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FRACTAL UNCERTAINTY PRINCIPLE FOR RANDOM CANTOR SETS

XIAOLONG HAN AND POURIA SALEKANI

Abstract. We continue our investigation of the fractal uncertainty principle (FUP) for random
fractal sets. In the prequel [EH], we considered the Cantor sets in the discrete setting with
alphabets randomly chosen from a base of digits so the dimension δ ∈ (0, 2

3
). We proved that,

with overwhelming probability, the FUP with an exponent ≥ 1

2
− 3

4
δ− ε holds for these discrete

Cantor sets with random alphabets.
In this sequel, we construct random Cantor sets with dimension δ ∈ (0, 2

3
) in R via a different

random procedure from the one in [EH]. We prove that, with overwhelming probability, the
FUP with an exponent ≥ 1

2
− 3

4
δ− ε holds. The proof follows from establishing a Fourier decay

estimate of the corresponding random Cantor measures, which is in turn based on a concentration
of measure phenomenon in an appropriate probability space for the random Cantor sets.

1. Introduction

We briefly recall the setup of the fractal uncertainty principle (FUP) for random fractal sets
and refer to Eswarathasan-Han [EH] for more background. Let 0 < h ≤ 1 be the semiclassical
parameter. Define Fh as the semiclassical Fourier transform

Fhu(ξ) =
1√
2πh

∫

R

e−
ix·ξ
h u(x) dx for u ∈ C∞

0 (R).

In the case when h = 1, F := F1 reduces to the usual Fourier transform. The FUP is formulated
in the context of estimating the norm

‖1XFh1Y ‖L2(R)→L2(R) , (1.1)

in which the h-dependent sets X = X(h), Y = Y (h) ⊂ R are equipped with certain fractal-type
structures. Following Dyatlov [Dy, Definition 2.2], the fractal-type structure is characterized by

Definition 1.1 (δ-regular sets). Let 0 ≤ δ ≤ 1, R ≥ 1, and 0 ≤ αmin ≤ αmax ≤ ∞. We say that
a non-empty closed set X ⊂ R is δ-regular with constant R on scales αmin to αmax if there is a
locally finite measure νX supported on X such that for every interval I centered at a point in X
with αmin ≤ |I| ≤ αmax, we have that

R−1|I|δ ≤ νX(I) ≤ R|I|δ.
Here, |E| denotes the Lebesgue volume of a measurable set E ⊂ R.

Since Fh is unitary in L2(R), we always have that (1.1)= O(1). We say that X, Y satisfy the
FUP with an exponent β ≥ 0 if (1.1) = O(hβ) as h → 0. The main objective about the FUP for
δ-regular sets is to prove the existence of exponent β > 0 and to find the sharp one for which
the FUP holds. Here, “the sharp exponent”, denoted by βs(X, Y ), means the largest exponent
such that (1.1) = O(hβ) holds for all 0 < h < h0 with some h0 > 0. It usually depends on the
constants δ and R in Definition 1.1 of the sets X, Y in question.
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Firstly, if X and Y are δ-regular on scales h to 1 with δ ∈ [0, 1], then the FUP (1.1) holds
with an exponent

βVol = max

{

1

2
− δ, 0

}

. (1.2)

This exponent (1.2) is sometime referred as “the volume bound”, because it only takes the volume
of X, Y into consideration, that is, |X|, |Y | ≤ Ch1−δ, see Bourgain-Dyatlov [BD2, Lemma 2.9].

The FUP with improved exponents over the volume bound (1.2) have been proved in various
settings by Bourgain-Dyatlov [BD1, BD2], Backus-Leng-Tao [BLT], Cohen [C1, C2], Cladek-Tao
[CT], Dyatlov-Jin [DJ1, DJ2], Dyatlov-Zahl [DyZa], Han-Schlag [HS], Jin-Zhang [JZ], and etc.
The sets considered in these works are deterministic and the improvement of the exponent is
small (and is either implicitly or explicitly dependent on δ and R in Definition 1.1). In particular,
the following theorem includes explicit estimates on such improvement, which are exponentially
small when 0 < δ ≤ 1

2
by Dyatlov-Jin [DJ2, Theorem 1] and super-exponentially small when

1
2
< δ < 1 by Jin-Zhang [JZ, Theorem 1.2].

Theorem 1.2. Let 0 < δ < 1 and R ≥ 1. Suppose that X, Y be δ-regular with constant R on
scales h to 1. Then the FUP (1.1) holds with an exponent β such that

β − βVol ≥
{

(5R)
− 40

δ(1−δ) if 0 < δ ≤ 1
2
,

exp
[

− exp
(

C (Rδ−1(1 − δ)−1)
C(1−δ)−2

)]

if 1
2
< δ < 1.

Here, C > 0 is an absolute constant.

