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Abstract. This work investigates the potential of Reinforcement Learn-
ing (RL) to tackle robot motion planning challenges in the dynamic
RoboCup Small Size League (SSL). Using a heuristic control approach,
we evaluate RL’s effectiveness in obstacle-free and single-obstacle path-
planning environments. Ablation studies reveal significant performance
improvements. Our method achieved a 60% time gain in obstacle-free
environments compared to baseline algorithms. Additionally, our findings
demonstrated dynamic obstacle avoidance capabilities, adeptly nav-
igating around moving blocks. These findings highlight the potential of
RL to enhance robot motion planning in the challenging and unpre-
dictable SSL environment.
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1 Introduction

The RoboCup Small Size League (SSL) is a robot soccer competition that focuses
on the problem of multi-robot cooperation and control in a highly dynamic
environment [4]. This challenging game requires controlling a team of up to
11 robots to work together to perform passes, dribbles, and shots on goal in a
coordinated and effective way. The effectiveness of these actions hinges on precise
path-planning tailored to the distinct motion models of each robot [10].

Figure 1 represents the general workflow for planning a robot’s motion within
the SSL environment. Given a target position and orientation in the environment
(depicted in orange), the process unfolds in three key steps. Initially, global
planning calculates a geometric path, represented by a set of coordinates in the
configuration space, guiding the robot toward the desired target. Subsequently,
the local planner generates a sequence of desired states, comprising positions
and velocities, forming a trajectory aligning with the previously computed path.
Finally, the motion control module determines the requisite control inputs for
the robot to transition from its current state to the next desired state.

Reinforcement Learning (RL) has emerged as a promising approach for robotic
control tasks[16,19]. RL offers a paradigm where agents learn optimal strategies

http://arxiv.org/abs/2404.15410v1
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Fig. 1: General workflow for robot motion planning and control, divided into
Global planning, local planning, and motion control. The first two stages plan
the points and velocities the agent should follow, while the last controls the
robot. This Work focuses on the first two modules of this workflow.

through interaction with their environment. This learning paradigm finds a nat-
ural application in the SSL, as it allows agents to adapt and improve their
decision-making processes in response to the dynamic and unpredictable nature
of the game [29].

We discern a hierarchical structure by adapting the motion planning workflow
to RL learning environments. While the motion control module directly governs
the robot’s actions, the global and local planning modules serve as intermediary
sub-goals to be achieved. We refer to the motion control task as goToPoint,
with global and local planning denoted as path-planning.

Building upon this foundation, we propose a model-free path-planning method-
ology, leveraging goal-conditioned policies that take the goal state as input
[14,26], and yield sub-goals to be executed by an omnidirectional motion control
[28]. Sim2Real is a subfield of Machine Learning focused on mitigate the gap
between simulated and real-world environments [13,9]. While RL environments
traditionally model the entire motion planning system, integrating a Sim2Real
module becomes imperative to transfer learned models to real-world settings.
Our methodology circumvents this challenge, as the path-planning model re-
mains agnostic to the training environment, whether simulated or real.

Our primary contribution lies in a methodology for employing Reinforcement
Learning in the path-planning task, creating a model that seamlessly transitions
from simulation to reality [10,11]. We evaluate the efficacy of the Soft Actor-
Critic (SAC) [12] algorithm across both baseline and proposed learning envi-
ronments, shedding light on discrepancies inherent in the baseline’s reliance on
goToPoint to address the path-planning task. Additionally, we introduce two
state-of-the-art methods to mitigate action instability and craft intuitive tra-
jectories. Finally, through empirical validation, we demonstrate the readiness of
our model for real-world deployment.
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2 Related Work

Traditionally, motion planning systems are conceptualized as single complex
agents aimed at solving the entire system [7,8,22]. However, a hierarchical un-
derstanding of the system [23,30] delineates a manager-worker structure, with
the path-planning task delegated to a manager agent and goToPoint executed
by a worker agent. In our approach, we base the environment development on
the managerial treatment of the environment in existing works.

In Reinfocement Learning, the reward function quantifies the impact of an
action on the environment and serves as a crucial component to guide the agent
through the learning process [29]. Our baseline work [5] endeavors to solve the
path-planning task for robots in the Small Size League (SSL) of RoboCup [4].
As elucidated in subsequent sections, [5] adopts a reward system emphasizing
direct impact actions, culminating in an inherently unstable goToPoint agent.

