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Abstract

We provide a comprehensive analysis of the Type-I Seesaw family of neutrino
mass models, including the conventional type-I seesaw and its low-scale vari-
ants, namely the linear and inverse seesaws. We establish that all these models
essentially correspond to a particular form of the type-I seesaw in the context
of explicit lepton number violation. We then focus into the more interesting
scenario of spontaneous lepton number violation, systematically categorizing all
inequivalent minimal models. Furthermore, we identify and flesh out specific
models that feature a rich majoron phenomenology and discuss some scenarios
which, despite having heavy mediators and being invisible in processes such as
µ→ eγ, predict sizable rates for decays including the majoron in the final state.

1 Introduction

The discovery of neutrino oscillations [1, 2] highlights the need for Beyond Standard Model
(BSM) physics. While neutrinos are massless within the Standard Model (SM) framework,
their observed masses not only point towards a novel mechanism beyond the traditional Higgs
mechanism but also require a robust explanation for their relatively small scale compared to
the electroweak scale. Among various models proposed in the literature, the type-I seesaw
mechanism [3–7] stands out for its simplicity and elegance. In this framework, the smallness
of neutrino mass is inversely related to a new, higher mass scale M , represented by the
Majorana mass of newly introduced neutral fermions.

While elegant from a theoretical standpoint, the type-I seesaw model inherently implies
that any phenomenological effects are suppressed by the small seesaw expansion parameter
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ε2 = O (Λ2
EW/M

2) = O (mν/M) ≪ 1, where ΛEW ∼ 100 GeV is the electroweak scale.
However, this constraint is relaxed in genuine low-scale variants of the model, such as the
linear [8–10] and inverse [11, 12] seesaws. In these models, phenomenological effects are not
neutrino-mass suppressed, potentially leading to discernible traces in charged Lepton Flavor
Violation (cLFV) [13–17], through direct production of mediators at colliders [18–29], via
non-standard neutrino propagation effects [30,31] or other low-energy probes [32–40]. For a
short review on low-scale neutrino mass models see for example [41].

The existence of Majorana masses for neutrinos inherently implies the violation of lepton
number symmetry. This violation can occur either explicitly or spontaneously. When the
symmetry is global, the latter leads to the presence of a Nambu-Goldstone boson, known
as the majoron (J) [42–46]. In this work we analyze the Type-I Seesaw family 1, composed
by the standard type-I seesaw model and its many low-scale variants. We classify the mem-
bers of the family and explore novel neutrino mass models that feature rich phenomenology.
Cosmological imprints of the majoron such as ∆Neff [47, 48] could provide a complemen-
tary approach to the low-scale seesaw signatures discussed above. Here, we will focus on
models which feature interactions between the majoron and charged leptons as their main
phenomenological signature, opening new avenues for detecting and studying the effects of
lepton number violation.

The paper is organized as follows. We start with a pedagogical introduction of the Type-I
seesaw family and the explicit lepton number breaking scenario in Secs. 2 and 3. In Sec. 4 we
focus on the more interesting case of spontaneous symmetry breaking (SSB), where we aim
at classifying and analyzing all inequivalent minimal models of the Type-I seesaw family.
We also point out those models in which the majoron phenomenology is not neutrino-mass
suppressed and flesh them out in Sec. 5. Finally, we conclude with a summary in Sec. 6.
Additional technical details are given in two Appendices.

2 The Type-I Seesaw family

Let us start by defining the Type-I Seesaw family. A model belongs to the Type-I Seesaw
family if its neutral fermion mass matrix can be written as

M =

 0 MD

MT
D MF

 , (1)

in the basis (νi, Fj), where νi (i = 1, 2, 3) are the usual 3 SM neutrinos while Fj (j =
1, . . . , nF ) are nF heavy BSM neutral fermions. MD is a general 3 × nF matrix and MF is
an nF × nF symmetric matrix. Furthermore, we demand the following condition in order to
consider the model as part of the Type-I Seesaw family:

The hierarchy
(
MDM

−1
F

)
ij

≪ 1 ∀ i, j is satisfied. This allows one to

expand the relevant physical quantities in powers of ε = O
(
MDM

−1
F

)
.

These are nothing but the seesaw limit and expansion, respectively.

1From now on, we use capital letters for the family and lowercase for the specific model.
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Which implies

A light Majorana mass term for the SM neutrinos, Mν ≪ ΛEW, is gener-
ated at tree level.

Under this assumption we can compute a general formula forMν . By rotating the fields into
the mass eigenstates, the symmetric matrix M is brought into diagonal form by means of a
Takagi decomposition as

UTMU = M̂ , (2)

where U is a unitary matrix and M̂ = diag(m1,m2, . . . ,m3+nF
) is the neutral fermion mass

matrix in the mass basis. The matrix U can be expressed as

U =

Ul 0

0 Uh

 √
I3 − PP † P

−P †
√

InF
− P †P

 ≡ U2 U1 . (3)

Here, Ul, Uh and U1,2 are 3×3, nF ×nF and (3+nF )×(3+nF ) unitary matrices, respectively,
P is a 3×nF matrix and we denote a general n×n identity matrix as In. This factorization
of the unitary matrix U allows one to easily identify the role played by each factor. U1 brings
the neutral fermion mass matrix into a block-diagonal form, while U2 finally diagonalizes,
independently, the light and heavy sectors of the matrix. For instance, the light sector is
diagonalized as

UT
l Mν Ul = diag(m1,m2,m3) , (4)

with m1,m2,m3 the active neutrino masses. Let us now focus on the block-diagonalization
of the mass matrix. By expanding P in powers of ε,

P =
∞∑
i=1

Pi , (5)

with Pi ∼ εi, at leading order in ε one finds√
I3 − PP † = I3 +O

(
ε2
)
, (6)√

InF
− P †P = InF

+O
(
ε2
)
, (7)

and

P = P1 +O
(
ε2
)
=M∗

D

(
M−1

F

)†
+O

(
ε2
)
. (8)

Using these results, we find at leading order in ε

UT
1 MU1 ≈

−MDM
−1
F MT

D 0

0 MF

 , (9)

and, therefore,
Mν = −MDM

−1
F MT

D +O
(
ε2
)
, (10)
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the well-known seesaw formula [3–7]. We can now identify some known models belonging to
this family based on the structure of theMF andMD matrices, namely, the type-I seesaw, the
inverse seesaw and the linear seesaw. We will focus on the minimal realizations of the inverse
and linear cases, which require two different neutral fermions, N and S. For simplicity, we
will consider the same number of generations for both of them, nN = nS = nF/2. In this
case, the most general matrices are given by

MD =
(
mD mL

)
, MF =

µN mR

mT
R µS

 , (11)

where mD, mL and mR are two 3× nN and one nN × nN general matrices, respectively, and
µS and µN two nN × nN symmetric matrices. In order to distinguish between models we
must express Mν in Eq. (10) in terms of the blocks of MF and MD. In order to compute
M−1

F , we will consider separately the cases mR ̸= 0 and mR = 0 and assume that mR is
invertible in the former case. 2 One obtains

M−1
F =



−
(
mT

R

)−1
µS InS

InN
−m−1

R µN

 m−1 0

0 (mT )−1

 , if mR ̸= 0 ,

µ−1
N 0

0 µ−1
S

 , if mR = 0 .

(12)

where we have defined m = mR − µN

(
mT

R

)−1
µS. Thus, the light neutrino mass matrix is

given by

Mν =



(
mD

(
mT

R

)−1
µS −mL

)
m−1mT

D +
(
mLm

−1
R µN −mD

)
(mT )−1mT

L +O
(
ε2
)
,

if mR ̸= 0 ,

−mD µ
−1
N mT

D −mL µ
−1
S mT

L +O
(
ε2
)
,

if mR = 0 .

(13)
Eq. (13) constitutes a general result, valid for any model of the Type-I Seesaw family.

Note that there is a continuous equivalence between both cases in this equation, i.e. taking
the limit mR → 0 in the case mR ̸= 0 yields the same result as the exact case mR = 0, as
expected.

