI pairs, Lacks a global performance reference
L3: Requires a pre-defined policy FMR

TABLE I

SUMMARY OF LIMITATIONS OF EXISTING DIFFERENTIAL OUTCOME

METHODS

the FDR [4]. Quantifying bias in the form of maximum and

minimum error rates obscures a model’s bias and perfor-

mance on demographic groups with intermediate error rates.

As a result, a model biased against multiple demographic

groups may be assigned the same SER, IR, or FDR score as

a model biased against a single demographic group. Since all

three maximum-discrepancy-based metrics quantify bias in

the form of WDI performance, in practice, they suffer from

the same limitation of not capturing the magnitude of the

bias as the STD-based metrics because both sets of metrics

lack a global reference point for measuring bias.

Summative aggregation-based measures: Mean Aver-

age Percent Error (MAPE) [20] and GARBE [8] are two

metrics that quantify bias as the average of the sum of the

absolute difference in group performance from a reference

performance. MAPE uses a global performance consisting

of CDIs and WDIs as reference, while GARBE measures

how much each group’s performance differs on average

from all other group performances using only WDIs. MAPE

accounts exclusively for FMRs, while GARBE accounts for

both FMRs and FNMRs. Therefore, each metric has its own

strengths and can be useful in different scenarios.

Single error type measures: It is common for differential

outcome methods to measure the differences in FMRs [20],

[21], [14], FNMRs [18], or TMRs [12], [19], [6], [22] for

the different demographic groups and treat them as bias.

However, neglecting the other set of errors (respectively

FNMRs, FMRs, or TNMRs) can lead to missing potential

biases in those errors. As a result, bias evaluation metrics

that account for FMRs only, such as SER [20] and MAPE

[20], only partially capture the overall bias in a system. This

means that, in theory, if a model suffers exclusively from

demographic biases in the form of false non-match errors,

no bias would be captured by those metrics.

We summarize the limitations of existing differential out-

come methods in Table I. We point out that most meth-

ods, except for STD in EERG and our proposed measure,

require a policy FMR based on application or operational

requirements. Hence, we see a need for a comprehensive

application-independent metric that does not require any

predefined operational threshold for bias quantification.

In conclusion, existing bias evaluation metrics in BV can

only partially capture bias due to the limitations mentioned

before. This emphasizes the need for a more comprehensive

application-independent bias evaluation metric that simulta-

neously accounts for match and non-match errors, global

CDI and WDI performance, and intermediate error rates.

III. DEMOGRAPHIC BIAS SIMULATION AND THE SUM OF

GROUP ERROR DIFFERENCES

In this section, we describe our demographic bias simula-

tion, synthetic dataset generation process, and our proposed

measure, the Sum of Group Error Differences (SEDG).

A. Demographic Bias Simulation

To evaluate the demographic biases in a BV system, we

typically need a dataset that consists of biometric data, de-

mographic data, and unique person identifiers. For example,

a typical bias evaluation dataset in face verification consists

of face images, race labels, and unique person identifiers.

To evaluate a BV system, genuine and impostor biometric

sample pairs are generated randomly and sometimes se-

lected following specific criteria, e.g. selecting only difficult

pairs [22] or alternatively using all available pairs [16].

Distances between the pairs’ respective embedding vectors

are then calculated to quantify different error rates, such

as FMRs and FNMRs, which can be disaggregated based

on the demographic membership of the individuals being

represented by the biometric samples to quantify the system’s

demographic bias. Therefore, the minimum data required to

evaluate a biometric system’s bias are the distances between

pairs of embedding vectors, labels indicating whether the

pairs belong to the same person or not, and information

about the demographic membership of the individuals being

represented by the sample pairs. A biased system is then

expected to give higher false matches and non-matches for

some demographic groups compared to others.