The challenge of ensuring the robustness of RL algorithms in handling con-
tinuous actions has been extensively studied in the realm of robot learning
[18,25,27]. A hallmark of a proficient path-planning algorithm lies in its abil-
ity to generate a minimal set of stable output points. Contrarily, algorithms
such as the one proposed in [5] exhibit instability, rendering them impractical
for real-world deployment. To address this, we employ two learning methods for
the agent [15,21], to produce a model characterized by desired features such as
action stability and simplicity.

Our methodology establishes a conducive learning environment for the path-
planning task, anchored on three core pillars: a reward system centered on agent
actions, action stability, and simplicity in action selection. Our results yield path-
planning agents capable of generating intuitive trajectories for human compre-
hension. While the motion control aspect for SSL robots has been extensively
explored in prior works [3,2,1], our deliberate abstraction of this module enables
our agents to seamlessly integrate into real-world setups, facilitating a plug-and-
play deployment paradigm.

3 Motion Planning Learning Environments

We adopted a similar environment structure guided by the fundamental princi-
ples of [5]. However, we explore RL-based path-planning to abstract the motion
control module, following the pipeline presented in Figure 1 1.

3.1 Baseline Environment

Cruz et al. [5] explore two RL-based motion planning approaches: RL-based
path-planning to a given control system and a single-component approach, where
the RL agent learns both motion planning and control. As a starting point for

1 Agents, both trainable and trained, are available at
https://github.com/goncamateus/Planning-the-path-with-rl

https://github.com/goncamateus/Planning-the-path-with-rl
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this work, we have successfully replicated their environments within the rSoccer
framework [19], employing the first approach as a Baseline environment for this
research. The state space within these environments is characterized by a 13-
dimensional vector: (xt, yt, cos(θt), sin(θt), vtx, vty, xr, yr, cos(θr), sin(θr),
vrx, vry, ωr), where t and r labels account for target and robot respectively.
Also, in applying RL-based path-planning to a given motion control, the action
space consists of a 6-tuple (x, y, vx, vy , sin θ, cos θ), generating a sub-goal at each
environment step. Notably, these vectors are subject to normalization concerning
the maximum values in each dimension, except for the angular components,
represented as sine and cosine values.

The reward system in [5] is defined byRT (s, a) = Rd(s, a)+Rθ(s, a)+Rt(s, a),
where:

Rd(s, a) =

{

−d(s, a), if dist(s, a) > Dth

10, otherwise

Rθ(s, a) =

{

−δ(s,a)
π

, if δ(s, a) > θth

1, otherwise

Rt(s, a) =

{

1000, if dist(s, a) > Dth and δ(s, a) > θth

0, otherwise

Here, s and a are state and action, d(s, a) and δ(s, a) are the distance and angle
difference to the target, with thresholds Dth and θth, respectively. As elucidated
in Section 2, these rewards do not depend directly on the actions taken but on
the robot’s actuators. See in Figure 2a a graphical representation of the angle
difference and the distance to the target.

3.2 Proposed Environment

Firstly, we simplified the learning problem by imposing two main constraints:
the agent’s actions velocity components magnitude is constrained to zero; the
goal also has the target velocity magnitude constrained to zero. Therefore, the
Local Planning, as seen in Figure 1, is in form of x, y, θ, 0, 0. The state and action
spaces remain the same as in the Baseline.

The reward system proposed by [5] accounts only for the robot’s properties,
underscoring the agent’s responsibility to optimize its actions and achieve the
desired objectives. We introduced an action-centric reward structure by adding
action features to our reward system, emphasizing states where the robot is on
the cusp of achieving favorable outcomes within each reward component.

Therefore, the whole reward system, Rd, Rθ, and Rt, outlined in Section 3.1
remains the same but changes the reference from the robot to the sub-goal action
of our path-planning agent. Note in Figure 2b a visual difference between our
Proposed environment and the Baseline.

In our proposed reward system, the agent is penalized if the generated path is
incompatible with the target. This strategic shift ensures that the agent’s learned
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actions align more closely with the desired trajectory, fostering a genuine path-
planning capability and reinforcing the agent’s focus on optimal and effective
target-reaching strategies.

a

R T

(a) Baseline

a

R T

(b) Proposed

a

R T

O

(c) Obstacle

Fig. 2: Visualization of the “Baseline”, “Proposed”, and “Obstacle” learning en-
vironments with example rewards. The circles blue (R), magenta (a), yellow (O),
and orange (T) represent the robot’s position, the action taken, the obstacle, and
the target goal, respectively. The white arc and lines illustrate the angular differ-
ence, δ(s, a), and distances, d(s, a), o(s, a), to target and obstacle, respectively.

