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Nitrogen-vacancy centers are spatially resolved probes of current noise. So far, current noise
sensing with NV centers has primarily been used as a way to probe equilibrium transport coefficients.
We develop a framework for computing the spatiotemporal correlations of nonequilibrium current
noise in the Boltzmann regime, and apply it to two-dimensional metals in current-biased steady
states. We argue that the spatial structure of the noise reveals the nonequilibrium nature of the
electron distribution function, and more generally reveals the nature and lifetimes of the excitations
responsible for transport. We estimate the visibility of these signatures in near-term experiments.

Noise in the current (or other local observables) in
a material carries a wealth of information about mate-
rial properties. Equilibrium current noise is related to
the conductivity by the fluctuation-dissipation theorem,
and is a powerful noninvasive probe of properties like
the conductivity or the temperature [1–3]. Away from
equilibrium, response functions and noise carry distinct
information; for instance, noise probes can reveal infor-
mation beyond linear response, like the charge of indi-
vidual quasiparticles [4–9]. It was recently realized that
the nature of nonequilibrium “shot” noise in strange met-
als without well-defined quasiparticles [10–13] (and near
quantum critical points [14]) can strongly constrain the-
oretical explanations of their transport. Moreover, even
far from equilibrium, nonequilibrium noise can clearly
distinguish between qualitatively different mechanisms
for diffusion [15–23]. Most of these works have focused on
current fluctuations across a single point in a sample, typ-
ically a constriction if the sample is not one-dimensional.
Nonequilibrium noise in the “bulk” of a two-dimensional
sample, and the spatial correlations of noise, have been
much less explored, as these quantities are not accessible
to most standard ways of probing noise.

Over the past decade, nitrogen vacancy (NV) centers
in diamond have emerged as sensitive local probes of cur-
rent noise [2, 24–34]. An NV center is effectively a qubit
precessing in a local field generated by currents in the un-
derlying sample; thus, the decoherence of the NV center
can be used to diagnose the noise power spectrum. As
a solid-state defect, NV centers can be brought as close
to a sample as 10 nm, providing unprecedented spatial
resolution. In the frequency domain, depending on the
sensing protocol, they can readily sense fluctuations in a
range from ≲ 1 MHz to ∼ 1 GHz. A recent advance in
NV sensing was the development of a covariance magne-
tometry protocol, which enables sensing two-point corre-
lations of noise across ∼ 1 µm length scales by measuring
two NV centers simultaneously, opening up new possibil-
ities in sensing spatially-correlated nonequilibrium fluc-
tuations [33].
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FIG. 1. Setup for detecting the spatial correlations of current
noise using NV centers separated by a distance l and situ-
ated at a height z above a two-dimensional sample, in the
presence of an external current. In the Boltzmann regime
analyzed below, noise along the current flow is stronger than
noise perpendicular to the flow.

In this work we explore nonequilibrium noise in
current-driven metals using covariance magnetome-
try. We compute spatiotemporal noise correlations in
the Boltzmann regime and predict strongly spatially
anisotropic current noise in the nonequilibrium steady
state. The spatial anisotropy is a hallmark of the
nonequilibrium nature of the steady state and is de-
tectable with covariance magnetometry. The direction of
enhancement reveals the underlying charge carriers, e.g.,
whether they are electrons or magnetic vortices, while the
extent of this enhancement reveals the relative rates of
energy and momentum relaxation. We estimate the vis-
ibility of these noise signatures in near-term covariance
magnetometry experiments.

Boltzmann formalism.—We will focus on transport due
to quasiparticles in a two-dimensional metal. We begin
with the semiclassical Boltzmann equation for the elec-
tron occupation function:

∂tf(r⃗, k⃗, t) = −(vk⃗ · ∇r − F⃗ext · ∇k)f − Icol[f ], (1)

where vk⃗ is the momentum-dependent group velocity,

F⃗ext is the external field, and Icol[f ] is the collision func-
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tional,

Icol[f ] =
∑
∆k⃗

[W∆k⃗f(r⃗, k⃗, t)(1− f(r⃗, k⃗ +∆k⃗, t))

−W−∆k⃗f(r⃗, k⃗ +∆k⃗, t)(1− f(r⃗, k⃗, t))]

(2)

with W∆k⃗ denoting the scattering rate from the mode

k⃗ to k⃗ + ∆k⃗. We will work in a semiclassical, high-
conductance regime, featuring a separation of scales be-
tween the Fermi momentum kF and the typical scales
on which the distribution varies, which we take to be
comparable to or larger than the mean free path ξ. All
our observables will be coarse-grained over a length-scale
≫ k−1

F , so that mesoscopic coherence effects [35, 36] are
washed out.