The different models in the Type-I Seesaw family correspond to different hierarchies
among the blocks in the MD and MF matrices. In principle, each block is independent,
resulting in a unique hierarchy for every pair of blocks. This gives rise to many hierarchies

2This is usually assumed, for instance, in the inverse and linear seesaws. Similar results can be obtained
by assuming µN or µS to be invertible.
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Hierarchies µN ≪ µS ∼ mR µS ≪ µN ∼ mR µN , µS ≪ mR

mL ∼ ΛEW type-I type-I type-I

mL ≪ ΛEW
mL

mD
≫ µS

mR
type-I linear linear

mL ≪ ΛEW
mL

mD
≪ µS

mR
type-I inverse inverse

Table 1: Classification of different models featuring one high-energy scale and one or two
low-energy scales in the MD and MF matrices into three distinct neutrino mass generation
mechanisms: type-I seesaw, inverse seesaw, and linear seesaw.

and models, some of which are very popular while others are less well-known. For instance,
one finds the usual type-I seesaw whenever there is no hierarchy among the blocks in MF .
Alternatively, if µN , µS ≪ mR, Eq. (13) simplifies to

Mν =mD

(
mT

R

)−1
µSm

−1
R mT

D +mLm
−1
R µN

(
mT

R

)−1
mT

L

−mD

(
mT

R

)−1
mT

L −mLm
−1
R mT

D +O
(
ε2
)
, (14)

which could either lead to an inverse (if mL ≪ mD and
µS

mR

≫ mL

mD

) or to a linear seesaw (if

mL ≪ mD and
µS

mR

≪ mL

mD

). In general, many possibilities exist. In the usual case of one

high-energy scale in MF and one or two low-energy scales (one in MF and, possibly, one in
MD), all scenarios are summarized in Table 1. We refer to Appendix A for a comprehensive
discussion considering all possible hierarchies.

We have just seen that different internal hierarchies lead to different mass generation
mechanisms in the context of the Type-I Seesaw family. However, one might wonder if
these distinct mechanisms represent genuinely different models or if there is some kind of
underlying model below them; i.e. if we can find one Lagrangian describing all these models.
We will demonstrate that the latter is true in the case of the explicit breaking of lepton
number symmetry, U(1)L, but not when the breaking is spontaneous.

3 Explicit lepton number violation

We start with a pedagogical Section showing that all models with explicit lepton number
violation can be seen as equivalent to a type-I seesaw with specific numbers of fermion
singlet generations and matrix textures. Let us again consider nN generations of the N and
S fermion singlets, with the Lagrangian

−L = yN L̄H̃N + yS L̄H̃S +mR N̄
cS +

µN

2
N̄ cN +

µS

2
S̄cS + h.c. . (15)

Here H̃ = iσ2H
∗, yN and yS are two 3 × nN Yukawa matrices, mR is an nN × nN matrix

with dimensions of mass and µN and µS are two nN × nN symmetric matrices, both with
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dimensions of mass. The Lagrangian in Eq. (15) violates lepton number explicitly. It can
be expanded as

−L = yN L̄H̃N + y†N N̄H̃
†L+ yS L̄H̃S + y†S S̄H̃

†L+mR N̄
cS +m†

R S̄N
c

+
µN

2
N̄ cN +

µ∗
N

2
N̄N c +

µS

2
S̄cS +

µ∗
S

2
S̄Sc , (16)

Let us now combine the N and S singlet fermions into the multiplet F , defined by

F =
(
N S

)
. (17)

Now we can make use of the identity ψ̄cχc = χ̄ψ, valid for any two fermions ψ and χ, to find
S̄cN = N̄ cS. This allows us to write Eq. (16) as

−L = Y L̄H̃F +
MF

2
F̄ cF + h.c. , (18)

with the dictionary

Y =
(
yN yS

)
, (19)

MF =

 µN mR

mT
R µS

 . (20)

The Lagrangian of Eq. (18) is that of a type-I seesaw with nF = 2nN generations of F singlets
and the specific matrix textures given by Eqs. (19) and (20). This proves the equivalence
of all models in the type-I family to a specific texture of the standard type-I seesaw. This
is not surprising: once we allow for a source of explicit breaking of lepton number in the
Lagrangian, the singlets N and S cannot be distinguished and the model becomes a type-I
seesaw. As we will show in the next Section, this is no longer true if the breaking of lepton
number is spontaneous.

4 Spontaneous lepton number violation

We now turn towards the more interesting case of spontaneous lepton number violation. Our
goal is to analyze the minimal realizations of the Type-I Seesaw family with spontaneously
broken global U(1)L. In defining minimal, we consider models featuring the fields listed in
Tab. 2. In addition to the SM doublets H and L, with lepton numbers qH = 0 and qL = 1,
respectively, we will allow for the presence of the new fermions N and S, as well as a second
scalar doublet χ and the scalar singlet σ. The number of generations of N and S will again
be denoted by nN = nS and left unspecified. The lepton number of N will be fixed to
qN = 1, so that the Yukawa term L̄H̃N is allowed and N can be identified with the usual
right-handed neutrino. We also impose that χ couples to S through the Yukawa term L̄χ̃S,
which fixes its lepton number to qχ = qS − 1, where qS is the lepton number of S. Finally,
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Fields SU(2)L ⊗ U(1)Y U(1)L

H (2, 1
2
) 0

χ (2, 1
2
) qS − 1

σ (1, 0) qσ

L (2,−1
2
) 1

N (1, 0) 1

S (1, 0) qS

Table 2: Lepton number and gauge electroweak charges of the particles in the Type-I seesaw
family. The lepton number of N is fixed by the term L̄H̃N , while the lepton number of S
is model-dependent and sequentially fixes the lepton number of χ through the Yukawa term
L̄χ̃S.

the lepton number of σ will be left as a free charge, denoted by qσ. All neutral scalars will
be assumed to get non-zero vacuum expectation values (VEVs),

⟨H0⟩ = vH√
2
, ⟨χ⟩ = vχ√

2
, ⟨σ⟩ = vσ√

2
. (21)

Therefore, H and χ will be responsible for the breaking of the electroweak symmetry, whereas
χ and σ will break U(1)L if they have non-vanishing lepton numbers. The breaking of lepton
number implies the existence of a physical Goldstone boson, the majoron, J [42–46]. Its
presence has important consequences for the different energy scales in our setup. Typically,
the hierarchy vχ ≪ vσ is phenomenologically required, as otherwise the majoron would have
a sizeable doublet component, allowing the decay Z → JJ , which is strongly constrained
by LEP [49]. Moreover, the additional hierarchy vχ ≪ vH ensures that the real component
of H0 will be SM-like, as demanded by current LHC data. We note that this is a natural
hierarchy, since mν ∝ vχ in many models. Finally, we must impose MD ≪MF to guarantee
the validity of the seesaw approximation, as required for the model to belong to the Type-I
Seesaw family. While we remain agnostic about the hierarchies among Yukawa couplings,
we assume that these will not be stark enough to overcome the VEV hierarchies, i.e. the
hierarchies in the mass matrix are driven by the VEVs.

Some additional comments are in order:

• Models that do not include all the fields in Tab. 2, but only a subset of them, will also
be considered in our analysis.

• Models with qS = 1 allow for a significant simplification. First of all, qH = qχ = 0
and the second scalar doublet χ is actually redundant, since its role can be played
by the usual Higgs doublet H. Moreover, qN = qS, which implies that the multiplet

F =
(
N S

)
transforms consistently under U(1)L.

• We will limit our analysis to models with a single majoron.

7



It proves convenient to classify the models in the Type-I Seesaw family according to the
texture of their neutral fermion mass matrix M. The different possibilities are given by:

Class 1


0 mD mL

mT
D µN mR

mT
L mT

R µS




0 mD mL

mT
D 0 mR

mT
L mT

R 0




0 mD 0

mT
D µN mR

0 mT
R µS

 (22)

Class 2


0 mD mL

mT
D 0 mR

mT
L mT

R µS




0 mD 0

mT
D 0 mR

0 mT
R µS

 (23)

Class 3


0 mD mL

mT
D µN mR

mT
L mT

R 0

 (24)

Lagrangian term Covariance under U(1)L

N̄ cN 2

S̄cS 2 qS

N̄ cS qS + 1

Table 3: Covariance under U(1)L of the different mass terms in the gauge singlet sector
that must be present or forbidden in a model leading to a certain mass matrix. Since we are
imposing the minimality condition that only one σ singlet exists, then all the quantities in
the second column must be either 0, and then the term is explicitly present in the Lagragian,
or equal to ±qσ, and then it is spontaneously generated, or forbidden in any other case.

This classification into different classes of matrices is not arbitrary. As will be shown
below, the conditions allowing for the more complex matrices (left) can be relaxed to give
the simpler models (right). The hierarchies among the mass terms will determine the type
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of model (type-I, inverse, linear or hybrid). Tab. 3 shows the covariance of the mass terms
in the gauge singlet sector. These results are useful to extract the possible lepton number
charges of S and σ that lead to each mass matrix.