Remark. The FUP depends on the framework of Fourier transform Fh. In particular, a non-
trivial function u and its Fourier transform Fhu cannot be both compactly supported. However,
in the framework of Walsh-Fourier transform, such phenomenon is allowed. In terms of the FUP,
there are certain Cantor sets of dimension 1

2
≤ δ < 1 for which the FUP (1.1) does not hold

with exponents greater than βVol = 0. This is due to Demeter [De].

In an ongoing project, we investigate the FUP (1.1) when the sets X, Y are constructed via
certain random procedures, and in these random settings, we aim to prove the FUP with more
favorable exponents than the ones in Theorem 1.2 for the deterministic cases. In the paper [EH]
by Eswarathasan and the first-named author, we considered the FUP for the random Cantor
sets in the discrete setting. That is, let M,A ∈ N such that M ≥ 3 and A = M δ with 0 < δ < 1.
Then the alphabets of cardinality A from the digits {0, ...,M − 1} form a probability space

A(M,A) = {A ⊂ {0, ...,M − 1} : Card(A) = A} ,
which is equipped with the uniform counting measure µ1. Here, Card(A) is the cardinality of
A.

In [EH], an alphabet is chosen at random from A(M,A); then the discrete Cantor sets are
constructed using this alphabet (in each iteration step). Let δ ∈ (0, 2

3
). We proved that,

with overwhelming probability (that is, except on a subset of A(M,A) with exponentially small
measure depending on M, ε), the Cantor sets with random alphabets satisfy the FUP with an
exponent β ≥ 1

2
− 3

4
δ− ε. It is therefore a significant improvement over the volume bound (1.2)

for this random ensemble.
In this paper, we consider the FUP for random Cantor sets in the continuous setting of R.

We use a different random procedure with the one in [EH] for the construction. See Section 1.1
for the different random ensembles of Cantor sets, as well as the comparison of approaches and
results between the discrete and continuous settings.
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Each Cantor set in R can be built via an iteration process. Let A(M,A) be as above. Induc-
tively define

B1 =
1

M
A, in which A ∈ A(M,A),

and for j ≥ 2,

Bj =
⋃

b∈Bj−1

{

b +
a

M j
: a ∈ A(b)

}

,

in which A(b) ∈ A(M,A) with b ∈ Bj−1 are independent and identical distributed (iid) random
variables. In particular, Card(Bj) = Aj for all j ∈ N.

Write

Cj =
⋃

b∈Bj

[

b, b +
1

M j

]

, and C =
∞
⋂

j=1

Cj ⊂ [0, 1]. (1.3)

Hence, Cj is a union of Aj closed intervals, each of which has Lebesgue volume of M−j . Define
also the Borel measure νj whose density function is given by

ρj(x) =
M j

Aj
1Cj (x) for x ∈ R.

Finally, the weak limit ν of νj as j → ∞ defines the Cantor measure which is supported on C.
We next set up the appropriate probability space for the random Cantor set C and the random

Cantor measure ν. In the first iteration, the probability space is given by A(M,A); in the j-th

iteration for j ≥ 2, since Card(Bj−1) = Aj−1, the probability space is given by A(M,A)A
j−1

equipped with the uniform counting measure µj. Write

A
∞ :=

∞
∏

j=1

A(M,A)A
j−1

equipped with the probability measure µ∞ :=

∞
∏

j=1

µj . (1.4)

Then C is a random Cantor set and ν is a random Cantor measure in R with respect to the
probability space A∞.

It is obvious that each Cantor set C constructed in this way has Hausdorff dimension

δ =
logA

logM
∈ (0, 1).

Moreover, each Cantor set C is δ-regular with constant R = 2 on scales 0 to 1, for which one
can simply choose the Cantor measure ν in Definition 1.1, see Dyatlov [Dy, Example 2.6] for the
example of the middle-third Cantor set (that is, M = 3 and A = {0, 2}).

Consider the h-neighborhoods C(h) of C. Then C(h) is δ-regular with constant R = 8 on scales
h to 1, see Bourgain-Dyatlov [BD2, Lemma 2.3]. Therefore, for each Cantor set C, the FUP
(1.1) holds for X = Y = C(h) with an exponent β explicitly given in Theorem 1.2.

However, in the case when 0 < δ < 2
3
, we prove that, with overwhelming probability (that

is, except on a subset of A∞ with exponentially small measure), the FUP holds for the random
Cantor sets with much better exponents than the ones in Theorem 1.2:

Theorem 1.3 (FUP for random Cantor sets). Let 0 < δ < 2
3
. Suppose that M,A ∈ N such that

M ≥ e4δ
−1

and A = M δ. Then for 0 < ε < δ
2
, there exists G ⊂ A∞ with

µ∞ (A∞ \G) ≤ C1e
−Mε

C

such that each Cantor set C from G satisfies that
∥

∥1C(h)Fh1C(h)

∥

∥

L2(R)→L2(R)
≤ Ch

1
2
− 3

4
δ−ε for all 0 < h < M−8.
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Here, C > 0 is an absolute constant and C1 = C1(ε) > 0 depends on ε.