We simulate two demographic bias scenarios, one where

a single group is disadvantaged at various levels in terms

of model performance and a second scenario where more

than one group suffer from different degrees of disadvantage

in model performance. To achieve this, we synthetically

generate model output distances and ground truth labels with

specific FMRs at a TMR of 0.95, denoted as FMR(TMR95),

and simulate different disadvantage levels against different

demographic groups using a disadvantage increase factor

denoted by x. We describe this process more closely in the

remainder of this section.

1) Single disadvantaged group: In the first scenario,

there is a single disadvantaged group (gdis); meanwhile, the

remaining groups have the same performance levels. This

scenario aims to test the bias evaluation metrics’ ability to

quantify disadvantage against a single demographic group.

x represents the disadvantage increase factor, which takes



values 1, 2, 3, 5, 10, 20, and 50 depending on the level

of bias being simulated. To simulate this scenario, we need

to generate two synthetic datasets that satisfy the condition

that the FMR at a TMR of 0.95 for the disadvantaged

demographic group is x times the FMR at a TMR of 0.95

for the remaining groups.

FMRdis(TMR95) = x · FMRoth(TMR95), (6)

where:

• FMRdis is the FMR at a TMR of 0.95 for the disad-

vantaged group gdis.

• FMRoth is the FMR at a TMR of 0.95 for the remaining

groups.

• x is the simulated disadvantage increase factor and takes

the values 1, 2, 3, 5, 10, 20, and 50.

Using (6), we simulate different levels of demographic

bias by varying the FMR at a TMR of 0.95 value of a single

demographic group using the variable x. Using this equation,

we obtain two sets of synthetic model outputs, one for the

disadvantaged group denoted as Ddis and another for all the

remaining groups denoted as Doth.

Ddis = {d ∈ D|FMR(TMR95, d) = FMRdis(TMR95, d)}

Doth = {d ∈ D|FMR(TMR95, d) = FMRoth(TMR95, d)}

These two synthetic model outputs can be combined to

simulate a model’s output on n demographic groups as

follows:

Dsingle = Ddis ∪Doth
︸ ︷︷ ︸

n times

2) Multiple disadvantaged groups: In this scenario, mul-

tiple demographic groups suffer from different levels of

disadvantage. This aims to test a metric’s ability to capture

intermediate-level biases, i.e., biases against groups other

than the most disadvantaged. Multiple synthetic model out-

puts with varying levels of disadvantage need to be combined

to simulate this scenario. For simplicity, we use the same

values of x as in the previous scenario and set the minimum

(or best) FMR at a TMR of 0.95 denoted by FMRbest as a

reference for generating the FMR(TMR95) values for the

demographic groups. This process is described in (7).

FMRi(TMR95) = x · FMRbest(TMR95) (7)

where:

• FMRi(TMR95) is the FMR at a TMR of 0.95 of a

demographic group i.

• FMRbest is the FMR at a TMR of 0.95 of the group

with the lowest FMR at a TMR of 0.95.

• x takes 1, 2, 3, 5, 10, 20, and 50 depending on the level

of disadvantage simulated for demographic group i.

Using this equation, we obtain one synthetic model output

dataset per each demographic group i denoted by Di.

Di = {d ∈ D|FMR(TMR95, d) = FMRi(TMR95, d)}

These outputs can then be combined to simulate the

outputs of a model that is biased against more than a single

group as follows:

Dfull = D1 ∪D2 ∪D3 ∪ ... ∪Dn

where:

• n corresponds to the number of demographic groups in

the simulation.

3) Dataset generation: To simulate the scenarios de-

scribed in III-A.1 and III-A.2, we must generate model

outputs with specific FMRs at a TMR of 0.95. To achieve

this, we rely on hill climbing as in Algorithm 1.