Let us now present all the different minimal realizations of the Type-I Family with SSB.
For each realization, we will show the Lagrangian and the mass mechanism. We will also dis-
cuss the majoron resulting in each realization and comment on its 1-loop coupling to charged
leptons. This coupling is a crucial feature to distinguish among models and was computed
analytically in a generic scenario in [50]. For the sake of completeness, we summarize the
main results of this reference in Appendix B. To the best of our knowledge, among the models
in the Type-I Seesaw family, this coupling is only known for some realizations of the conven-
tional type-I seesaw (model C1a) [42–46, 50–53] and the inverse seesaw (model C1b/χ) [50],
while other models are studied here for the first time. 3 In particular, we will comment on
the neutrino mass suppression (or lack thereof) of the majoron coupling to charged leptons.
We will regard the majoron couplings to charged leptons as neutrino mass suppressed when
they are proportional to the same VEV ratios as those found in the neutrino mass formula.
For instance, in the usual type-I seesaw with three generations of right-handed neutrinos, one
finds that the coupling of the majoron to charged leptons scales as gJee ∝ mDm

†
D/vσ [50–53].

This is neutrino mass suppressed since mDm
†
D/vσ ∼ v2H/vσ ∼ mν .

4 Models with a majoron
coupling to charged leptons that is not neutrino mass suppressed will be regarded as en-
hanced. A summary of all the results that follow are given in Tab. 4.

4.1 Class 1

Let us start with Class 1 and consider the first matrix in Eq. (22),
0 mD mL

mT
D µN mR

mT
L mT

R µS

 . (25)

As already explained and discussed explicitly below, the other mass matrices (and hence
models) in this class can be recovered from this one by just removing some of the fields in
our general setup. The presence of the mass term N̄ cN forces |qσ| = 2. In combination
with the term S̄cS, this implies qS = ±1. In this case, N̄ cS is generated, either from a
σN̄ cS Yukawa term (once σ gets a VEV) or as a bare Lagrangian term. This leads to two
inequivalent realizations, which we now discuss separately.

3Although not exactly the same model as C3, this coupling was obtained for a related version with explicit
lepton number breaking in [54].

4A neutrino mass suppressed majoron coupling may, in principle, be sizable. As pointed out in [53], it is

possible to use the matrix structure of mD to suppress mν as −mDm−1
R mT

D while keeping mD m†
D/vσ large.

However, such a cancellation would require some fine-tuning, so we will ignore this fact.
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Viable
Models

Charges
(S, χ, σ)

Jℓℓ ∝ mν
Scalar
term

Type

C1a (1, 0,−2) Yes ∅ Type-I

C1b (−1,−2,−2) Yes χ†Hσ Hybrid

C1b/χ (−1, ∅,−2) Yes ∅ Inverse

C1b/σ (−1,−2,−1) Yes χ†Hσσ Linear

C2a
(
−1

3
,−4

3
,−2

3

)
Yes χ†Hσσ Type-I

C2a/χ
(
−1

3
, ∅,−2

3

)
Yes ∅ Type-I

C2b (0,−1,−1) No χ†Hσ Hybrid

C2b/χ (0, ∅,−1) No ∅ Inverse

C3 (−3,−4,−2) No χ†Hσσ Linear

C3/χ (−3, ∅,−2) mν at 1-loop

C4 (0,−1,−2) Minimal version is non-realistic

Table 4: Summary of all the possible minimal models in the Type-I Seesaw family. The
fourth column ‘Scalar term’ shows the term in the scalar potential that is not self-conjugate
in the cases where it exists. In the models with the doublet χ this term is necessary to avoid
a massless doublet majoron. For this reason, in the C1b/σ model, the scalar singlet σ does
not couple to the neutral fermions, but is needed to generate such a term.

4.1.1 Class 1a: qS = 1 ⇒ qχ = 0, qσ = −2

Since in this case qS = qN and qH = qχ, the Yukawa Lagrangian can be written as

−L = L̄H̃ (yN N + yS S) + σ

(
λ N̄ cS +

1

2
λN N̄

cN +
1

2
λS S̄

cS

)
+ h.c.

=Y L̄H̃F +
1

2
σ F̄ c ΛF + h.c. . (26)

Here we have identified χ = H, defined Y as in Eq. (19) and introduced

Λ =

 λN λ

λT λS

 . (27)

It is clear that this scenario, which we denote as C1a, is a conventional type-I seesaw, as

discussed in Sec. 3. The neutrino mass matrix will be given by mν ∼ Y 2v2H
Λvσ

∼ Λ2
EW

ΛH
, with

vσ ∼ ΛH ≫ ΛEW a large seesaw scale. The majoron phenomenology will therefore be neutrino
mass suppressed in this model, as discussed extensively in the literature [42–46,50–53].
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4.1.2 Class 1b: qS = −1 ⇒ qχ = −2, qσ = −2

With these charges, mR can exist as a bare mass and the Lagrangian is given by

−L = yN L̄H̃N + yS L̄χ̃S +mRN̄
cS +

1

2
λN σ N̄

cN +
1

2
λS σ

∗S̄cS + h.c. . (28)

Once the electroweak and lepton number symmetries are spontaneously broken we obtain,

mD =
vH√
2
yN , mL =

vχ√
2
yS , µN =

vσ√
2
λN , µS =

vσ√
2
λS . (29)

The VEV hierarchy vχ ≪ vH , required for the Higgs to be SM-like, implies

mL ≪ mD , µN ∼ µS . (30)

To keep the doublet component of the majoron negligible, we must also impose the hierarchy
vχ ≪ vσ. Depending on the hierarchies between mL, mR and µS,N one finds either a type-
I seesaw, a linear seesaw, an inverse seesaw or a hybrid scenario. In any case, this model
(C1b) and the ones in this class will lead to a majoron phenomenology suppressed by neutrino
masses.

We now consider the other two matrices in Class 1. By removing the singlet σ we find
the second matrix

−L = yN L̄H̃N + yS L̄χ̃S +mRN̄
cS + h.c. →


0 mD mL

mT
D 0 mR

mT
L mT

R 0

 . (31)

This model, as it is, features a purely doublet massless majoron and is thus not realistic.
However, this can be solved by re-adding the scalar singlet σ with charge qσ = −1. This
allows for the term χ†Hσσ, which would lead to singlet-doublet mixing after symmetry
breaking, hence suppressing the doublet component of the majoron. This would be the most
straightforward version of the classic linear seesaw with SSB and was studied extensively
in [55]. We denote this model as C1b/σ. If we instead keep the singlet scalar σ and remove
the scalar doublet χ we obtain the model C1b/χ, which is the spontaneous version of the
inverse seesaw [12]. In this case one recovers the third mass matrix in Class 1,

−L = yN L̄H̃N +mRN̄
cS +

1

2
λN σ N̄

cN +
1

2
λS σ

∗S̄cS + h.c. →


0 mD 0

mT
D µN mR

0 mT
R µS

 .

(32)
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4.2 Class 2

We start with the mass matrix 
0 mD mL

mT
D 0 mR

mT
L mT

R µS

 , (33)

and again look at the U(1)L covariance of the gauge singlet terms in Tab. 3. Since the term
N̄ cN must be forbidden in this scenario, qσ ̸= ±2. Again, two inequivalent scenarios arise.

4.2.1 Class 2a: qS = −1
3

⇒ qχ = −4
3
, qσ = −2

3

In this case, the Yukawa Lagrangian can be written as

−L = yN L̄H̃N + yS L̄χ̃S + λσN̄ cS +
1

2
λSσ

∗ S̄cS + h.c. , (34)

with

mD =
vH√
2
yN , mL =

vχ√
2
yS , mR =

vσ√
2
λ , µS =

vσ√
2
λS . (35)

Again, we must impose the VEV hierarchy vχ ≪ vH ≪ vσ, which leads to

mL ≪ mD mR ∼ µS ≫ ΛEW. (36)

The contribution of mL is actually subdominant and this model would be a type-I seesaw,
with mν ∼ v2H/vσ. As such, the same conclusion holds when removing the doublet, in which
case we find model C2a/χ, with the second mass matrix

−L = yN L̄H̃N + λσN̄ cS +
1

2
λSσ

∗ S̄cS + h.c. →


0 mD 0

mT
D 0 mR

0 mT
R µS

 . (37)

Both options will result in a majoron phenomenology suppressed by neutrino masses.