We also prove an FUP for the random Cantor measures ν:

Theorem 1.4 (FUP for random Cantor measures). Under the same conditions as Theorem 1.3,
the corresponding random Cantor measure ν satisfies that

∥

∥

∥

∥

∫

R

e−
ix·ξ
h u(x) dν(x)

∥

∥

∥

∥

L2
ν(R)

≤ Ch
δ
4
−ε‖u‖L2

ν(R)
for all u ∈ L2

ν(R) and 0 < h < M−8.

The proofs of the FUP in Theorem 1.3 and 1.4 are based on the following Fourier decay
estimate of the random Cantor measures:

Theorem 1.5 (Fourier decay of random Cantor measures). Let 0 < δ < 1. Suppose that

M,A ∈ N such that M ≥ e4δ
−1

and A = M δ. Then for 0 < ε < min{ δ
2
, 1
3
}, there exists G ⊂ A∞

with
µ∞ (A∞ \G) ≤ C1e

−Mε

C

such that each Cantor measure ν from G satisfies that

|Fν(ξ)| ≤ C|ξ|− δ−ε
2 for all |ξ| ≥ M4.

Here, C > 0 is an absolute constant and C1 = C1(ε) > 0 depends on ε.

Remark (Fourier dimension and Salem sets). The Fourier dimension dimF E of a Borel set
E ⊂ R is the largest number s such that there is a finite Borel measure ν supported on E
which satisfies that Fν(ξ) = O(|ξ|− s

2 ). We always have that dimFE ≤ dimH E, the Hausdorff
dimension of E, because the strongest Fourier decay estimate for a measure supported on E is

O(|ξ|−
dimH E

2 ). We say that E is a Salem set if dimF F = dimHE. Salem [S] constructed the first
example of such sets, which is random in nature and is Cantor-like. See Mattila [M, Chapter
12] for more details.

The random Cantor measures in Theorem 1.5 satisfy the (almost) strongest Fourier decay
estimates. Notice also that it is valid for the full range of δ ∈ (0, 1). However, only in the
smaller range of δ ∈ (0, 2

3
) does it imply the FUP in Theorems 1.3 and 1.4. Our construction

of the random Cantor sets is largely inspired by  Laba-Pramanik [LP, Section 6], which provides
examples of Salem sets via a different random procedure with Salem’s original approach [S].

1.1. Random ensembles in the discrete setting and the continuous setting. Continue
with our notations of A(M,A) with M,A ∈ N and A = M δ, 0 < δ < 1. We discuss the FUP
for different ensembles of Cantor sets. The boundary points of the Cantor set in the continuous
setting of R at each iteration j ∈ N naturally define the Cantor set in the discrete setting of

ZN :=
1

N
Z/NZ with N = M j .

This connection allows us to compare the approaches and results on the FUP in the discrete
setting and in the continuous setting. (We shall remark that for direct comparison between the
two settings, the discrete set ZN here differs with the one in [DJ1, EH] by a scaling factor of N .)
Ensemble I. Let A ∈ A(M,A) be randomly chosen. For j ∈ N, define the discrete Cantor

set of order j as

Bj =

{

j
∑

l=1

al
M l

: al ∈ A for l = 1, ..., j

}

,

for which the probability space is A(M,A).
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Ensemble II. For j ∈ N, let Ak ∈ A(M,A) for l = 1, ..., j be iid random variables. Define
the discrete Cantor set of order j as

Bj =

{

j
∑

l=1

al
M l

: al ∈ Al for l = 1, ..., j

}

,

for which the probability space is
∏j

l=1A(M,A).
Ensemble III. Let B1 = 1

M
A with A ∈ A(M,A). For j ≥ 2, let A(b) ∈ A(M,A) for b ∈ Bj−1

be iid random variables, and define the discrete Cantor set of order j as

Bj =
⋃

b∈Bj−1

{

b +
a

M j
: a ∈ A(b)

}

,

for which the probability space is
∏j

k=1A(M,A)A
k−1

.
In each of the ensembles above, the Cantor sets C in R are defined by (1.3). The following

three figures demonstrate (the initial iterations of) examples of the Cantor sets with M = 3 and
A = 2.

0 1 2 A = {0, 2}
0 1 2 0 1 2 A = {0, 2}

0 1 2 0 1 2 0 1 2 0 1 2 A = {0, 2}

Figure 1. The initial three iterations and the alphabet used for a Cantor set in
Ensemble I. (The intervals colored red are removed in the iteration process.)

0 1 2 A1 = {0, 1}
0 1 2 0 1 2 A2 = {0, 2}

0 1 2 0 1 2 0 1 2 0 1 2 A3 = {1, 2}

Figure 2. The initial three iterations and the alphabets used for a Cantor set in
Ensemble II.