Algorithm 1 Hill Climbing Algorithm for BV data synthesis

1: S TMR← a ⊲ Desired TMR

2: S FMR← b ⊲ Desired FMR

3: GT ← array of i True and j False ground truth labels

⊲ Binary labels for genuine and impostor pairs

4: distgen ← array of i random values [0.0, 0.5] ⊲

Distance values for the genuine pairs

5: distimp ← array of j random values [0.5, 1.0] ⊲

Distance values for the impostor pairs

6: dist← concatenate distgen and distimp

7: n← number of iterations

8: fitnessbest = |FMR(GT, dist)− S FMR| +
|TMR(GT, dist)− S TMR|

9: for i← 1 to n do ⊲ Start the hill climbing algorithm

10: distnew ← dist + small random change

11: fitnessnew = |FMR(GT, distnew)− S FMR| +
|TMR(GT, distnew)− S TMR|

12: if fitnessnew < fitnessbest then

13: dist← distnew
14: fitnessbest ← fitnessnew
15: end if

16: end for

17: return dist ⊲ Return the distance values closest to the

desired values

This hill climbing algorithm performs a local search that

iteratively improves a randomly generated solution, specif-

ically fit for BV data synthesis. To this end, we use a

simple fitness function that calculates the absolute difference

between the desired FMR and TMR values and the actual

FMR and TMR values for the input distances and ground

truth labels. Using this algorithm, it is possible to generate

different model output distances and ground truth labels

that satisfy desired FMR at a TMR of 0.95 or FNMR at

a TNMR of 0.95 values. In our experiment, 1000 iterations

were enough to reach the desired values for our demographic

bias simulation.



B. Sum of Group Error Differences

SEDG is our proposed measure for simultaneously ad-

dressing the limitations of the previous metrics highlighted

in Section II-B. It relies on the average of the thresholds

needed to achieve EER (TEERg
) for each demographic

group (g) in a set of demographic groups (G) as a reference

point for measuring the deviations of individual demographic

group performances from a global performance. TEERg
is

considered as the point (threshold) where the FMR is equal

to the FNMR. Hence, our proposed measure accounts for

both FMRs and FNMRs and quantifies demographic bias in

reference to a global performance that includes WDIs and

CDIs. First, to quantify the performance (error rate) devia-

tions, we adapt the relative difference formula as follows:

δFMRg = |1−
FMRg(T̄EER)

FMRglobal(T̄EER)
| (8)

δFNMRg = |1−
FNMRg(T̄EER)

FNMRglobal(T̄EER)
| (9)

where:

• δFMRg (respectively δFNMRg) represents the relative

difference between the FMR (respectively FNMR) value

for demographic group g at the average EER threshold

T̄EER and the global FMR (respectively FNMR) values

at this same threshold. Note: We consider absolute

values because we also want to treat better performance

than the global reference performance as a form of bias.

• FMRg (respectively FNMRg) denotes the FMR (re-

spectively FNMR) value for demographic group g.

• FMRglobal (respectively FNMRglobal) denotes the

FMR (respectively FNMR) value using the full dataset.

SEDg = δFMRg + δFNMRg (10)

The values of δFMRg and δFMNRg are summed into

a single value named the Sum of Group Error Differences

(SEDg) for simplicity, which represents the over- and under-

performance of each demographic group as shown in (10).

SEDG = {SEDg | g ∈ G} (11)

The SEDs of all demographic groups are combined in a

single set SEDG in (11). The average of the set SEDG rep-

resents the amount of deviation of demographic group per-

formance from global performance. Meanwhile, the standard

deviation of the set represents the variability of performance

across the different demographic groups, and in that way,

combines some of the strengths of aggregation- and STD-

based measures.