4.2.2 Class 2b: qS = 0 ⇒ qχ = −1, qσ = −1

With this charge assignment, the Yukawa Lagrangian is given by

−L = yN L̄H̃N + yS L̄χ̃S + λσN̄ cS +
1

2
µSS̄

cS + h.c. . (38)

As usual, several mass parameters are generated after SSB,

mD =
vH√
2
yN , mL =

vχ√
2
yS , mR =

vσ√
2
λ , (39)
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and, due to the VEV hierarchy vχ ≪ vH ≪ vσ, one finds

mL ≪ mD ≪ mR . (40)

Like in model C1b, described in Sec. 4.1.2, the hierarchy between mL and µS determines if
the model is an inverse seesaw, a linear seesaw or a hybrid. In this case, removing the singlet
scalar is not an option, as it would render some sterile states massless, but we can recover
the second matrix by removing the doublet,

−L = yN L̄H̃N + λσN̄ cS +
1

2
µS S̄

cS + h.c. →


0 mD 0

mT
D 0 mR

0 mT
R µS

 . (41)

The resulting model, denoted as C2b/χ, is a pure inverse seesaw and was analyzed in [56].
Both models have enhanced majoron phenomenology, as we will flesh out in Sec. 5.

4.3 Class 3

Finally, we reach Class 3. Again, we consider the mass matrix
0 mD mL

mT
D µN mR

mT
L mT

R 0

 . (42)

By looking at the covariance under U(1)L of the singlet sector (see Tab. 3) we can determine
the allowed lepton number charges of the states in the model. The term S̄cS must be
forbidden in this model, which implies that qS ̸= 0 and |qσ| ̸= 2qS. Thus, the only solution
is given by

qS = −3 ⇒ qχ = −4 , qσ = −2 (43)

Hence, the Yukawa Lagrangian can be written as

−L = yN L̄H̃N + yS L̄χ̃S + λσ∗N̄ cS +
1

2
λNσ N̄

cN + h.c. . (44)

After symmetry breaking,

mD =
vH√
2
yN , mL =

vχ√
2
yS , mR =

vσ√
2
λ , µN =

vσ√
2
λN . (45)

Finally, the usual VEV hierarchy vχ ≪ vH ≪ vσ implies in this case

mL ≪ mD ≪ mR ∼ µN , (46)

where once again the last condition comes from the requirement that the sterile states have to
be heavy, in the seesaw spirit. This is a linear seesaw with enhanced majoron phenomenology,
which will be fleshed out in Sec. 5. To the best of our knowledge, this model has not been
discussed before. A similar model was analyzed in [54], where the lepton number breaking
is explicit and not spontaneous, leading to a massive majoron.
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4.4 Related models

In addition to the models described previously, we highlight two additional ones that, while
not meeting our predefined criteria, remain both potentially viable and interesting. Remov-
ing the scalar doublet from the Class 3 mass matrix yields

0 mD 0

mT
D µN mR

0 mT
R 0

 . (47)

This configuration results in neutrinos that are massless at the tree level. Nonetheless,
neutrino masses emerge at the 1-loop level, and thus we do not consider it a part of the
type-I seesaw family. This texture of the mass matrix was explored in [56] and is referred to
as the Extended Seesaw.

Another model, not covered in our analysis, emerges from assigning the lepton number
charges as qS = 0 ⇒ qχ = −1, qσ = −2, which leads to the mass matrix

0 mD mL

mT
D µN 0

mT
L 0 µS

 . (48)

This charge assignment introduces an accidental U(1)H × U(1)χ × U(1)σ symmetry in the
scalar potential, resulting in two massless Goldstone bosons, with one being of doublet
nature. It is possible to implement a realistic version of this model by deviating from our
minimality conditions and incorporating additional singlet scalars. However, it is again
beyond the scope of our analysis.

5 Phenomenology of selected models

The classification in the previous Section shows that the Type-I Seesaw family is composed by
many distinct models, with potentially distinct phenomenological predictions. In particular,
the relevance of the majoron coupling to charged leptons, a crucial feature that can be
used to distinguish among models, has been highlighted. Reference [50] recently computed
general analytical expressions for the 1-loop coupling of the majoron to a pair of charged
leptons, valid in any model with a clear hierarchy of energy scales, as required for the seesaw
expansion to be consistent. In the context of the Type-I Seesaw family of models, one just
has to compute the four diagrams shown in Fig. 1. 5 In these diagrams, Sk, Pk and η+

represent, respectively, the neutral scalars, pseudoscalars and charged scalar in our setup.
As already explained, full expressions of the resulting majoron coupling to charged leptons
are given in [50]. We collect the most relevant results of this reference and apply them to
the Type-I Seesaw family in Appendix B.

5Other 1-loop diagrams represent corrections to a possible tree-level coupling and can be neglected.
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(a) W boson contribution (b) Z boson contribution

(c) η contribution (d) Scalar contribution

Figure 1: Feynman diagrams leading to the 1-loop coupling of the majoron to a pair of
charged leptons.

We will now explore the majoron phenomenology of three specifically chosen models that
feature an enhanced interaction of the majoron with charged leptons. As seen in Table 4, the
majoron interactions in the models not covered in this discussion are suppressed by neutrino
masses.

5.1 Hybrid mechanism with enhanced majoron LFV

Let us start by analyzing model C2b. The lepton number charges of the fields in the model
can be read off from Tables 2 and 4, but we give them explicitly in Table 5 for the sake of
clarity. The model is defined by the Yukawa interactions given in Sec. 4.2,

−L = Y L̄HeR + yN L̄H̃N + yS L̄χ̃S + λσN̄ cS +
1

2
µS S̄

cS + h.c. , (49)

which leads to the neutral fermion mass matrix

M =


0 mD mL

mT
D 0 mR

mT
L mT

R µS

 , (50)
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Fields SU(2)L ⊗ U(1)Y U(1)L

H (2, 1
2
) 0

χ (2, 1
2
) −1

σ (1, 0) −1

L (2,−1
2
) 1

N (1, 0) 1

S (1, 0) 0

Table 5: Lepton number and gauge electroweak charges of the particles in model C2b. This
model leads to a hybrid inverse-linear seesaw mechanism for neutrino masses.

with mD = yN vH/
√
2, mL = yS vχ/

√
2 and mR = λ vσ/

√
2. By assuming the usual hierar-

chies, µS, vχ ≪ vH ≪ vσ, the neutrino mass matrix is found to be

Mν ≈ v2H
v2σ

[
yN
(
λT
)−1

µSλ
−1yTN

]
− vH vχ

vσ

[(
yN
(
λT
)−1

yTS

)
+ tr.

]
, (51)

where tr. denotes the transposed of the previous matrix. The first term is the well-known
neutrino mass matrix from an inverse seesaw, while the second is the one from a linear
seesaw. Thus we deem this model as a hybrid mechanism. For the sake of generality we will
be agnostic regarding the hierarchy µS/vχ. λ can be taken to be diagonal and real without
loss of generality and, given the hierarchy µS ≪ λ vσ, λ vσ represents the physical masses of
the quasi-Dirac pairs of heavy neutral leptons.

In the scalar potential, apart from the usual self-conjugate terms, the following terms are
also present:

V ⊃ λHχ2 (Hχ
†)(χH†) + κHχ†σ + h.c. . (52)

The CP-even scalar sector consists of three states: S1 ≡ h, S2 and S3. The lightest of them,
h, is identified with the SM-like state discovered at the LHC with a mass mS1 ≈ 125 GeV.
Regarding the CP-odd scalars, there are two massless Goldstone bosons, P1 ≡ GZ (absorbed
by the Z boson) and P2 ≡ J (the physical majoron), as well as the massive P3. Finally one
of the two charged scalar states, GW , is the usual EW Goldstone boson absorbed by the W
boson and there is a new massive charged state, η+. Their masses are given as follows

• CP-even scalars: m2
h ∼ v2H , m

2
S2

∼ κ vH
vσ
vχ

and m2
S3

∼ v2σ

• CP-odd scalars: mGZ
= mJ = 0 and m2

P3
= − κ vσv2√

2vHvχ
N 2

• Charged scalars: mGW
= 0 and m2

η+ = −λHχ2

2
v2 − κ√

2
vσv2

vχvH

where we have defined the normalization factor

N 2 = 1 +
v2H v

2
χ

v2σ v
2
. (53)
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Here v is the SM VEV, defined by v2 ≡ v2H + v2χ. The mass-dimension trilinear κ is a free
parameter of the model with a large impact on the scalar spectrum. When κ ≫ vχ

vH
vσ, the

BSM states S2, P3 and η
+ become heavy and, since we assume vσ to be a high-energy scale,

decouple from the spectrum. Otherwise, our setup leads to a scalar spectrum with new states
below vσ, within the reach of current experiments. As expected, we find a SM-like Higgs
and the Goldstone bosons associated to the SSB of the electroweak symmetry, in addition
to the one from the SSB of U(1)L. In the basis (Ha, χa, σa), where the a superscript denotes
the imaginary component of the corresponding field, the majoron J is given as

J =
1

N

(
−
vHv

2
χ

vσv2
,
v2Hvχ
vσv2

, 1

)
, (54)

where N is the normalization factor of Eq. (53). For the massive charged scalar, in the basis
(H+, χ+), we find