We take the occupation function at each (r⃗, k⃗, t) to

be a random variable f̂(r⃗, k⃗, t). The mean of this ran-

dom variable is ⟨f̂⟩ = fss, the steady-state distribu-
tion function, which annihilates Eq. (1). Assuming that

the equal-time fluctuations in f̂ are short-range corre-
lated, the steady state is fully specified by fss. Under

this standard assumption [37–39], the variance of f̂ is

given by the equal-time correlator f2(r⃗, k⃗, t; r⃗
′, k⃗′, t) =

δ(r⃗− r⃗′)δ(k⃗− k⃗′)φ(r⃗, k⃗), which is assumed to be uncorre-
lated on the scales we are considering. Finally, since each

k⃗-mode is either occupied or empty, φ follows a Bernoulli
distribution, so

f2(r⃗, k⃗, t; r⃗′, k⃗′, t)=δ(r⃗− r⃗′)δ(k⃗−k⃗′)fss(r⃗, k⃗)(1−fss(r⃗, k⃗)).
(3)

An important observation [37, 38] is that the unequal-

time correlation function f2(r⃗, k⃗, t + τ ; r⃗′, k⃗′, t) evolves
precisely according to the deterministic Boltzmann equa-
tion (1), where the time derivative is taken with respect
to τ [40]. The intuition is that an initial density fluctu-
ation is advected and spread out by precisely the same
processes as those captured by Eq. (1). Thus, to un-
derstand the evolution of unequal-time correlations, one
simply has to solve Eq. (1) with the initial condition be-
ing uncorrelated Bernoulli noise (3).

Relaxation-time approximation.—As a first application
of these ideas, we take the simplest collision functional,
namely that given by the relaxation-time approximation
(RTA) [41]: Icol[f ] ≈ (f−fth)/τ , where fth is the thermal
distribution and τ is the scattering time [42]. In this
approximation, any scattering event totally randomizes

k⃗ and decorrelates the current. Hence, we can treat f2 as
remaining diagonal at all times and evolving according
to the collisionless Boltzmann equation augmented with
a decay term:

∂tf2(r⃗, k⃗, t) = −(v⃗k · ∇r − F⃗ext · ∇k)f2 −
f2
τ

(4)

This approximation neglects the sum rule for f2 stem-
ming from the conservation law. These hydrodynamic
correlations would be crucial if we were probing the den-

sity noise, but are unimportant for current-current cor-
relations except potentially at the longest length scales
(due to hydrodynamic long-time tails [43]).
NV magnetometry.—In the Boltzmann formalism, the

instantaneous current due to mode k⃗ is v⃗k⃗f̂(k⃗). Thus we
can express the current correlation function in terms of
f2 as:

⟨J⃗(r⃗, t+∆t)J⃗(r⃗′, t)⟩ − ⟨J⃗(r⃗, t+∆t)⟩⟨J⃗(r⃗′, t)⟩ =∫
dk⃗dk⃗′q2v⃗k⃗v⃗k⃗′f2(r⃗, k⃗, t+∆t, r⃗′, k⃗′, t).

(5)

where q represents the electron charge. The magnetic
field at the location of the NV center is related to the
current [34] by the Biot-Savart law

B⃗(ρ⃗, t) =
µ0

4π

∫
dr⃗

J⃗(r⃗, t)× (ρ⃗− r⃗)

|ρ⃗− r⃗|3
, (6)

where µ0 is the vacuum permeability, and ρ⃗ is a three-
dimensional vector with the out-of-plane component be-
ing the NV depth z (contrary to r⃗, which does not have
a out-of-plane component). In the case of magnetometry
with a single NV, we evaluate the (connected) magnetic

fluctuations at the same location ⟨B⃗(ρ⃗, t+∆t)B⃗(ρ⃗, t)⟩; for
covariance magnetometry, we evaluate the (connected)

magnetic fluctuations at the two NV centers ⟨B⃗( ⃗ρnv1, t+

∆t)B⃗( ⃗ρnv2, t)⟩.
Finally, the physical observable is the phase noise: ⟨ϕ2⟩

with single-NV magnetometry and ⟨ϕnv1ϕnv2⟩ in the case
of covariance magnetometry. The phase is connected to
the spin dephasing overtime under a magnetic field,