IV. EXPERIMENTAL SETUP

A. Synthetic Dataset Description

To test the bias evaluation metrics in the scenarios with

different types and levels of biases described in Sections

III-A.1 and III-A.2, model output distances and ground

truth labels are created to simulate the within-demographic

Increase factor FMR95 for g dis Genuine:Impostor

1 0.001 3000:3000

2 0.002 3000:3000

3 0.003 3000:3000

5 0.005 3000:3000

10 0.01 3000:3000

20 0.02 3000:3000

50 0.05 3000:3000

TABLE II

WITHIN-DEMOGRAPHIC ONLY SYNTHETIC DATASET CHARACTERISTICS

Increase factor FMR95 Genuine:Impostor

0.1 0.0001 3000:24000

TABLE III

WITHIN AND CROSS-DEMOGRAPHIC SYNTHETIC DATASET

CHARACTERISTICS

performance of a model with different FMR(TMR95) values

on seven hypothetical demographic groups as described in

Table II. The generated distances and ground truth labels

can then be combined to simulate the outputs of models with

varying types and magnitudes of demographic bias.

Each set of distance and ground truth pairs represents a

demographic group with 3,000 identities and two samples

per identity. This allows for generating 3,000 genuine and

35,988,000 impostor pairs. However, we select an equal

number of pairs (3,000 impostor and genuine pairs) to treat

both types of errors with the same significance. We choose

to have four demographic groups similar to some datasets in

the demographic bias evaluation literature [22].

For simplicity, we refer to FMR(TMR95) as FMR95 in the

remainder of the paper.

An additional set of simulated model output distances and

ground truth labels is also created to simulate a model’s

global performance as described in Table III. This perfor-

mance is usually better than within-demographic perfor-

mance because it is dominated by cross-demographic impos-

tor pairs, which are the easiest for a typical BV system to

distinguish. Therefore, the number of genuine pairs becomes

12,000, and while it is possible to generate 575,952,000 im-

postor pairs, 600,000 impostor pairs are enough to simulate

a global performance with an FMR95 of 0.0001.

B. Compared Bias Evaluation Metrics

We test our proposed dual metrics and other established

metrics, such as IR and GARBE [20], FDR [4], and STD in

EERG [16]. To allow an equitable comparison, we only use

metrics that account for both FMRs and FNMRs to quantify

the bias in our scenarios with different levels and types of

bias. The evaluated metrics are described in detail in the

following.

IR is a maximum-disparity-based metric that combines

the ratio between the highest and lowest FMR and FNMR

values among a set of demographic groups. It calculates the

maximum disparity in FMRs and FNMRs across different

demographic groups at a desired or policy FMR threshold

(TFMRp
).



A(TFMRp
) =

max
{
FMRg(TFMRp

), ∀g ∈ G
}

min
{
FMRg(TFMRp

), ∀g ∈ G
} (12)

B(TFMRp
) =

max
{
FNMRg(TFNMRp

), ∀g ∈ G
}

min
{
FNMRg(TFNMRp

), ∀g ∈ G
} (13)

IR = A(T )αB(T )1−α (14)

where:

• α is the hyperparameter that determines the weight

assigned to FMRs relative to FNMRs during the cal-

culation of FDR and can be adjusted according to

operational requirements.

We set the alpha (α) hyperparameter for all of the metrics

to 0.5 to treat FMRs and FNMRs with the same level of

significance so that they are comparable.

FDR is also a maximum-disparity-based metric that quan-

tifies the rate of false match and non-match errors. Similar

to IR, FDR takes into account the maximum disparity (in the

form of a maximum difference rather than a ratio) in FMRs

and, additionally, FNMRs at TFMRp
.

FDR = 1−
[
α(max{|FMRg1(TFMRp

)

− FMRg2(TFMRp
)|, ∀g1, g2 ∈ G})

+ (1− α)(max{|FNMRg1(TFMRp
)

− |FNMRg2(TFMRp
)|, ∀g1, g2 ∈ G})

]

(15)

GARBE is a metric inspired by a measure of statistical

dispersion called the Gini coefficient, used to quantify the av-

erage difference between the FMRs and FNMRs of available

demographic groups at a predefined policy FMR threshold.