η+ =
vH
v

(
− vχ
vH
, 1

)
. (55)

We can now obtain the majoron coupling to charged leptons. First of all, note that the
majoron has a component in the Ha direction, so a tree-level coupling is generated, highly
suppressed by the mixing:

Ltree-level
ℓℓJ = i

v2χvH

N v3vσ
Jℓ̄Mℓ γ5 ℓ ∼

v2χmℓ

v2vσ
Jℓ̄ γ5 ℓ ≲

vχmℓmν

v3
Jℓ̄ γ5 ℓ . (56)

However, we obtain larger couplings at 1-loop. To compute them we need the couplings
for the dominant diagrams: W , Z and η+, i.e. diagrams (a), (b) and (c) of Fig. 1, while
diagram (d) turns out to be subdominant. From Eqs. (123) and (126) we obtain,

Ā =
1

2

 0 ĀL

ĀT
L ĀH

 , ĀL = i
vχvH√
2N v2vσ

(
−vχyN vHyS

)
, ĀH =

i√
2N

 0 λ

λT 0

 ,

(57)

D̄R =
1

v

(
−vχ yN vH yS

)
. (58)

With this, it is trivial to obtain the necessary matrices. For the gauge boson diagrams we
find, ∑

j∼l

Γ1,0,0
βαj =

∑
j∼l

Γ̃1,0,0
βαj ≃ − i

2vσ

(
mDm

†
D

)
βα

= −i v
2

4vσ

(
yN y

†
N

)
βα
, (59)

∑
j∼h

∆0,1,−1
βαj =

∑
j∼h

∆̃0,1,−1
βαj ≃ i

2vσ

(
mDm

†
D

)
βα

= i
v2

4vσ

(
yN y

†
N

)
βα
, (60)
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Fields SU(2)L ⊗ U(1)Y U(1)L

H (2, 1
2
) 0

σ (1, 0) −1

L (2,−1
2
) 1

N (1, 0) 1

S (1, 0) 0

Table 6: Lepton number and gauge electroweak charges of the particles in model C2b/χ.
This model leads to an inverse seesaw mechanism for neutrino masses.

while for the η+ contribution,

∑
j

Γ̃1,0,0
spj ≃

∑
j∼h

∆0,1,−1
spj ≃ i

2N vσ

m2
R 0

0 m2
R


sp

≃ ivσ
4N

λ2 0

0 λ2


sp

, (61)

∑
j

Γ̃1,1,0
spj ≃

∑
j∼h

∆0,1,1
spj ≃ i

2N vσ

m4
R 0

0 m4
R


sp

≃ iv3σ
8N

λ4 0

0 λ4


sp

. (62)

Finally we obtain the leading order contribution for the 1-loop coupling of the majoron to
charged leptons,

LℓℓJ =
iJ

32π2vσ
ℓ̄
[
Mℓ Tr(yN y

†
N) γ5 + 2Mℓ

(
yN y

†
N − yS Θ y†S

)
PL − 2

(
yN y

†
N − yS Θ y†S

)
MℓPR

]
ℓ ,

(63)
where the matrix Θ is given by

Θsp ≡
(m2

R)s(
(m2

R)s −m2
η+

)2
(
(m2

R)s −m2
η+ +m2

η+ log
m2

η+

(m2
R)s

)
δsp . (64)

The strength of the majoron interactions showcased in Eq. (63) is not neutrino mass-
suppressed. Indeed, we can consider the limit µS, vχ → 0, which leads to Mν → 0 in
Eq. (51). Even in this unrealistic scenario with massless neutrinos, Eq. (63) would lead to a
lepton flavor violating majoron with potentially observable signatures.

5.2 Inverse seesaw with enhanced majoron LFV

The C2b/χ model can be obtained by removing the doublet χ from the field inventory of
model C2b. Therefore, the charges of the fields in this model are those shown in Table 6.
The Yukawa Lagrangian is given by

−L = Y L̄HeR + yN L̄H̃N + λσN̄ cS +
1

2
µS S̄

cS + h.c. , (65)
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Fields SU(2)L ⊗ U(1)Y U(1)L

H (2, 1
2
) 0

χ (2, 1
2
) −4

σ (1, 0) −2

L (2,−1
2
) 1

N (1, 0) 1

S (1, 0) −3

Table 7: Lepton number and gauge electroweak charges of the particles in model C3. This
model leads to a linear seesaw mechanism for neutrino masses.

which corresponds to that of the previous model after setting yS = 0. One obtains the
neutral fermion mass matrix

M =


0 mD 0

mT
D 0 mR

0 mT
R µS

 , (66)

with mD = yN vH/
√
2 and mR = λ vσ/

√
2. By assuming the VEV hierarchy µS ≪ vH ≪ vσ,

the neutrino mass matrix is found to be

Mν ≈ v2H
v2σ

yN
(
λT
)−1

µSλ
−1yTN , (67)

which is nothing but the well-known neutrino mass formula obtained in the inverse seesaw.
The spectrum of the scalar sector of this model can be easily derived by adapting the results
from the previous Section. Similarly, the majoron coupling to charged leptons in this model
can be obtained simply by taking the limit mη+ → ∞ (or, equivalently, yS → 0) in Eq. (63).
One finds

LℓℓJ =
iJ

32π2vσ
ℓ̄
[
Mℓ Tr(yN y

†
N) γ5 + 2Mℓ yN y

†
N PL − 2 yN y

†
N MℓPR

]
ℓ . (68)

We note once again that the couplings in Eq. (68) do not vanish in the limit µS → 0, which
implies sizable majoron LFV rates even in the absence of neutrino masses.

5.3 Linear seesaw with enhanced majoron LFV

Let us now consider model C3 which, as described in Sec. 4, also features enhanced rates of
majoron LFV processes. The charges of the fields under the electroweak and global U(1)L
symmetries are given explicitly in Table 7. The relevant Yukawa Lagrangian is

−L = Y L̄HeR + yN L̄H̃N + ys L̄χ̃S + λσ∗N̄ cS +
1

2
λN σ N̄

cN + h.c. , (69)
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which leads to the neutral fermion mass matrix

M =


0 mD mL

mT
D µN mR

mT
L mT

R 0

 , (70)

with mD = yN vH/
√
2, mL = yS vχ/

√
2, µN = λN vσ/

√
2 and mR = λ vσ/

√
2. This texture,

assuming vχ ≪ vH ≪ vσ, leads to a linear seesaw mechanism for neutrino masses, with

Mν ≈ −mLm
−1
R mT

D + tr. = −vχvH
vσ

yS λ
−1 yTN + tr. (71)

One of the matrices λ and λN can be taken to be diagonal without loss of generality by
performing adequate rotations of the fields N and S. In the scalar sector, the U(1)L charges
of χ and σ are −4 and −2, respectively. Then, the scalar potential, apart from the usual
self-conjugate terms, also includes the terms

V ⊃ λHχ2

(
Hχ†) (χH†)+ λG χ

†Hσσ + h.c. . (72)

Using the same notation for the scalar and pseudoscalar states and assuming the same VEV
hierarchy (vχ ≪ vH ≪ vσ) as in Sec. 5.1, the mass spectrum of the model is given by:

• CP-even scalars: m2
h ∼ v2H , m

2
S2

∼ v2σvH/vχ and m2
S3

∼ v2σ

• CP-odd scalars: mGZ
= mJ = 0 and m2

P3
= −λG v2σv

2

2vHvχ
N 2 ∼ v2σ v/vχ

• Charged scalars: mGW
= 0 and m2

η+ = −λHχ2

2
v2 − λG

2
v2σv

2

vHvχ
∼ v2σ v/vχ

Here we have introduced the normalization factor

N 2 = 1 + 4
v2H v

2
χ

v2σ v
2
. (73)

Again, as expected, we find a SM-like Higgs, h, as well as the usual Goldstone bosons,
including the majoron due to the spontaneous breaking of global U(1)L. The masses of the
massive pseudoscalar P3 and the charged scalar η+ lie above the vσ scale by a factor of order√
v/vχ ≫ 1 and thus decouple from the theory at lower energies. Therefore, one can easily

verify that the diagrams (c) and (d) of Fig. 1 give subdominant contributions and we have
to compute only the gauge boson contributions, diagrams (a) and (b) of the same figure.
We start by writing the profile of the majoron J in the basis (Ha, χa, σa),

J =
1

N

(
−2

v2χ vH

vσ v2
, 2

v2H vχ
vσ v2

, 1

)
. (74)

Again, the superscript a denotes the imaginary component, and we have used the normal-
ization factor of Eq. (73).