ϕ(T ) = γ

∫ T

0

dt n̂ · B⃗(r, t); (7)

γ=28 GHz/T is the gyromagnetic ratio, n̂ is a unit vec-
tor pointing along the NV orientation, and the phase
accumulation can be used for sensing only on timescales
T ≤ T2, where T2 is the intrinsic dephasing time of the
NV center. The experimental protocol for correlated
sensing [33] in effect extracts the correlation function
⟨exp[i(ϕ1(T )− ϕ2(T ))]⟩, where ϕi(T ) is the phase picked
up by the ith NV. For Gaussian noise, one can rewrite
this observable as ⟨exp(− 1

2 (ϕ1(T )− ϕ2(T ))
2)⟩. The con-

nected correlations of the noise can then be related to
⟨ϕ1(T )ϕ2(T )⟩ − ⟨ϕ1(T )⟩⟨ϕ2(T )⟩. Assuming the distribu-
tion function is stationary in time, this phase correlation
function measures the integrated two-time correlator

Cϕ = γ2T

∫ T

0

〈
(n̂1 · B⃗(ρ⃗1, t))(n̂2 · B⃗(ρ⃗2, 0))

〉
. (8)

Often, dynamical decoupling [44, 45] is employed to ef-
fectively filter out undesired frequency components such
as the DC contribution. However, in the frequency range
relevant to the NV center—around MHz to GHz—the
noise spectrum of the metal is essentially white. As a
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FIG. 2. (a) Scaling of noise with the depth z in single-NV
magnetometry for mean free paths lm ranging from 12.5 to
1000 nm and perfectly ballistic transport. (b) Scaling of noise
with depth z in covariance magnetometry for NV separations
l=1,2,4,8 µm and under ballistic transport. The scaling ob-
tained with single-NV magnetometry is also shown for refer-
ence. Note the key distinction that bringing the NV centers
closer to the sample, beyond a certain threshold, does not
yield additional sensitivity in covariance magnetometry ex-
periments.

result, dynamical decoupling would not affect the phase
accumulation and we can simply integrate the magnetic
noise.

Equilibrium fluctuations.—We begin by applying this
formalism to estimate the equilibrium fluctuations in a
two-dimensional metal. Since we expect correlations to
be strongest in the ballistic regime, we focus on graphene,
which has a long mean free path. In Fig. 2(a), we plot the
noise power sensed by a single NV center as a function
of its depth for scattering lengths varying from 12 nm to
1 µm. We set the chemical potential to 0.2 eV (which
is achievable for graphene by gate-tuning [27]) and the
temperature to 80 K. The brown line shows the ideal
noise power when the transport is ballistic, scaling as 1/z
(see below). In the presence of scattering, the scaling
of the noise transitions to 1/z2 when z is bigger than
the scattering length; this prediction is consistent with
previous calculations [2, 3]. The strength of the noise can
be calculated to scale linearly with temperature in the
range considered here (this follows from the fluctuation-
dissipation theorem since the resistivity is not strongly
temperature dependent).

We turn next to covariance magnetometry in Fig. 2(b),
using the same parameters as in panel (a), but focusing
on purely ballistic transport (so the two NVs are taken
to be within a mean free path of each other). The sig-
nal strength now depends on both the height z of the
NVs and the separation l between them. In stark con-
trast to the single-NV case, the signal strength cannot
be enhanced by bringing the NVs arbitrarily close to the
sample. We provide a simple dimensional argument for
this. Note that in two dimensions, the factors of r⃗ in the
numerator and denominator of Eq. (6) cancel. Thus, the
only explicit spatial dependence comes from the correla-

tion function f2, which (in a ballistic system) takes the
form

f2(r⃗1, t; r⃗2, 0) ∼
∫

d2k⃗ δ(2)
(
r⃗1 − r⃗2 − v⃗k⃗t

)
, (9)

i.e., it consists of independent contributions from fluctu-

ations at each k⃗ mode that propagate ballistically from
r⃗1 to r⃗2 in time t. The notation δ(2) denotes a two-
dimensional δ-function. The total phase accumulated (8)
is integrated over time, so the time-integrated correlator
is a one-dimensional δ-function, forcing r⃗1 and r⃗2 to lie

on a straight line with an orientation set by k⃗. Thus,

for each mode k⃗, the time-integrated correlator is a one-
dimensional δ-function and contributes a factor of 1/z
upon rescaling.