Ginix(TFMRp
) =

( |G|

|G| − 1

)( |xg1(TFMRp
)− xg2(TFMRp

)|

2n2x̄

)
,

∀g1, g2 ∈ G

(16)

A = GiniFMR(TFMRp
); B = GiniFNMR(TFMRp

) (17)

GARBE = αA+ (1− α)B (18)

STD in EERG (σEERG
) is a simplistic measure of bias

that quantifies the standard deviation in demographic group-

specific EERs computed on within-demographic pairs (see

(21)), with EER being the value at which the FMR is equal

to the FNMR (see (19)).

EERg =
FMRg + FNMRg

2

∣
∣ FMRg = FNMRg (19)

EERG = {EERg | g ∈ G} (20)

EERG represents the set of all demographic group-specific

EER values, with each EERg corresponding to a specific

TABLE IV

EVALUATION METRICS AT DIFFERENT FMR95 VALUES FOR A SINGLE

DISADVANTAGED GROUP

Ratios IR GARBE FDR σEERG
σSEDG

SEDG

1:1:1:1 1.0 0.0000 1.00 0.00 0.00 0.24

1:1:1:2 1.33 0.0090 0.9990 8.66e-4 0.17 0.32

1:1:1:3 3.63 0.0397 0.9958 1.29e-3 0.28 0.85

1:1:1:5 13.62 0.0758 0.9923 3.96e-3 0.75 1.26

1:1:1:10 22.40 0.0891 0.9890 4.69e-3 0.91 1.30

1:1:1:20 87.54 0.1170 0.9821 6.92e-3 1.32 1.56

1:1:1:50 368.7 0.1427 0.9693 1.54e-2 2.99 2.55

demographic group g in the set of all demographic groups

G. Note: In [16], the EER is expressed in percentage form.

σEERG
=

√
√
√
√

1

|EERG|

∑

EERg∈EERG

(EERg − µEERG
)2 (21)

STD in SEDG and Average of SEDG are the proposed

metrics in our dual-metric measure, designed to simul-

taneously address the limitations of the previous metrics

highlighted in Section II-B. Set SEDG is described in detail

in Section III-B. The average of set SEDG values (SEDG)

measures the magnitude of the deviation of demographic

group performance from global performance, while the STD

in set SEDG (σSEDG
) measures the degree of variation in

demographic group performance.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experiments aim to test the efficacy of the bias eval-

uation metrics in quantifying the biases of BV systems with

different types and magnitudes of bias using the scenarios

described in Sections III-A.1 and III-A.2.

A. Single Disadvantaged Group

In the case of a single disadvantaged group gdis (4th group

in the ratios in Table IV), maximum disparity metrics such as

IR and FDR rank all systems accurately due to the absence

of intermediate-level biases. All metrics consistently report

higher scores for systems with a greater FMR95 for the

disadvantaged group, making them equally usable in this

scenario. It is worth mentioning that for system 1:1:1:1,

four metrics, IR, GARBE, FDR, STD in EERG, and STD

in SEDG, report no biases in their score. This is because

such metrics measure the bias based on the maximum and

minimum error difference or the variation in demographic

group errors. The Average of SEDG is the only metric that

indicates a bias score equal to 0.24, as it measures bias by

comparing the errors for each demographic group against the

global errors. Depending on the fairness context, any of the

metrics can be suitable for this scenario.

B. Multiple Disadvantaged Groups

1) Two-disadvantaged groups (Table V):