20



Given the hierarchies at play, v2 ≈ v2H and the majoron is mainly a singlet, with a small
doublet component suppressed by a factor of order mν/v or smaller. In fact, this component
leads to a very suppressed tree-level diagonal coupling between the majoron and charged
leptons:

LTree-Level
ℓℓJ = 2i

v2χvH

N v3vσ
Jℓ̄Mℓγ5ℓ ∼

mν mℓ vχ
v3

Jℓ̄ γ5 ℓ . (75)

However, larger couplings are found at the 1-loop level. To compute these coupling we must
determine Ā (see Eq. (123)) in this model. One finds

Ā =
1

2

 0 ĀL

ĀT
L ĀH

 , ĀL = 2i
vχvH√
2N v2vσ

(
−vχyN vHyS

)
, ĀH =

i√
2N

 λN −λ

−λT 0

 ,

(76)

and then∑
j∼l

Γ1,0,0
βαj =

∑
j∼l

Γ̃1,0,0
βαj ≃ i

2vσ

(
mDm

†
D

)
βα

= i
v2

4vσ

(
yN y

†
N

)
βα
, (77)

∑
j∼h

∆0,1,−1
βαj =

∑
j∼h

∆̃0,1,−1
βαj ≃ − i

2vσ

(
mDm

†
D − 2mDµ

†
NµN

(
mT

R

)−1
(m∗

R)
−1m†

D

)
βα

(78)

= −i v
2

4vσ

(
yN y

†
N − 1

2
yNλ

†
NλN

(
λT
)−1

(λ∗)−1 y†N

)
βα

. (79)

Finally, with these results at hand, one can write the leading contribution for the coupling
of the majoron to a pair of charged leptons as

LℓℓJ = − iJ

32π2vσ
ℓ̄

{
Mℓ Re

[
Tr

(
yN

(
I3 −

1

3
R

)
y†N

)]
γ5 +Mℓ yN

(
2 I3 −

5

12
R

)
y†NPL

− 2yN

(
2 I3 −

5

12
R†
)
y†N MℓPR

}
ℓ , (80)

where R ≡ λ†NλN
(
λT
)−1

(λ∗)−1. As in the previous two example models, the strength of the
majoron interactions in Eq. (80) is not neutrino mass suppressed. Again, considering the
limit vχ → 0 leads to vanishing neutrino masses (Mν → 0 in Eq. (71)), but leaves Eq. (80)
intact.

5.4 Analysis

We have just examined three models featuring enhanced majoron couplings to charged lep-
tons. To determine whether this enhancement will be phenomenologically significant we will
now analyze the current constraints on this coupling and their future improvement prospects.
We will also compare them with other typical signals of low-scale seesaws, such as µ→ eγ.
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5.4.1 Current and future constraints

We start by writing down a general majoron interaction Lagrangian with a pair of charged
leptons,

LℓℓJ = Jℓ̄ (SLPL + SRPR) ℓ+ h.c. = Jℓ̄
(
SPL + S†PR

)
ℓ , (81)

with S = SL+S
†
R. There are stringent constraints on both diagonal and off-diagonal majoron

couplings to charged leptons [57]. The flavor conserving couplings are constrained by energy
loss mechanisms in astrophysical observations [58–61] and yield

|Im (Sexp
ee )| < 2.1× 10−13 , (82)∣∣Im (Sexp
µµ

)∣∣ < 3.1× 10−9 . (83)

The presence of non-zero off-diagonal couplings in Eq. (81) allows the non-standard decay
µ+ → e+ J . In particular, we find

Γ(ℓα → ℓβ J) =
mℓα

32 π

∣∣∣S̃βα
∣∣∣2 , (84)

where we have defined ∣∣∣S̃βα
∣∣∣ = (∣∣∣Sβα

L

∣∣∣2 + ∣∣∣Sβα
R

∣∣∣2)1/2

. (85)

The best limits on this process were obtained at TRIUMF [62]. Taking into account all
possible chiral structures for the majoron coupling, one can estimate the limit [63]

BR (µ→ e J) ≲ 10−5 , (86)

which in turn implies ∣∣∣S̃eµ
∣∣∣ < 5.3× 10−11 . (87)

Finally, the currently best experimental limits on τ decays including majorons were set by
the Belle II collaboration [64]. They can be used to derive the bounds∣∣∣S̃eτ

∣∣∣ < 3.5× 10−7 ,∣∣∣S̃µτ
∣∣∣ < 2.7× 10−7 .

(88)

Future experiments such as Mu3e [65,66] will improve these constraints. In particular, for a
massless majoron, phase-I of the Mu3e experiment is expected to find at 90% CL

BR (µ→ e J)Mu3e ≲ 6 · 10−7 . (89)

A typical signal of many BSM models, and in particular low-scale seesaws, is the lepton
flavor violating process µ→ eγ. The MEG collaboration reported [67]

BR (µ→ e γ)MEG ≲ 4.2 · 10−13 . (90)

This bound will be improved by MEG-II [68] to

BR (µ→ e γ)MEG-II ≲ 6 · 10−14 . (91)
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5.4.2 Phenomenology

We now proceed to analyze the majoron phenomenology of our selected models C2b, C2b/χ
and C3. In all of them we can estimate

Γ(ℓα → ℓβ J) ∼
m3

ℓα

v2σ
. (92)

On the other hand, the ℓα → ℓβγ process will be mediated in our general setup by the
W boson and the charged scalar η+ whenever it is present, see Fig. 2. While the exact
expressions are well-known, see for instance [69], we can again estimate

ℓα ℓβ

γ

νi

W

ℓα ℓβ

γ

νi

η+

Figure 2: Feynman diagrams relevant for the muon decay µ→ eγ. The fermion mediators
include the light and heavy neutral fermions. Left diagram: mediation byW boson. Right
diagram: mediation by scalar η+.

Γ(ℓα → ℓβ γ) ∼
m5

ℓα

m4
R

(93)

where mR is the mass of the heavy neutral fermion running in the loop. In all the models
considered, this mass will be approximately given by the lepton number breaking scale vσ
times some Yukawa coupling λ. Then, the ratio between the branching ratio of both processes
will scale as

BR (ℓα → ℓβγ)

BR (ℓα → ℓβJ)
∼
(
mℓα

mR

)2

λ−2 , (94)

and hence one expects BR (ℓα → ℓβγ) ≪ BR (ℓα → ℓβJ), except possibly when λ ≪ 1. For
instance, for ℓα = µ and mR ∼ 1 TeV, BR (ℓα → ℓβγ) ∼ BR (ℓα → ℓβJ) would require
λ ≲ 10−4. In summary, the key signature in these models is the flavor violating majoron
emission in lepton decays.

The previous analysis is overly simplistic, as it only considers the relevant energy scales
and their hierarchy. Therefore, a rigorous numerical exploration that takes into account the
various numerical factors arising from the loops and the freedom in the scale of the Yukawa
couplings is required to validate it. As we proceed to show, a correct treatment proves
that the parameter space where the process µ → eγ would be observed before µ → eJ is
extremely limited, particularly needing small Yukawa couplings, thus moving away from the
motivation for low-scale seesaws. In other words, while these models could feature sizeable
µ→ eγ decays, as expected in similar low-scale seesaw models, most of the parameter space
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in which this happens would lead to majoron interactions which are already ruled out by
astrophysical observations and cLFV experiments.

Since our analysis holds true irrespective of the charged scalar η+ mass, we can study
the majoron-charged lepton phenomenology of the three models in the limits κ ≫ vσvχ/v,
leading to Θ → 0 in Eq. (63), and λN → 0 in Eq. (80). In both simplifying scenarios the
neutrino mass remains unaffected and the majoron-charged lepton interaction becomes equal
for the three models, C2b, C2b/χ and C3, 6 i.e.