0 1 2 {0, 1}
0 1 2 0 1 2 {0, 2}, {1, 2}

0 1 2 0 1 2 0 1 2 0 1 2 {1, 2}, {1, 2}, {0, 2}, {0, 1}

Figure 3. The initial three iterations and the alphabets used for a Cantor set in
Ensemble III.

Remark (The FUP for Cantor sets in the discrete setting of ZN ). Let FN be the discrete Fourier
transform which is unitary on l2(ZN ). For each j ∈ N, the discrete Cantor set Bj ∈ ZN . The
FUP for Cantor sets in the discrete setting is concerned with the estimate of the form

∥

∥1Bj
FN1Bj

∥

∥

l2(ZN )→l2(ZN )
= O

(

N−β
)

as j → ∞, (1.5)
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in which N−1 = M−j → 0 plays the role of the semiclassical parameter.
For the deterministic Cantor sets in Ensemble I, Dyatlov-Jin [DJ1] introduced a FUP theory

and proved the FUP (1.5) with exponent β = β(M,A) > βVol for all M,A. They also extensively
studied the sharp exponent βs(M,A) in the FUP for different M,A. On one hand, they found
examples of M,A for which the FUP holds with the exponent 1−δ

2
, which is the best possible

one. On the other hand, they also found examples of M,A for which the sharp exponent
βs(M,A) = βVol + oM(1).

For the random Cantor sets in Ensemble I, Eswarathasan-Han [EH] introduced a probabilistic
approach to the FUP and proved that for 0 < δ < 2

3
, βs(M,A) ≥ 1

2
− 3

4
δ− ε with overwhelming

probability. The proof is similar to the one used in this paper, that is, it is based on establishing
a Fourier decay estimate of the corresponding discrete Cantor measure ν̃j =

∑

b∈Bj
δb. However,

the proof is simplified because of the submultiplicativity property in the discrete setting: If
j = j1 + j2, then

∥

∥1Bj
FN1Bj

∥

∥

l2(ZN )→l2(ZN )
≤
∥

∥1Bj1
FN11Bj1

∥

∥

l2(ZN1
)→l2(ZN1

)

∥

∥1Bj2
FN21Bj2

∥

∥

l2(ZN2
)→l2(ZN2

)

in which N = N1N2 with N1 = M j1 and N2 = M j2 . Hence, the estimate of the FUP at the
initial iteration j = 1 implies one for all iterations j ∈ N. Indeed, the Fourier transform of the
discrete Cantor measure at the first iteration,

F ν̃1(m), in which µ̃1 =
∑

b∈B1

δb =
∑

a∈A

δ a
M
,

has decay for m ∈ ZM \ {0} for randomly chosen A ∈ A(M,A), which is sufficient to imply the
FUP in the discrete setting.

For the deterministic Cantor sets in Ensembles II and III, one can prove an FUP with expo-
nents in Theorem 1.2, following an approach of Dyatlov-Jin [DJ2] to reduce the FUP for the
discrete Fourier transform FN to one for Fh with respect to the discrete measures ν̃j. Moreover,
Dyatlov-Jin [DJ1] still supplies examples of Cantor sets for which the FUP holds with the best
possible exponent (by simply choosing the same alphabet at each iteration).

However, much less is known for the random Cantor sets in Ensembles II and III than Ensemble
I. In particular, the submultiplicativity property is not necessarily true, since different alphabets
can be used in different iterations. So one has to consider higher iterations when proving the
FUP via the probabilistic approach. – This is open.

Remark (The FUP for Cantor sets in the continuous setting of R). All Cantor sets C in each
ensemble above are δ-regular with an absolute constant R on scales 0 to 1 in Definition 1.1. Their
h-neighborhood C(h) are δ-regular on scales h to 1. As a consequence, the h-neighborhoods C(h)
satisfy the FUP in Theorem 1.2.

Our main results in Theorems 1.3 and 1.4 are concerned with the random Cantor sets in
Ensemble III, which state that if 0 < δ < 2

3
, then the sharp constant βs ≥ 1

2
− 3

4
δ− ε in the FUP

with overwhelming probability.
However, for the random Cantor sets in Ensembles I and II, much less is known. In particular,

the Cantor measures in these ensembles do not necessarily have Fourier decay, that is, the Fourier
dimension of some Cantor sets can be zero, see again Mattila [M, Chapter 12]. The probabilistic
approach to the FUP in these ensembles is open.

Moreover, for the deterministic case in all the ensembles above, no examples of Cantor sets
are known to satisfy the FUP with the best possible exponent 1−δ

2
in the continuous setting of

R to the authors’ knowledge.
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1.2. Organization of the paper. In Section 2, we prepare the probabilisitic tools from con-
centration of measure theory for our proof of the main theorems. In Section 3, we prove the
Fourier decay of the random Cantor measures. In Section 4, we use the Fourier decay to establish
the FUP for the random Cantor measures and random Cantor sets.