• IR is a maximum-disparity-based metric, meaning it

relies on maximum and minimum FMR values. There-

fore, it fails to capture intermediate-level FMR95 value



TABLE V

EVALUATION METRICS AT DIFFERENT FMRS AT A TMR OF 0.95 RATIOS

FOR TWO DISADVANTAGED GROUPS

Ratios IR GARBE FDR σEERG
σSEDG

SEDG

1:1:2:2 1.33 0.0120 0.9990 9.99e-4 0.20 0.37

1:1:2:3 3.63 0.0428 0.9958 1.78e-3 0.35 0.81

1:1:2:5 13.62 0.0793 0.9923 4.33e-3 0.82 1.15

1:1:3:3 3.63 0.0530 0.9958 1.50e-3 0.38 1.05

1:1:3:5 13.62 0.0905 0.9923 3.74e-3 0.70 1.32

1:1:5:5 13.62 0.1011 0.9923 4.58e-3 0.86 1.68

TABLE VI

EVALUATION METRICS AT DIFFERENT FMR95 RATIOS FOR THREE

DISADVANTAGED GROUPS

Ratios IR GARBE FDR σEERG
σSEDG

SEDG

1:2:2:2 1.33 0.0090 0.9990 8.66e-4 0.16 0.46

1:2:2:3 3.63 0.0399 0.9958 0.0399 0.39 0.69

1:2:2:5 13.62 0.0767 0.9920 0.0767 0.85 0.98

1:3:3:2 3.63 0.0502 0.9958 2.12e-3 0.43 0.94

1:3:3:3 3.63 0.0397 0.9958 1.29e-3 0.37 1.23

1:3:3:5 13.62 0.0786 0.9923 3.33e-3 0.58 1.41

1:5:5:2 13.62 0.0990 0.9923 5.13e-3 0.95 1.50

1:5:5:3 13.62 0.0906 0.9923 3.97e-3 0.73 1.70

1:5:5:5 13.62 0.0758 0.9923 3.96e-3 0.73 2.02

changes. Hence it assigns identical scores to 1:1:2:3 and

1:1:3:3 although system 1:1:3:3 is simulated to have a

higher disadvantage for the third group. A similar case

is observed for 1:1:2:5, 1:1:3:5, and 1:1:5:5. Similarly,

FDR is a maximum disparity-based metric that relies

on minimum and maximum FMR and FNMR values.

Therefore, it also fails to capture intermediate-level

biases for those same examples.

• STD in EERG and STD in SEDG give a lower bias

score to 1:1:3:5 in comparison to 1:1:2:5 although the

former is simulated to have a higher disadvantage for

the third group. This is because they are both STD-

based measures and in that sense, system 1:1:3:5 has

a lower degree of variation in group errors. The only

metrics capable of correctly quantifying the magnitude

of bias, in this case, are GARBE and Average of SEDG.

• The only metrics with no failure cases are GARBE and

the Average of SEDG followed by STD in SEDG and

STD in EERG, which both share the same failure cases

due to their shared STD-based characteristic.

2) Three-disadvantaged groups (Table VI):

• The highlighted cases in red help demonstrate the

functionalities of GARBE, STD in EERG, and STD

in SEDG. All three metrics quantify the difference in

performance between demographic groups rather than

the bias in each group separately against a reference

point. Depending on the fairness context and definition,

it is likely that system 1:5:5:2 is considered less biased

than systems 1:5:5:3 and 1:5:5:5, which suffer from

a higher level of disadvantage for the fourth group.

However, the three metrics fail to capture this relation

and, therefore, might not be suitable for this scenario.