LℓℓJ =
iJ

32π2vσ
ℓ̄
[
Mℓ Tr(yN y

†
N)γ5 + 2Mℓ yN y

†
N PL − 2 yN y

†
NMℓ PR

]
ℓ . (95)

Comparing this expression with the generic Lagrangian in Eq. (81), we identify

SL =
i

64π2vσ

[
2Mℓ yNy

†
N −Mℓ Tr

(
yNy

†
N

)]
, (96)

SR = S†
L . (97)

For any given Yukawa matrix yN it is possible to find suitable µS, yS and vχ that fit neutrino
data [70–72]. Out of the astrophysical constraints, we expect the constraint of Eq. (82) to
be more stringent than the one of Eq. (83). Indeed, in order for this not to be the case we
would need

Sµµ

See

≳ 104 , (98)

but from Eqs. (96)-(97), and taking into account that S = SL + S†
R, one finds

Sµµ

See

=
mµ

me

× −(yN y
†
N)11 + (yN y

†
N)22 − (yN y

†
N)33

(yN y
†
N)11 − (yN y

†
N)22 − (yN y

†
N)33

, (99)

which implies that fine-tuned Yukawas couplings are required to cancel the contribution to
See. If instead we assume the Yukawa couplings yN and λ to be of O(1), we can use Eqs. (84)
and (86), as well as the couplings in Eqs. (96)-(97), to derive a lower limit for the lepton
number breaking scale vσ,

vσ >
3me

32π2

1

|Im (Sexp
ee )|

∼ 104TeV , (100)

and an estimate for the branching ratios of the flavor violating processes µ→ eJ and µ→ eγ
obtained for that scale,

BR (µ→ eJ) ≈ 10−5 , (101)

BR (µ→ eγ) ≈ 10−23 . (102)

This rather strong conclusion can be relaxed by allowing smaller Yukawa couplings.
Indeed, in the left panel of Fig. 3 we show the relation between S̃eµ and the lepton number

6Note that there is a non-physical global sign between the results in C2b and C2b/χ and the one in C3
that appears due to the lepton charge choice.
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Figure 3: Lepton flavor violation predictions in the selected models. Left panel: Re-
lationship between the lepton number breaking scale vσ and the flavor violating coupling
S̃eµ. Right panel: Comparison between the branching ratios of the non-standard muon
decays with a majoron or a photon in the final state. In both panels we are imposing the
seesaw condition (MD ·M−1

F )ij < 10−2, the astrophysical constraints of Eqs. (82) and (83),
as well as correct neutrino masses and mixing. The orange points have Yukawa couplings
yN , λ ∼ O(1), while the blue points allow for more freedom, with the Yukawa couplings
taking values in a wider range, yN , λ ∼ O(10−3 − 1).

breaking scale vσ, while the right panel of this figure shows a comparison between the
branching ratios of the two lepton flavor violating processes discussed above. In the numerical
scan leading to this figure we have imposed the seesaw condition (MD ·M−1

F )ij < 10−2, the
astrophysical constraints of Eqs. (82) and (83), as well as neutrino masses and mixing in
agreement with current data [73]. In addition, in both panels we have explicitly shown the
predictions of the model when the Yukawa couplings are taken to be of O(1) (orange points)
and when this assumption is relaxed and smaller Yukawa couplings are allowed (blue points).
First of all, we observe on the left side of the figure that the current limit on BR(µ → eJ)
from TRIUMF (see Eq. (86)) already restricts the parameter space of the model, ruling
out some points not excluded by the other constraints (Eq. (82) being the most important
one). We also find that the decay µ → eJ can be used to test the model at Mu3e even
if the lepton number breaking scale vσ is as high as ∼ 4 · 104 TeV. As already explained,
this decay has much better chances of being observed than the more conventional µ → eγ.
This is illustrated on the right side of Fig. 3, where we see that only a very small fraction
of the points resulting from our numerical scan will be tested by MEG-II, even though this
experiment is sensitive to much smaller branching ratios than those tested by Mu3e for
µ→ eJ . Importantly, and consistently with our previous considerations, the very few points
that will be tested by MEG-II involve small Yukawa couplings, hence departing from the
main motivation for low-scale seesaw models.

25



6 Summary and discussion

Models belonging to the Type-I Seesaw family are among the most promising for explaining
neutrino masses and their scale. In these models, lepton number is broken explicitly or spon-
taneously, resulting in a Majorana mass matrix for neutrinos. At first, we focused on the
mass matrix, overlooking the origin of the U(1)L breaking. Using the general seesaw expan-
sion, we derived a comprehensive formula for neutrino masses in the Type-I Seesaw family.
This formula reproduces the known results of models such as the type-I, linear, or inverse
seesaws, and enables us to identify hybrid models or those with less-known hierarchies.

Regarding the U(1)L breaking origin, we observed that in the first scenario, with explicit
breaking, the differences between models of the family are spurious since lepton number is
not a good symmetry, allowing us to describe all models with the same Lagrangian —the
one of the conventional type-I seesaw— with just different textures. However, when U(1)L is
spontaneously broken, models become distinguishable, and we can no longer describe them
with only one Lagrangian. With this realization, we analytically derived all the different
minimal models of the Type-I Seesaw family with SSB of U(1)L. In this case, a Goldstone
boson arises in the spectrum, the majoron, providing a clear signal of these models and
allowing us to distinguish between them based on their phenomenology. We systematically
classified this in Section 4, demonstrating that while in most models the majoron couplings
to charged leptons are suppressed by neutrino masses, one also finds some models where this
interaction is enhanced. Finally, we considered some example models of the latter type and
analyzed their phenomenology, finding a promising signal: although we may not observe the
usual flavor violating process µ → eγ, the exotic µ → eJ decay may be within the reach of
near-future experiments, even for relatively high lepton number breaking scales.

Our work explores both established models as well as novel ones. Moreover, it provides
a comprehensive framework for working with models belonging to the Type-I Seesaw family.
While our focus has been on the minimal realization of the family, the formulas for majoron-
charged leptons interactions provided in Appendix B open up possibilities for exploring
promising non-minimal realizations. Additionally, these formulas are useful not only for
scenarios with exact SSB of U(1)L, but also for cases with soft symmetry breaking, where
the majoron is not strictly massless but rather light. This allows for the application of our
framework to versions featuring a massive majoron, of potential interest in cosmology and
low-energy experiments.
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A Models in the Type-I Seesaw family

Based on the dependence of the neutrino mass matrix on the relevant physical scales, we
consider three generic mass generation mechanisms:

• Type-I seesaw: if Mν ∼ m2
1

M
, with m≪M ,

• Inverse seesaw: if Mν ∼ m2
1m2

M2
, with m2 ≪ m1 ≪M ,

• Linear seesaw: if Mν ∼ m1m2

M
with m2 ≪ m1 ≪M .

There are many models in the Type-I Seesaw family, due to the many different possible
hierarchies among the blocks in the MD and MF matrices. They can be classified according
to these hierarchies. We find three possible cases.

Case 1: No hierarchy among the blocks in MF

If the blocks in the MF matrix are all of the same order, mR ∼ µN ∼ µS ∼ ΛH , where ΛH

is a high-enery scale, the neutrino mass matrix can be written as

Mν = c1mD Λ−1
H mT

D + c2mD Λ−1
H mT

L + c3mL Λ
−1
H mT

L + c4mL Λ
−1
H mT

D +O(ε2) , (103)

where ci, with i = 1, . . . , 4, are constants. It is clear that one finds a type-I seesaw,
regardless of the hierarchy between mD and mL.

Case 2: mR ≫ µN

(
mT

R

)−1
µS

In this case the neutrino mass matrix can be expressed as

Mν =−mD

(
mT

R

)−1
µS m

−1
R mT

D −mLm
−1
R µN

(
mT

R

)−1
mT

L

+mD

(
mT

R

)−1
mT

L +mLm
−1
R mT

D +O(ε2) . (104)

Then, depending on the relative scale of mD and mL and their hierarchies with the blocks
in MF , we can classify the resulting models as follows:

2.1 If
mL

mD

≫ µS

mR

,
mL

mD

≪ mR

µN

and mL ≪ mD or mD ≪ mL : linear seesaw

2.2 If
mL

mD

≪ µS

mR

,
m2

L

m2
D

≪ µS

µN

and µS ≪ mR : inverse seesaw (Dirac mass term: mD)

2.3 If
mL

mD

≪ mR

µN

,
m2

L

m2
D

≫ µS

µN

and µN ≪ mR : inverse seesaw (Dirac mass term: mL)

2.4 Otherwise: type-I seesaw
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Case 3: mR ≪ µN

(
mT

R

)−1
µS

In this case the neutrino mass matrix can be written as

Mν = mD µ
−1
N mT

D +mL µ
−1
S mT

L −mD µ
−1
N mR µ

−1
S mT

L −mL µ
−1
S mT

R µ
−1
N mT

D +O(ε2). (105)

Again, depending on the relative scale of mD and mL and their hierarchies with the blocks
in MF , the resulting models can be classified as follows:

3.1 If
mL

mD

≪ mR

µN

,
mL

mD

≫ µS

mR

and mL ≪ mD or mD ≪ mL : linear seesaw

3.2 If
mL

mD

≪ mR

µN

,
mL

mD

≫ µS

mR

and mR ≪ µS or mR ≪ µN : inverse seesaw (Dirac

mass term: mD)

3.3 Otherwise: type-I seesaw

B The majoron coupling to charged leptons

Reference [50] provides general analytical expressions for the 1-loop coupling of the majoron
to a pair of charged leptons which can, in general, be written as [57]