2. Probabilistic estimates

Recall that M,A ∈ N with M ≥ 3 and A = M δ with 0 < δ < 1, and that A(M,A) (equipped
with the uniform counting probability measure µ1) is the probability space of alphabets of
cardinality A from the digits {0, ...,M − 1}.

In this section, we establish the probabilistic estimates, which are used to prove the Fourier
decay estimate of random Cantor measures, see Section 3. The following function (2.1) appears
naturally in such an estimate.

Suppose that B is a finite set and A(b) ∈ A(M,A) for b ∈ B are independent and identical
random variables. For N ∈ N and η ∈ R \ {0}, define

1

Card(B)

∑

b∈B

eiNηbFη (A(b)) , (2.1)

in which

Fη(A) =
1

A

∑

a∈A

e−iηa − 1

M

M−1
∑

a=0

e−iηa. (2.2)

Hence, (2.1) is a random variable with respect to the probability space A(M,A)Card(B) equipped
with the uniform counting measure µ. The main estimate in this section is

Theorem 2.1. Let N ∈ N and η ∈ R \ {0}. Then

µ

(∣

∣

∣

∣

∣

1

Card(B)

∑

b∈B

eiNηbFη (A(b))

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−Card(B)At2

64 + 4
3
At

)

for all t > 0.

We estimate Fη(A) for A ∈ A(M,A) and first observe that

|Fη(A)| ≤ 2 for all A ∈ A(M,A). (2.3)

We next show that the random variable Fη(A) for A ∈ A(M,A) is concentrated near its expec-
tation at an exponential rate, which therefore satisfies a much better estimate than the above
trivial bound with overwhelming probability. It is a consequence of the concentration of measure
theory in the metric space A(M,A) established by Eswarathasan-Han [EH, Section 2].

Set the metric in A(M,A) by

d(A1,A2) = Card (A1△A2) = Card(A1 \ A2) + Card(A2 \ A1) for A1,A2 ∈ A(M,A). (2.4)

Here, A1△A2 denotes the symmetric difference. For a function F : A(M,A) → C, its Lipschitz
norm is defined by

‖F‖Lip = max
A1,A2∈A(M,A),A1 6=A2

|F (A1) − F (A2)|
d(A1,A2)

.

Under this setup, we have Eswarathasan-Han [EH, Theorem 2.1]:

Theorem 2.2 (Concentration of measure in the space of alphabets). Let F : A(M,A) → C and
t > 0. Then

µ1 ({A ∈ A(M,A) : |F (A) − E[F ]| ≥ t}) ≤ 2 exp

(

− t2

16A‖F‖2Lip

)

,
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in which E[F ] is the expectation of F with respect to µ1.

To apply Theorem 2.2 to Fη in (2.2), we compute that

E [Fη] =
1

Card (A(M,A))

∑

A∈A(M,A)

Fη(A)

=

(

M

A

)−1
∑

A∈A(M,A)





1

A

∑

a∈A(b)

e−iηa − 1

M

M−1
∑

a=0

e−iηa





=
1

A

(

M

A

)−1 M−1
∑

a=0

∑

A∈A(M,A),A∋a

e−iηa − 1

M

M−1
∑

a=0

e−iηa

=
1

A

(

M

A

)−1(
M − 1

A− 1

)M−1
∑

a=0

e−iηa − 1

M

M−1
∑

a=0

e−iηa

=
1

M

M−1
∑

a=0

e−iηa − 1

M

M−1
∑

a=0

e−iηa

= 0.

Here, we used the fact that for any fixed digit a = 0, ...,M − 1, the number of alphabets A in
A(M,A) which contain a is

(

M−1
A−1

)

.
To estimate the Lipschitz norm of Fη in (2.2), let A1,A2 ∈ A(M,A). Then

|Fη (A1) − Fη (A2)| =
1

A

∣

∣

∣

∣

∣

∑

a∈A1

e−iηa −
∑

a∈A2

e−iηa

∣

∣

∣

∣

∣

=
1

A

∣

∣

∣

∣

∣

∑

a∈A1△A2

e−iηa

∣

∣

∣

∣

∣

≤ 1

A
· Card(A1△A2)

=
1

A
· d(A1,A2),

in the view of the metric (2.4). Hence, ‖F‖Lip ≤ 1
A

. By Theorem 2.2, we therefore have the
following proposition.

Proposition 2.3. Let η ∈ R \ {0} and t > 0. Then

µ1 ({A ∈ A(M,A) : |Fη(A)| ≥ t}) ≤ 2 exp

(

−At2

16

)

.

An immediate consequence is an estimate on the variance Var[Fη] of Fη:

Corollary 2.4. Let η ∈ R \ {0}. Then

Var [Fη] ≤
32

A
.

Proof. Since E[Fη] = 0, compute that

Var [Fη] = E
[

|Fη|2
]
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= 2

∫ ∞

0

t · µ1 ({A ∈ A(M,A) : |Fη(A)| ≥ t}) dt

≤ 4

∫ ∞

0

te−
At2

16 dt

=
32

A
.