• Similar to the previous scenario, the scores of IR and

TABLE VII

EVALUATION METRICS AT DIFFERENT FMR95 RATIOS FOR FOUR

DISADVANTAGED GROUPS

Ratios IR GARBE FDR σEERG
σSEDG

SEDG

2:2:2:2 1.00 0.0000 1.00 0.00 0.00 0.49

2:2:2:3 2.72 0.0310 0.9968 2.16e-3 0.44 0.70

2:2:2:5 10.20 0.0682 0.9933 4.83e-3 0.92 0.93

2:2:3:3 2.72 0.0413 0.9968 2.50e-3 0.46 0.97

2:2:3:5 10.20 0.0795 0.9933 4.59e-3 0.83 1.24

2:2:5:5 10.20 0.0909 0.9933 5.58e-3 1.07 1.46

2:3:3:3 2.72 0.0310 0.9968 2.16e-3 0.48 1.29

2:3:3:5 10.20 0.0702 0.9933 3.95e-3 0.65 1.43

2:3:5:5 10.20 0.0826 0.9933 4.68e-3 0.82 1.69

2:5:5:5 10.20 0.0682 0.9933 4.83e-3 0.92 2.00

3:3:3:3 1.00 0.0000 1.00 0.00 0.00 1.77

3:3:3:5 3.74 0.0402 0.9965 2.67e-3 0.35 1.89

3:3:5:5 3.74 0.0536 0.9965 3.08e-3 0.45 1.91

3:5:5:5 3.74 0.0402 0.9965 2.67e-3 0.41 2.19

5:5:5:5 1.00 0.0000 1.00 0.00 0.00 2.53

FDR are dictated by the highest FMR95, causing them

to neglect intermediate biases. This is also observable

when comparing elements from Tables V and VI. Sys-

tems 1:1:2:2 and 1:2:2:2 are given the same IR and FDR

scores, 1.33 and 0.9990, respectively. Similarly, systems

1:1:3:2, 1:1:3:3, 1:3:3:2, and 1:3:3:3 all have the same

IR and FDR scores, 3.63 and 0.9958 respectively. A

distinction between such systems might be necessary

depending on the fairness definition.

• The dual SEDG metrics provide a good understanding

of the type and magnitude of bias in each system. The

Average of SEDG helps us understand the overall bias

present in the system, while the STD in SEDG helps

us understand the difference in performance across

demographic groups. When used together, these metrics

provide the most accurate results in this scenario.

3) Four-disadvantaged groups (Table VII): In this sce-

nario, all four groups suffer from some level of disadvantage

in reference to global performance.

• Only the Average of SEDG metric is capable of differ-

entiating between systems 2:2:2:2, 3:3:3:3, and 5:5:5:5.

This makes it useful in all four scenarios discussed

so far, having the advantage of providing additional

information about the type of bias present when used

alongside the STD in SEDG. This example shows the

benefit of using a metric that quantifies bias in terms of

a difference from a global performance because it can

capture the magnitude of the disadvantage for all the

groups, as opposed to metrics that consider deviations

and maximum differences in group error rates as bias.

• When all four groups have the same level of disadvan-

tage as in systems 2:2:2:2, 3:3:3:3, 5:5:5:5, WDI-based

metrics that lack a global reference such as IR, GARBE,

FDR, STD in EERG, and STD in SEDG cannot quantify

the magnitude of this disadvantage and assigns them the

same score. As previously discussed, this behaviour, in

some cases, may be undesirable.

• Similar to the scenarios discussed in Sections V-B.1 and

V-B.2, IR and FDR fail to capture intermediate-level



TABLE VIII

EVALUATION METRICS AT DIFFERENT FNMR95 VALUES FOR A SINGLE

DISADVANTAGED GROUP

Ratios IR GARBE FDR σEERG
σSEDG

SEDG

1:1:1:1 1 0.0000 1.00 0.00 0.00 2.14

1:1:1:2 13 0.0745 0.9963 2.02e-3 1.63 3.07

1:1:1:3 64 0.1166 0.9913 3.60e-3 2.76 4.04

1:1:1:5 134 0.1263 0.9890 5.19e-3 3.42 4.55

1:1:1:10 502 0.1572 0.9821 7.93e-3 6.47 6.18

1:1:1:20 1136 0.1667 0.977 1.04e-2 6.96 7.48

1:1:1:50 9396 0.1981 0.9568 1.94e-2 14.99 10.69

biases for all systems. Additionally, for systems 2:2:2:2,

3:3:3:3, and 5:5:5:5 which do not suffer intermediate

biases but exhibit the same level of disadvantage for

all four groups, both metrics assign them identical

scores. As a result, IR and FDR are completely unusable

when all demographic groups suffer from some level of

disadvantage i.e. this scenario.