3.3 Proposed Obstacle Environment

The obstacle setup inherits the Proposed environment and adds an enemy robot
as the obstacle. Therefore, the state space for this environment is incremented by
a 5-dimensional vector referent from the obstacle: xo, yo, vox, v

o
y, ω

o. The obstacle
moves randomly, varying its speed in a range of [0, 1]m/s each step. In this
environment, we also add penalties for hitting the obstacle and the actions being
close to it. When the agent hits an obstacle, the episode fails, and the penalty
is the inverse of reaching the target.

At each step, we penalize the agent’s proximity from the obstacle with a
parametric Gaussian in function of the distance between the action and the
obstacle o(s, a), expected value µ = 0, and variation σ = 1. Therefore, we
can describe the reward system as RT (s, a) = Rd(s, a) + Rθ(s, a) + Rt(s, a) +
Robst(s, a) + Rhit(s, a), where Rhit(s, a) = −1000 if the robot hits the obstacle;
otherwise, 0. See the addition of the obstacle distance reward in Figure 2c.

4 Mitigating Action Instability

The prominent issue of erratic and non-smooth actions learned by RL policies
is well-recognized, posing potential concerns such as overheating and energy
wastage problems in practical applications [17,6]. In our context, this problem
manifests as the agent controlling the robot not through angular or linear ve-
locities but via poses. We introduce two techniques known to be effective in
addressing this challenge in our training process.
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The Frame skip wrapper simplifies action sequences by repeating a given
action for a specified number of steps. As it demonstrated to enhance agent per-
formance in Atari games using Deep Q-Networks [20,15], we apply this wrapper
with a skip rate of 16 in the rSoccer framework [19]. This adjustment signifi-
cantly reduces the number of actions per episode from 1200 to a maximum of
75.

Mysore et al. [21] introduce an intuitive regularization technique, achieving
an impressive 80% reduction in power consumption during robot experiments.
This technique, termed Conditioning for Action Policy Smoothness (CAPS),
introduces an additional loss term for the Actor in an Actor-Critic setup. CAPS
aims to penalize actions that exhibit significant differences for similar states,
promoting smoother and more controlled behavior.

5 Results

We evaluate the agent’s performance in the presented environments, namely
Baseline, Proposed, and Obstacle, comparing their episodic lengths and the
Cumulative Pairwise Action Distance (CPAD), a novel proposed measure de-
signed to assess the stability of executed actions. This metric quantifies the
overall displacement solely in the (x, y) position and is mathematically defined

as: D(A) =
∑K−1

i=0 Dist(Ai, Ai+1), where A represents the actions undertaken
throughout the episode, and K denotes the episode length.

CPAD offers valuable insights into the agent’s behavioral stability. Specif-
ically, a consistently directed focus on a particular (x, y) position results in a
cumulative distance of 0. Conversely, rapid and erratic movements yield higher
cumulative distances. As such, a lower CPAD is a crucial indicator of more stable
and consistent actions, a pivotal attribute in motion planning.

Next topics unveils the results obtained from trained agents using the Soft
Actor-Critic (SAC) [12] method in the setups described in Section 3. It is im-
portant to note that, given our use of the SAC algorithm for training agents,
adjustments were made to accommodate the CAPS algorithm. SAC’s policy en-
tropy factor α is a parameter of the policy learning method to induce exploration
during training. This parameter is originally set as trainable to, for example, ex-
plore at the beginning of training and then having stable actions. When applying
CAPS at SAC, the α parameter hinds the stability loss, and the learning in gen-
eral. Therefore, we set α as a constant throughout the SAC-CAPS algorithm
execution.

5.1 Comparing Baseline and Proposed Environments

This evaluation assesses SAC agents in both Baseline and Proposed environments
using four different setups: 1) Vanilla, 2) with Frame Skip, 3) with CAPS, and
4) with both Frame Skip and CAPS (FSCAPS). These setups provide insights
into the model’s adaptability within a real-world environment.
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Table 1 shows the proposed metrics results for obstacle-free environments.
Notably, both metrics gradually decrease with the addition of action-stabilizing
methods. The Proposed environment consistently outperforms the Baseline, show-
casing improved agent motion.

Table 1: Test results distributions are presented for obstacle-free environments
over 1000 episodes. Pairwise comparisons are conducted for each setup using the
methods outlined in Section 4. The Vanilla experiments involve running agents in
the environments described in Section 3 without any action stabilizing method.
The Frame Skip and CAPS experiments are similar but include either the frame
skip or CAPS method. The FSCAPS experiments encompass both stabilization
methods.