�

We now prove Theorem 2.1 and need the following version of Bernstein inequality from Bennett
[B].

Theorem 2.5 (Bernstein inequality). Let X1, ..., Xn be independent and identical random vari-
ables with expectation zero. Suppose that for some C > 0, |Xj| ≤ C for all j = 1, ..., n. Then
for t > 0,

P

(∣

∣

∣

∣

∣

1

n

n
∑

j=1

Xj

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

− nt2

2
n

∑n
j=1 Var

[

X2
j

]

+ 2
3
Ct

)

.

Proof of Theorem 2.1. We apply Bernstein inequality with n = Card(B) and

X(b) = eiNηbFη (A(b)) ,

for which X(b) ≤ 2 from (2.3) for all b ∈ B. Moreover,

E[X(b)] = 0 and Var[X(b)] ≤ 32

A
.

Hence,

µ

(∣

∣

∣

∣

∣

1

Card(B)

∑

b∈B

eiηbFη (A(b))

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−Card(B)t2

64
A

+ 4
3
t

)

= 2 exp

(

−Card(B)At2

64 + 4
3
At

)

.

�

3. Fourier decay of random Cantor measures

We derive the Fourier transform of the Cantor measure ν supported on the Cantor set C, see
(1.3). Let ξ ∈ R \ {0}. Then

Fν(ξ) = lim
j→∞

Fνj(ξ) =
1√
2π

lim
j→∞

∫

R

e−ixξρj(x) dx.

Here, the density function ρj of the measure νj assigns a measure of Mj

Aj to each of the Aj intervals
which defines Cj . Hence,

Fνj(ξ) =
1√
2π

∑

b∈Bj

M j

Aj

∫ b+ 1

Mj

b

e−ixξ dx

=
M j

√
2πAj

∑

b∈Bj

e−i(b+ 1

Mj )ξ − e−ibξ

−iξ

=
i
(

e−iξ/Mj − 1
)

√
2πξ/M j

·





1

Aj

∑

b∈Bj

e−iξb



 .
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Since Card(Bj) = Aj ,

|Fνj(ξ)| ≤

∣

∣

∣

∣

∣

∣

i
(

e−iξ/Mj − 1
)

√
2πξ/M j

·





1

Aj

∑

b∈Bj

e−iξb





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

i
(

e−iξ/Mj − 1
)

√
2πξ/M j

∣

∣

∣

∣

∣

∣

≤ C · min

{

1,
M j

|ξ|

}

.

in which C > 0 is an absolute constant, that is, it is independent of M,A, ξ, j. Here, we used
the fact that

(e−iη − 1)

η
= O(1) as η → 0, and

(e−iη − 1)

η
= O

(

|η|−1
)

as |η| → ∞.

This estimate of Fνj is not strong enough to derive a Fourier decay of ν. To do so, we next
compare the Fourier transforms of Cj for consecutive j’s, which requires a different way of
computing Fνj as above. Let j ≥ 2. Then

Fνj−1(ξ) =
1√
2π

∑

b∈Bj−1

M j−1

Aj−1

∫ b+ 1

Mj−1

b

e−ixξ dx

=
1√
2π

∑

b∈Bj−1

M j−1

Aj−1

M−1
∑

a=0

∫ b+ a+1

Mj

b+ a

Mj

e−ixξ dx

=
1√
2π

∑

b∈Bj−1

M j−1

Aj−1

M−1
∑

a=0

e−i(b+ a+1

Mj )ξ − e−i(b+ a

Mj )ξ

−iξ

=
i
(

e−iξ/Mj − 1
)

√
2πξ/M j

·





1

Aj−1

∑

b∈Bj−1

e−iξb · 1

M

M−1
∑

a=0

e−iξa/Mj



 .

Similarly,

Fνj(ξ) =
1√
2π

∑

b∈Bj

M j

Aj

∫ b+ 1

Mj

b

e−ixξ dx

=
1√
2π

∑

b∈Bj−1

M j

Aj

∑

a∈A(b)

∫ b+ a+1

Mj

b+ a

Mj

e−ixξ dx

=
1√
2π

∑

b∈Bj−1

M j

Aj

∑

a∈A(b)

e−i(b+ a+1

Mj )ξ − e−i(b+ a

Mj )ξ

−iξ

=
i
(

e−iξ/Mj − 1
)

√
2πξ/M j

·





1

Aj−1

∑

b∈Bj−1

e−iξb · 1

A

∑

a∈A(b)

e−iξa/Mj



 .

Denoting η = ξ/M j, we have that

Fνj(ξ) − Fνj−1(ξ)

=
i
(

e−iξ/Mj − 1
)

√
2πξ/M j

·





1

Aj−1

∑

b∈Bj−1

e−iξb





1

A

∑

a∈A(b)

e−iξa/Mj − 1

M

M−1
∑

a=0

e−iξa/Mj








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=
i (e−iη − 1)√

2πη
·





1

Aj−1

∑

b∈Bj−1

e−iMjηb





1

A

∑

a∈A(b)

e−iηa − 1

M

M−1
∑

a=0

e−iηa









=
i (e−iη − 1)√

2πη
·





1

Aj−1

∑

b∈Bj−1

e−iMjηbFη (A(b))





:= G(η).