• As previously stated, when the Average of SEDG is used

alongside the STD in SEDG, it is possible to measure

the magnitude of bias present and also get an idea about

the type of bias present. For instance, STD in SEDG

assigns the same score (a value of zero) to systems

2:2:2:2, 3:3:3:3, and 5:5:5:5 that have the same type

of bias. This enables us to know that the level of bias is

consistent among all the groups, and by examining the

Average of SEDG, it is possible to know the magnitude

of this bias.

C. Bias in False Non-match Errors

We conduct an additional experiment to evaluate the

effectiveness of the bias evaluation metrics in capturing bias

in the form of false non-match errors. In this experiment, we

fixed the FMR value to 0.05, which is equivalent to a TNMR

of 0.95. We then introduce the bias by varying the values of

FNMR at a TNMR of 0.95 for a single disadvantaged group.

We only simulate a single disadvantaged group scenario as

the purpose of this experiment is to test the metrics’ ability

to detect bias in the form of false non-match errors. We

tested and demonstrated the limitations of the metrics in

the multiple disadvantaged group scenarios in the previous

experiments. We use the notation FNMR95 to represent the

FNMR at a TNMR of 0.95, similar to how FMR95 represents

the FMR at a TMR of 0.95.

The behaviour of the metrics in this scenario (Table VIII)

is identical to their behaviour in the scenario where bias

is introduced in the form of different FMR95 values for a

single disadvantaged group in Section V-A. All metrics are

capable of accurately ranking the systems, which is because

all the tested metrics rely on false match and non-match

errors for bias quantification. The Average of SEDG is the

only metric scoring bias for system 1:1:1:1, which might

be useful depending on the fairness definition. IR and FDR

rank all systems accurately, mainly due to the absence of

intermediate-level biases.

VI. CONCLUSION

In conclusion, we revisit the bias evaluation metrics and

discuss some of their advantages, disadvantages, and nu-

ances.

IR and FDR: Since IR and FDR are both based on

maximum disparity, it is sensible to discuss them together.

Additionally, they rank all systems similarly. They are most

suitable when there is only a single disadvantaged group.

Being based on maximum disparity, both metrics study

biases in terms of maximum and minimum error rates, hence

not capturing intermediate biases. They are unusable in the

presence of intermediate biases or when all demographic

groups exhibit some level of disadvantage.

GARBE: GARBE quantifies bias in terms of the dif-

ference in false match and non-match errors among the

demographic groups. This makes it suffer from similar issues

and failure cases as the STD-based metrics, STD in EERG

and STD in SEDG. Since it relies exclusively on WDIs, it

does not capture the magnitude of bias making it unusable

in scenarios where all demographic groups suffer from the

same level of disadvantage.

STD in EERG: STD in EERG is a WDI-based metric

that considers both false match and non-match errors and

measures the variation in demographic group error rates.

While this means that it captures intermediate biases, it

also means that it does not provide information about the

magnitude of the bias present, which is an advantage that

Average of SEDG has when used alongside STD in SEDG.

STD in SEDG and Average of SEDG: the value of

the SED by design takes into account the differences in

false match and false non-match errors in reference to the

global values of those errors (see (10)). By accounting for

global CDI and WDI performance, SEDG metrics hold a

clear advantage over STD in EERG. In our simulation,

STD in EERG and STD in SEDG ranked systems similarly.

However, only the Average of SEDG metric ranked all

systems correctly. In combination, the SEDG metrics provide

a clearer understanding of the magnitude and type of bias

present in a system making them usable in all scenarios.

In summary, we present our proposed measure of demo-

graphic bias in BV as a dual-metric measure that overcomes

the identified limitations of previous metrics. In combination,

the dual metrics in our measure offer an understanding about

the type and magnitude of bias present in a BV system.

Therefore, we encourage the research community around BV

systems to include them in their evaluation.
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