There are two asymptotic regimes of behavior, set by
the ratio z/l. When z≫ l, the two NVs are essentially
at the same point and see the same quasiparticle trajec-
tories. In this limit, the two-NV result reduces to the fa-
miliar single-NV result for ballistic systems [2]: since the
phase space of quasiparticles is independent of z, the inte-
grated correlator (8) scales as 1/z. However, when z≪ l,
the only contribution to the covariance comes from quasi-
particles that pass through two discs of radius ∼ z, one
centered underneath each NV (Fig. 1). The momenta of
these quasiparticles come from an angular range z/l, and
this factor of z cancels out the overall 1/z noise strength
per mode. To summarize, the increased noise strength
from moving the NVs closer to the sample is canceled
out by the more restricted phase space from requiring
quasiparticles to pass under both NVs.

Although we derived it in the specific context of the
collisionless Boltzmann equation, the extra factor of z/l
is general: in any genuinely two-dimensional geometry
(as opposed to e.g. decoupled chains), moving the NV
farther from the sample compromises noise strength but
gains phase space. In the ballistic case, this tradeoff com-
pletely eliminates the advantage of moving NVs near the
sample (and might in fact lead to worse performance once
one accounts for surface effects); in more general con-
texts, it might only decrease the advantage.

Nonequilibrium fluctuations.—So far, we have focused
on equilibrium noise, but our formalism extends natu-
rally to the nonequilibrium case. We now discuss a sim-
ple nonequilibrium setting, in which a uniform current
is applied to the sample, and compute the spatial struc-
ture of current noise in that setting. We will argue that
the angular dependence of the nonequilibrium noise car-
ries significant information about the mechanisms behind
both transport and momentum/energy relaxation.

First, we explicitly solve for the equilibrium distribu-

tion function f(r⃗, k⃗, t) and the noise correlator f2 in the
relaxation time approximation. The applied electric field
distorts the Fermi sea as shown in Fig. 3(a,b). This dis-
torted nonequilibrium distribution function is far from
zero or one in a window of energy width qEextvF τ , where
Eext is the applied field strength, vF is the Fermi velocity,
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FIG. 3. (a) Distribution function in thermal equilibrium (left half) and under external field (right half). (b) Cross-section of
the distribution function in thermal equilibrium (blue) and under external field (orange) perpendicular to the external drive.
(c) Magnetic noise seen by the covariance magnetometry as a function of the current density when the axis connecting the NVs
is aligned with the current (red) or orthogonal to it (blue). The increase in the orthogonal noise power is because qEextvF τ
approaches the chemical potential near 10 kBT , so the Fermi-liquid picture starts to break down.

and τ is the scattering lifetime. This width can be under-
stood on dimensional grounds: the electric field imparts
momentum to the system at a rate qEext, and balancing
this against the relaxation rate τ−1 gives a steady state
momentum qEextvF τ , which matches the energy width
above. It is helpful to define a an angle-dependent effec-
tive “temperature” Teff = qEextvF τ for the nonequilib-
rium fluctuations. In the case of graphene, at the chem-
ical potential of 0.2 eV and assuming a mean free path
of 1µm, a current density of 1.6 mA/µm corresponds to
an effective temperature of 800 K, so one would expect
a roughly tenfold enhancement in noise strength relative
to equilibrium.

Driving a current also heats up the sample, so how can
one tell if the enhanced fluctuations are due to heating or
due to nonequilibrium effects? The anisotropic enhance-
ment of noise gives a useful signature of the nonequi-
librium nature of the distribution, which can be probed
using covariance magnetometry. If the two NV centers
are aligned with the current flow, they should observe
enhanced fluctuations. On the other hand, NV cen-
ters aligned perpendicular to the current flow should not
see enhanced fluctuations. This argument is numerically
confirmed in Fig.3(c). Since heating results in isotropi-
cally enhanced fluctuations, this protocol can verify the
genuine nonequilibrium nature of the fluctuations. We
also emphasize that this anisotropic noise enhancement
cannot be seen with a single NV.