We use Theorem 2.1 to estimate G(η). Firstly, compute that

G′(η) =
ηe−iη − i (e−iη − 1)√

2πη2
·





1

Aj−1

∑

b∈Bj−1

e−iMjηbFη (A(b))





+
i (e−iη − 1)√

2πη
·





1

Aj−1

∑

b∈Bj−1

e−iMjηb
(

−iM jbFη (A(b)) + ∂ηFη (A(b))
)



 .

Since a ∈ {0, 1, ...,M − 1},

|∂ηFη (A(b))| =

∣

∣

∣

∣

∣

∣

1

A

∑

a∈A(b)

(

−iae−iηa
)

− 1

M

M−1
∑

a=0

(

−iae−iηa
)

∣

∣

∣

∣

∣

∣

≤ M.

Since |Fη(A)| ≤ 2 by (2.3) and Bj−1 ∈ [0, 1] with Card(Bj−1) = Aj−1, we have that

|G′(η)| ≤
∣

∣

∣

∣

ηe−iη − i (e−iη − 1)√
2πη2

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1

Aj−1

∑

b∈Bj−1

e−iMjηbFη (A(b))

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

i (e−iη − 1)√
2πη

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1

Aj−1

∑

b∈Bj−1

e−iMjηb
(

−iM jbFη (A(b)) + ∂ηFη (A(b))
)

∣

∣

∣

∣

∣

∣

≤ C · min
{

1, |η|−1
}

+ C min
{

1, |η|−1
}

·
(

M j + M
)

≤ C · min
{

1, |η|−1
}

·M j ,

in which C > 0 is an absolute constant. Here, we used the fact that

ηe−iη − i (e−iη − 1)

η2
= O(1) as η → 0, and

ηe−iη − i (e−iη − 1)

η2
= O

(

|η|−1
)

as |η| → ∞.

Next we move on to estimating the following term in G(η):

1

Aj−1

∑

b∈Bj−1

e−iMjηbFη (A(b)) =
1

Aj−1

∑

b∈Bj−1

e−iMjηb





1

A

∑

a∈A(b)

e−iηa − 1

M

M−1
∑

a=0

e−iηa



 ,

which has a period of 2π. Thus, it suffices to consider this term only in the case when η ∈ (0, 2π].
Let

0 < L ≤ A
j
2
−1.

Set K as the smallest integer such that

l :=
2π

K
≤

√
2πL

A
j
2M j

.
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Then
⌊√

2πA
j
2M j

L

⌋

≤ K ≤
⌊√

2πA
j
2M j

L

⌋

+ 1.

Divide (0, 2π] into sub-intervals of equal length l. Denote the boundary points of these sub-
intervals (except 0) by

ηk = kl, in which k = 1, 2, ..., K.

We are now ready to apply Theorem 2.1 to ηk. Here, the probability space A(M,A)A
j−1

for Cj
is equipped with the probability measure µj. Take t = LA− j

2 . Then there is Ωk ⊂ A(M,A)A
j−1

(depending on ηk) with

µj

(

A(M,A)A
j−1 \ Ωk

)

≤ 2 exp






−
Aj−1 · A

(

LA− j
2

)2

64 + 4
3
A
(

LA− j
2

)






≤ 2 exp

(

−L2

66

)

such that for all Cj in Ωk,
∣

∣

∣

∣

∣

∣

1

Aj−1

∑

b∈Bj−1

e−iMjηkbFη (A(b))

∣

∣

∣

∣

∣

∣

≤ LA− j
2 .

Write

Gj =
K
⋃

k=1

Ωk. (3.1)

Then for some absolute constant C > 0,

µj

(

A(M,A)A
j−1 \Gj

)

≤
K
∑

k=1

µj

(

A(M,A)A
j−1 \ Ωk

)

≤ 2K exp

(

−L2

66

)

≤ C · A
j
2M j

L
· exp

(

−L2

C

)

,

and for all Cj in Gj ,
∣

∣

∣

∣

∣

∣

1

Aj−1

∑

b∈Bj−1

e−iMjηkbFη (A(b))

∣

∣

∣

∣

∣

∣

≤ LA− j
2 for all k = 1, ..., K.

Hence, under the same conditions,

|G (ηk)| =

∣

∣

∣

∣

i (e−iηk − 1)√
2πηk

∣

∣

∣

∣

·

∣

∣

∣

∣

∣

∣

1

Aj−1

∑

b∈Bj−1

e−iMjηbFη (A(b))

∣

∣

∣

∣

∣

∣

≤ C · min
{

1, |ηk|−1} · LA− j
2 .