Episode Length (steps) CPAD (m)
Environment IQR Max Min IQR Max Min

Baseline 1200 (1200 - 1200) 1200 52 20.84 (14.42 - 26.75) 47.66 1.39
Vanilla

Proposed 128 (102 - 152) 1200 35 6.03 (3.93 - 8.07) 16.43 0.20

Baseline 198 (150 - 265) 1200 49 13.53 (11.03 - 16.55) 38.40 3.46
Frame Skip

Proposed 119 (95 - 141) 223 33 1.31 (0.60 - 2.12) 6.80 0.01

Baseline 1200 (731 - 1200) 1200 37 13.97 (9.61 - 16.31) 22.86 1.91
CAPS

Proposed 113 (91 - 134) 1200 33 1.29 (0.81 - 1.87) 3.81 0.14

Baseline 109 (87 - 130) 196 34 0.58 (0.36 - 0.87) 2.22 0.02
FSCAPS

Proposed 114 (92 - 137) 193 31 0.06 (0.05 - 0.08) 0.16 0.00

When evaluating individual experiments through a “Baseline vs Proposed”
lens, our proposed environment consistently demonstrates superior performance
in both episode length and CPAD metrics. The Vanilla experiment, notable
improvements of 90% for episode length and 71% for CPAD were ob-
served. Incorporating the Frame Skip wrapper yielded a significant performance
enhancement, reducing task completion time by approximately 80 steps (equiv-
alent to 6% of the total episode) and achieving a 90% improvement in the CPAD
metric. In the CAPS experiment, inspired by [21], we achieved a 78% CPAD re-
duction compared to Vanilla-Proposed. This outcome underscores the limitations
of baseline-trained agents in attaining the precision of our proposed approach.

Combining action-stabilizing methods in the FSCAPS experiments showcases
enhanced performance. The Baseline-trained agent exhibits marginally improved
episode length, while the Proposed-trained agent demonstrates a remarkable
tenfold improvement in action precision. Therefore, the gain in episode length
is deemed negligible compared to the Proposed agent’s superior transfer capa-
bility to a real-world environment.

In comparing experiments within our proposed environment, the final tem-
poral gain between Vanilla and FSCAPS experiments is modest, with only 14
simulated steps (1% of the total episode) faster. However, examining the CPAD
metric reveals a substantial increase in action stability with each addition, re-
sulting in a final gain 100 times better than the environment alone. See in
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Figure 3 trained agents for our proposed environment in each experiment. These
compelling results encourage further research, particularly in environments with
obstacle setups.

(a) Vanilla (b) Frame Skip (c) CAPS (d) FSCAPS

Fig. 3: Trained Soft Actor-Critic agents operating within the Proposed environ-
ment across various experiments. The orange circle denotes the target goal, while
the red dots trace the actions executed by the agent throughout the episode. The
red line visually maps the trajectory followed by the robot. As depicted in Figure
3d, the agent demonstrates precision by consistently reaching the target without
deviation.

5.2 Evaluating Obstacle Avoidance

The proposed Obstacle environment is evaluated using SAC agents following
the scheme outlined in Section 5.1. This environment features a simple scenario
with a single mobile robot acting as the obstacle. Uniquely in this setup, the
percentage of hitting the obstacle is introduced as an additional metric, pro-
viding insights into the adaptability of our previous research in obstacle-laden
environments.

Table 2 presents results from experiments in the Obstacle environment. Pre-
liminary results indicate that the baseline method struggled to solve the task
consistently within the imposed training time. In contrast, our final method,
FSCAPS, introduces a robust and adaptable approach for environments with
obstacle. Understandably, variations in actions are observed as the agent needs
to navigate around the moving obstacle. The low rate of collisions suggests that
the agent effectively learned the purpose of the environment, even at maximum
speed, with the episode length nearly identical to the setup without obstacles.
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Table 2: Test results distributions are presented for the environment with obsta-
cle over 1000 episodes.