By using RTA, we implicitly assumed that the pro-
cesses which relax energy and momentum are the same.
It would be interesting to explore the effects of an elec-
tric field for more general collision integrals, e.g., using
the methods in Ref. 46. At the level of dimensional
analysis, we can estimate the effects when energy and
momentum relax at separate rates, τE and τP , respec-
tively. The steady-state energy width of the distribution
function is then qEextvF τE while the net momentum is
qEextτP . When τE = τP , displacing the distribution

parallel to the current is sufficient to generate the net
steady-state momentum, but for τE ≥ τP (e.g., when ei-
ther impurity scattering or electron-electron interactions
are dominant), the net momentum is lower than the net
energy, so part of the distribution displaces perpendicu-
lar to the current. Hence, the noise anisotropy decreases
when τE ≥ τP , and dimensional analysis yields the ratio
between the perpendicular and parallel effective temper-
atures to be ∼ 1−τP /τE . We therefore expect covariance
magnetometry to distinguish the relaxation channels by
measuring the noise anisotropy.

Discussion.—In this work, we have computed the spa-
tiotemporal correlations of nonequilibrium current noise
in two-dimensional metals. Within the Boltzmann frame-
work (augmented to include noise terms), we quantita-
tively estimate the detectability of nonequilibrium noise
correlations in present-day experiments using NV cen-
ters placed above a metallic sample [33]. We argued that
the spatial structure of nonequilibrium noise—in particu-
lar, its spatial anisotropy—carries information about the
nature of momentum and energy relaxation in Fermi liq-
uids. Although explicit calculations outside this Fermi-
liquid regime are much more challenging, the physical
mechanism causing the anisotropy clearly also applies to
more exotic systems such as non-Fermi liquids with a
well-defined Fermi surface. It would be interesting to
adapt recent field theories of nonequilibrium matter [47]
to explore covariance magnetometry in these systems.

It would be particularly interesting to extend our re-
sults [48] to the case of two-dimensional superconductors,
or anomalous metals that are near a superconducting in-
stability. In these systems, electrical resistance is be-
lieved to be due to vortex motion. The current stochas-
tically dissociates loosely bound vortex pairs, and these
drift perpendicular to the applied current. Thus, two
NVs whose separation is perpendicular to the current
flow would see temporal correlations due to the creation
and flow of vortices between them. The arguments we
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have outlined above suggest that current noise should
therefore be enhanced perpendicular to the current flow,
but not parallel to it, in contrast to the behavior of
metals with electron-like quasiparticles. Observing this
anisotropy would be a stringent test of the theory of
anomalous metals [49].
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SUPPLEMENTAL MATERIAL

In this section, we first present a solution of the Boltzmann equation for a collision integral that is local in momentum
space, corresponding to scattering off weak or long-ranged impurities. Second, we present a more detailed derivation
of the scaling of the equilibrium noise with the height of the NV centers above the surface.

1. Scattering off smooth potentials

When scattering is local in momentum space, it leads to momentum diffusion. In this case, we can analytically
keep track of the collision functional to find the nonequal-time correlations. To begin, we expand f around the steady
state fss by defining δf = f − fss. To first order,

∂tδf = −(v⃗k · ∇r − ⃗Fext · ∇k)δf − Icol[δf ], (10)

Icol[δf ] =
∑
∆k⃗

W∆k⃗

(
δf(r⃗, k⃗, t)− δf(r⃗, k⃗ +∆k⃗, t)

)
. (11)

In this expansion, we have assumed time-reversal symmetry in the scattering such that W∆k⃗ = W−∆k⃗. To proceed,
we rewrite the collision functional in the integral form

Icol[δf ] =

∫
d∆k⃗ W∆k⃗

(
δf(r⃗, k⃗, t)− δf(r⃗, k⃗ +∆k⃗, t)

)
. (12)

By virtue of the locality of the scattering in momentum space, we can Taylor-expand the scattering rate W∆k⃗ and

δf(r⃗, k⃗ +∆k⃗, t) in ∆k⃗:

W∆k⃗ = W (0) +
1

2
W

(2)
ab ∆ka∆kb +O(∆k4), (13)

δf(r⃗, k⃗ +∆k⃗, t)− δf(r⃗, k⃗, t) =
∂δf

∂∆ka
∆ka +

1

2

∂2δf

∂∆ka∂∆kb
∆ka∆kb +O(∆k3). (14)