LℓℓJ = J ℓ̄β

(
Sβα
L PL + Sβα

R PR

)
ℓα + h.c. = J ℓ̄β

[
Sβα PL +

(
Sαβ

)∗
PR

]
ℓα , (106)

where PL,R = 1
2
(1∓ γ5) are the usual chiral projectors while ℓα,β are the charged leptons,

with α, β two generation indices. In the Type-I Seesaw family S is given by

Sβα =
1

8π2

(
δβα Γα

Z + Lβα
W + Lβα

η+ + Lβα
S

)
. (107)

In this equation, each term represents the contribution of one of the Feynman diagrams
shown in Fig. 1. These contributions, expressed as functions of certain general matrices and
loop functions, are provided in [50]. Here, we present them for the sake of completeness.
They are given by

Γα
Z = i

mℓα

v2
Im

[
3∑

s=1

(∑
j∼l

Γ̃1,0,0
ssj + Γ1,0,0

ssj

6
−
∑
j∼h

∆̃0,1,−1
ssj +∆0,1,−1

ssj

3

)]
, (108)

Lβα
W =

2mℓβ

v2

[∑
j∼l

(
Γ1,0,0 ∗
αβj

12
+

2

3
Γ1,0,0
βαj

)
−
∑
j∼h

(
∆̃0,1,−1 ∗

αβj

6
+

7

12
∆̃0,1,−1

βαj

)]
, (109)

Lβα
S =

ω

4
(
m2

ρ −m2
σ

)2
{(

GC†Mℓ

)
βα

(
−m2

ρ +m2
σ +m2

ρ log
m2

ρ

m2
σ

)

−
(
MℓG

†C
)
βα

(
−m2

ρ +m2
σ +m2

σ log
m2

ρ

m2
σ

)
− 2 (GMℓC)

(
m2

ρ −m2
σ

)
log

m2
ρ

m2
σ

}
, (110)

Lβα
η = mℓβ

[
D̄βp

R

(
D̄αs

R

)∗ (
LRR
η

)∗
sp
−
(
D̄αp

R

)∗
D̄βs

R

(
L̃RR
η

)
sp

]
, (111)
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where in the last equation we have defined

LRR
η = f7

∑
j∼h

∆0,1,−1
spj +

∑
j

(
f8∆

0,1,1
spj − F5,7 Γ̃

1,0,0
spj − F6,8 Γ̃

1,1,0
spj

)
+
∑
j∼l

(
F5,7,−1 Γ̃

1,0,0
spj + F6,8,−2 Γ̃

1,1,0
spj

)
, (112)

L̃RR
η =LRR

η

(
f(1, 2, 5, 6, 7, 8) ↔ f(3, 4, 9, 10, 15, 16), f13 ↔ F1,−3, f14 ↔ F2,−4

)
, (113)

and where, following the conventions of [50], ω denotes the coupling between JPkSk, C
represents the coupling between charged leptons and Sk, and G is the coupling between the
charged leptons and Pk. The loop functions f and F are also provided in [50]. We note
that in these expressions there are sums that extend over all states, or only over the light
(j ∼ l) or heavy (j ∼ h) ones. The precise definitions of the Γ, Γ̃, ∆, and ∆̃ matrices are also
given in this reference. One can particularize them for the Type-I Seesaw family and find
the combinations that appear in Eqs. (108)-(113). The sums relevant for the gauge boson
contributions are given by∑

j∼l

Γ1,0,0
βαj =

∑
j∼l

Γ̃1,0,0
αβj =

1

2
ĀLM

†
D − 1

2

(
MDM

−1
F ĀH M

†
D

)
βα
, (114)

∑
j∼h

∆̃0,1,−1
βαj =

∑
j∼h

∆0,1,−1
αβj =

1

2
MD

(
M †

DĀL +M †
F Ā

T
LM

∗
D (M †

F )
−1 +M †

F ĀH

)
M−1

F (M †
F )

−1M †
D ,

(115)

whereas the sums relevant for the triangle diagram with the η charged scalar are∑
j

Γ̃1,0,0
spj =

1

2

(
M †

DĀL +M †
F ĀH

)
sp
, (116)

∑
j

Γ̃1,1,0
spj =

1

2

(
M †

F MF M
†
F ĀH

)
sp
, (117)

∑
j

∆0,1,1
spj =

1

2

(
M †

DĀLM
†
FMF +M †

F Ā
T
LM

∗
DMF +M †

F ĀH M
†
FMF

)
sp
, (118)

∑
j∼h

∆0,1,−1
spj =

1

2

[
M−1

F

(
(M †

F )
−1M †

DĀLM
†
F + ĀT

LM
∗
D + ĀH M

†
F

)
MF

]
sp
. (119)

Here we have used the fact that the charged scalar does not couple to the charged leptons
and SM neutrinos. The amplitudes in these expressions depend on the couplings entering the
loops, namely the majoron coupling to a pair of neutral fermions, Ā, and the charged scalar
coupling to a neutral lepton and a charged lepton, D̄L,R. These are given in the gauge basis
and can be readily computed for all variants in the Type-I Seesaw family. Let us consider
the general Lagrangian

−L = yN L̄H̃N + ys L̄χ̃S + λσNS N̄
cS +

1

2
λN σN N̄

cN +
1

2
λS σSS̄

cS + h.c. , (120)
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which reduces to the models discussed in Sec. 4 by properly matching the scalar fields to
those in each model. Since we introduce only one singlet scalar σ in our field inventory,
and this not always participates in all fermion singlet Yukawa terms, σNS, σN or σN may
be absent in some models. In some cases λi σi may represent a bare mass and, alternatively,
some of the σNS, σN and σN singlet may correspond to the same singlet σ or its conjugate.
Similarly, the doublet χ may coincide with H in some models. In general, the majoron will
be a linear combination of the CP -odd parts of H, χ and σ, and then one can write

J = αHH
a + αχχ

a + ασσ
a ≡ αHH

a + αχχ
a + ασNS

σa
NS + ασN

σa
N + ασS

σa
S , (121)

where the superscript a refers to the CP -odd part of each scalar. The αi coefficients encode
the mixing in the CP -odd sector and can be easily computed in any given model. In some
cases, it may occur that σNS = σN , σS = σ∗

N or any other combination. This does not affect
the majoron but does affect how our αi coefficients must be taken. For example, if we have
N̄ cS as a bare mass term, the bilinear N̄ cN coupling to σ and the bilinear S̄cS coupling to
σ∗, then we must take ασNS

= 0, ασN
= ασ and ασS

= −ασ. This fact can be expressed by
the relation

ασ =
|ασNS

|+ |ασN
|+ |ασS

|
3− δ0ασNS

− δ0ασN
− δ0ασS

. (122)

After these preliminaries, the majoron coupling to neutral fermions in the gauge basis is
given by

Ā =
i

2
√
2


0 αH yN αχ yS

αH y
T
N ασN

λN ασNS
λ

αχ y
T
S ασNS

λT ασS
λS

 ≡ 1

2

 0 ĀL

ĀT
L ĀH

 , (123)

with

ĀL =
i√
2

(
αH yN αχ yS

)
, ĀH =

i√
2

ασN
λN ασNS

λ

ασNS
λT ασS

λS

 . (124)

The charged scalar η+ is also an admixture of two different fields,

η+ = βH H
+ + βχ χ

+ , (125)

where the βi coefficients parameterize the mixing. Then, the couplings of η to a charged
lepton and a neutral lepton are given, in the gauge basis, by

D̄R =
i√
2

(
βH yN βχ yS

)
, (126)

where, again, the absence of a coupling between η, the charged leptons and SM neutrinos has
been used. Here, D̄R is given in the (N S) basis. With these expressions for the couplings,
we have derived the general form of the majoron coupling to charged leptons in the Type-I
Seesaw family, enabling us to adapt it for each specific model.

30



Let us now briefly discuss these results. We start with the matrices entering the W and
Z contributions. Note that Ā is nothing but a Yukawa coupling, so Āij ≤ 1. This implies

that the dominant terms will be ∼ M2
D

MF
ĀH and ∼ MD ĀL. For the first one, it is obvious

that if we want to achieve a coupling that is not naturally suppressed by the light neutrino
masses, we need ĀH to alter the structure of M−1

F . Regarding the second one, the reason
is phenomenological. The majoron doublet admixture must be suppressed, as demanded by
various experimental constraints. Of course, this suppression will be given by the VEV of σ.
Then, the suppression will be of the order v/vσ, vχ/vσ, or some combination leading finally
to, at least, the same suppression that we found in the first term. One can argue in the same
way for the scalar diagrams, thus concluding that we need Ā to alter the structure of M−1

F

if we want sizable rates for flavor processes involving the majoron.
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