Episode Length (steps) CPAD (m) Collision
IQR Max Min IQR Max Min

Vanilla 1200 (1200 - 1200) 1200 132 12.38 (10.70 - 14.21) 35.03 4.10 12.38%

Frame Skip 1200 (1200 - 1200) 1200 148 6.03 (5.24 - 6.90) 11.35 2.23 5.61%

CAPS 1200 (1200 - 1200) 1200 670 11.35 (10.55 - 12.17) 20.60 4.10 1.32%

FSCAPS 115 (113 - 158) 1200 79 1.27 (1.06 - 1.53) 5.87 0.55 0.61%

5.3 Real environment results

After obtaining stable and accurate results in a simulated environment, the
trained agents were subsequently deployed in a real-world setting. We integrated
our model into the RobôCIn SSL-Unification software [3] using the TorchScript
module [24] for compilation and adaptation purposes. It is important to note
that the RobôCIn SSL-Unification software employs its own motion control sys-
tem, whereas our agents were trained using a general omnidirectional motion
control approach [28].

The agents utilized in these experiments included the Vanilla agent, trained in
an obstacle-free environment, and the FSCAPS agent, trained in our proposed
“Obstacle” environment. For experiments involving obstacles, we employed a
fixed obstacle to ensure safety.

Table 3 presents the episode length and CPAD for the experiments on the
real-world. The Vanilla agent failed to complete the task in any of the ten trials.
The CPAD metric suggests unstable paths extending to a length of 25 fields,
turning it unpractical to real-world.

In contrast, the FSCAPS agent exhibited consistent results across both envi-
ronment setups. These findings align with our approach of developing a method-
ology that is agnostic to the motion control system, thereby facilitating deploy-
ment in real-world scenarios.

Table 3: Test results distributions are presented for real-world setup over 10
episodes.

Episode Length (steps) CPAD (m)
IQR Max Min IQR Max Min

Vanilla 1200 (1200 - 1200) 1200 1200 227.93 (227.06 - 230.79) 235.06 225.45

FSCAPS 159 (155 - 160) 162 135 0.10 (0.10 - 0.10) 0.99 0.09

Obstacle 140 (131 - 151) 171 109 2.10 (2.04 - 2.15) 2.32 2.01
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6 Discussion

In analyzing agent adaptability, FSCAPS demonstrates significant superiority
in acquiring efficient strategies in challenging environments. The combination of
Frame Skip with CAPS accelerates adaptation to obstacle dynamics, evidenced
by reduced episode durations and collision rates. This suggests more effective
learning and better generalization compared to isolated methods. Environmental
parameters significantly impact path planning efficacy, with FSCAPS exhibiting
greater robustness against environmental variations. This emphasizes the need
for strategies resilient to fluctuations.

Compared to state-of-the-art approaches, FSCAPS not only outperforms in
efficiency and safety but also strikes a balanced solution, especially in complex
obstacle environments where real-time adaptation is crucial. Navigation failures
revealed that Pure and Frame Skip methods struggled with unpredictable obsta-
cles. The integration of CAPS enhances predictability and action smoothness,
reducing collision rates.

While longer episodes offer more experience, they can induce fatigue. FS-
CAPS reduces episode duration without compromising safety, offering a sustain-
able training approach. However, generalizing FSCAPS to untested scenarios
requires further exploration to validate its real-world robotic applications.

7 Conclusion

In this study, we comprehensively evaluated Reinforcement Learning (RL) ap-
plied to the intricate challenges of robot motion planning within the RoboCup
Small Size League (SSL). Leveraging a heuristic control approach, we explored
various learning environments, comparing the performance of SAC agents in
both Baseline and Proposed setups.

Our exploration in obstacle-free environments showcased the Proposed envi-
ronment’s effectiveness in reducing action instability, and enhancing agent per-
formance. The Frame Skip wrapper further improved efficiency, and the com-
bined use of Frame Skip and CAPS in the “FSCAPS” experiments demonstrated
significant performance gains.

Transitioning to obstacle-laden environments, the initial experiments faced
challenges in consistently solving tasks, emphasizing the complexity introduced
by mobile obstacles. However, our final method, “FSCAPS”, exhibited evident
adaptability, effectively navigating around obstacles with a minimal rate of col-
lision.

Furthermore, we validated the adaptability of our model in a real-world set-
ting without compromising performance in terms of trajectory length or preci-
sion. This corroborates the efficacy of our approach, emphasizing the importance
of initially addressing high-level tasks for seamless model adaptation between
simulation and real-world deployment.

These results underscore the significance of our research in advancing RL
techniques for robot motion planning, particularly in dynamic and challenging
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SSL environments. The strategic integration of heuristic control and innovative
stabilizing techniques demonstrates the potential for improved decision-making
and adaptability in dynamic robotic scenarios, paving the way for advancements
in the field of autonomous robotics.
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