Note that the term first-order in W∆k⃗ vanishes because of time-reversal symmetry. We will discuss the case when
time-reversal symmetry is broken, and the consequences thereof, in future work. Only the even-order term in the
integral survives, so to leading order,

Icol[δf ] =

∫
d∆k⃗

1

2
W (0)∆ka∆kb

∂2δf

∂∆ka∂∆kb
= δabB

∂2δf

∂ka∂kb
= B∇2

k⃗
δf, (15)

where we define B as the value of the integral when a = b. We therefore eventually arrive at the following linearized
Boltzmann equation:

∂tδf = −
(
v⃗k · ∇r − ⃗Fext · ∇k − B∇2

k⃗

)
δf. (16)
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This resembles the Fokker-Planck equation of a Brownian particle with the equations of motion

∂tr⃗ =
k⃗

m
, (17)

∂tk⃗ = F⃗ext −
γ

m
k⃗ + ξ⃗, (18)

where the white noise ξ⃗ is connected to the dissipation coefficient γ via the fluctuation-dissipation theorem:
⟨ξa(t)ξb(t′)⟩ = 2γkBT . Nevertheless, we do not and should not assume any thermodynamic relations since we want
our formalism to be applicable in the nonequilibrium setup as well. Indeed, based on our second insight, the dynamics
of f2 are governed by the same Boltzmann equation subject to the initial condition (3),

∂∆tf2(r⃗, k⃗, t+∆t, r⃗′, k⃗′, t) = −
(
v⃗k · ∇r − ⃗Fext · ∇k − B∇2

k⃗

)
f2 (19)

Initially, f2 is a delta function at (r⃗′, k⃗′). As ∆t increases, f2 starts to spread out, undergoing drift-diffusion in phase
space.

2. Scaling of noise with NV height

We now provide a more detailed derivation of the scaling of the noise when z ≪ l as observed in Fig. 2(b). We
begin by factoring z out of Eq. (6) as

By (⃗0, t) =
µ0

4π

1

z2

∫
d2r⃗

Jx(r⃗, t)

(|r⃗/z|2 + 1)3/2
. (20)

Assuming a uniform current distribution, the integral can be cut off at r/z being some O(1) value, so we will truncate
the integral to a disk of radius R ∼ z. Additionally, (|r⃗/z|2 + 1)3/2 is an O(1) number inside the disk, so we drop it
for the purposes of our scaling analysis. Next, we evaluate the magnetic noise with this truncation as

⟨By (⃗0, t)By (⃗l, t
′)⟩ ∝ 1

z4

∫
Disk 1

d2r⃗

∫
Disk 2

d2r⃗′ ⟨Jx(r⃗, t)Jx(r⃗′, t′)⟩, (21)

where “Disk 1” and “Disk 2” are the truncated disks at the two NV centers separated by l ≫ R. Roughly speaking,
the correlations between every set of r⃗, r⃗′ pairs contribute a factor of R4 that cancels out the 1/z4. This explains the

saturation of the noise at z ≪ l. To be concrete, we expand ⟨Jx(r⃗, t)Jx(r⃗′, t′)⟩ in polar coordinates

⟨Jx(r⃗, t)Jx(r⃗′, t′)⟩ ∝
∫

dθ k dk k2 cos2(θ)f1(k)(1− f1(k))δ(r⃗′ − r⃗ − v⃗k(t
′ − t)); (22)

in the second line, we integrate over the polar coordinates with θ = 0 being the direction along which the NVs are
aligned. Given that the two disks are far away, only small angles θ between ±R/l contribute to the integral, so we
can treat cos2(θ) as an O(1) number. Lastly, the phase noise involves integrating the magnetic noise over t and t′ − t

⟨ϕ1ϕ2⟩ ∝
∫

dt d(t′ − t)⟨By (⃗0, t)By(L⃗, t
′)⟩. (23)

We first integrate over r⃗′ to remove the delta function in Eq. (22). This constrains the integral of θ to be between
±R/l and the integral of t′ − t to be between (l ± R)/vF . Together with integrating r⃗, this results in a net R4

contribution, canceling out the 1/z4 factor, so the noise is independent of the depth when l ≫ R.
In the opposite regime where l ≪ R, the small-angle condition of θ lying between ±R/l no longer holds. Therefore,

the scaling analysis breaks down and one recovers the single-NV scaling behavior as seen in Fig. 2(b).
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