To pass the estimate for ηk, k = 1, ..., K, to the one for all η ∈ (0, 2π], we use the mean value
theorem of G(η). That is, for each η ∈ (0, 2π], there is ηk such that ηk−1 = ηk − l < η ≤ ηk.
Thus,

|G (ηk) −G(η)| ≤ sup
ζ∈(η,ηk)

|G′(ζ)| · l



FRACTAL UNCERTAINTY PRINCIPLE FOR RANDOM CANTOR SETS 13

≤ C · min
{

1, |η|−1
}

·M j ·
√

2πL

A
j
2M j

≤ C · min
{

1, |η|−1
}

· LA− j
2 .

Finally,

|G(η)| ≤ |G (ηk) −G(η)| + |G (ηk)| ≤ C · min
{

1, |η|−1
}

· LA− j
2 .

Recall that η = ξ/M j. We have established that

Proposition 3.1. Let j ≥ 2 and 0 < L ≤ A
j
2
−1. Then there is Gj ⊂ A(M,A)A

j−1
with

µj

(

A(M,A)A
j−1 \Gj

)

≤ C · A
j
2M j

L
· exp

(

−L2

C

)

such that for all Cj in Gj (that is, {A(b), b ∈ Bj−1} are from Gj),

|Fνj(ξ) − Fνj−1(ξ)| ≤ C · min

{

1,
M j

|ξ|

}

· LA− j
2 for all ξ ∈ R \ {0}. (3.2)

Here, C > 0 is an absolute constant.

Let

0 < ε ≤ 1

3
.

For j ≥ 3, set

L = Lj = M
jε
2 .

Since jε
2
≤ j

2
− 1 for all j ≥ 3, we apply the proposition above. Then there is Gj ∈ A(M,A)A

j−1

with

µj

(

A(M,A)A
j−1 \Gj

)

≤ C · A
j
2M j

Lj
· exp

(

−
L2
j

C

)

such that for all Cj in Gj , (3.2) holds.
Set G1 = A(M,A), G2 = A(M,A)A, and Gj for j ≥ 3 be given in (3.1). Let

G =
∞
∏

j=1

Gj ⊂ A
∞ =

∞
∏

j=1

A(M,A)A
j−1

.

Recall that A = M δ with 0 < δ < 1. Hence,

µ∞ (A∞ \G) ≤
∞
∑

j=1

µj

(

A(M,A)A
j−1 \Gj

)

≤
∞
∑

j=3

C · A
j
2M j

Lj
· exp

(

−
L2
j

C

)

≤
∞
∑

j=3

C ·M 3j
2 · exp

(

−M jε

C

)

≤ C exp

(

−Mε

C

) ∞
∑

j=3

M
3j
2 · exp

(

−M (j−1)ε

C

)

≤ C1 exp

(

−Mε

C

)

.
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Here, C > 0 is an absolute constant and C1 = C1(ε) > 0 depends on ε.
Now suppose that C is in G, that is, Cj are in Gj for all j ∈ N, see (1.4). Then

|Fν(ξ)| ≤ |Fν1(ξ)| + |Fν2(ξ)| +

∞
∑

j=2

|Fνj(ξ) − Fνj−1(ξ)|

≤ C · min

{

1,
M

|ξ|

}

+ C · min

{

1,
M2

|ξ|

}

+

∞
∑

j=3

C · min

{

1,
M j

|ξ|

}

· LjA
− j

2 .

Divide the summation into the cases when j < J and j ≥ J , in which

J =

⌊

log |ξ|
M

⌋

.

Assume further that

0 < ε ≤ min

{

δ

2
,

1

3

}

.

Then
∞
∑

j=3

C · min

{

1,
M j

|ξ|

}

· LjA
− j

2

=
J−1
∑

j=3

C · min

{

1,
M j

|ξ|

}

· LjA
− j

2 +
∞
∑

j=J

C · min

{

1,
M j

|ξ|

}

· LjA
− j

2

≤ C
J−1
∑

j=3

M j

|ξ| ·M jε
2 A− j

2 + C
∞
∑

j=J

M
jε
2 A− j

2

≤ C|ξ|−1

J−1
∑

j=3

M(1− δ−ε
2 )j + C

∞
∑

j=J

M−
(δ−ε)j

2

≤ C|ξ|−1 · M(1− δ−ε
2 )J

M1−
(δ−ε)

2 − 1
+ C · M−

(δ−ε)J
2

1 −M−
(δ−ε)

2

≤ C · M
−

(δ−ε)J
2

M
1
2 − 1

+ C · M−
(δ−ε)J

2

1 −M− δ−ε
2

≤ C

1 −M− δ
4

· |ξ|− δ−ε
2

≤ C|ξ|− δ−ε
2 ,

for some absolute constant C > 0, provided that M− δ
4 < 1

2
. This can be guaranteed by

M ≥ e−4δ−1

.

In this case, if |ξ| ≥ M4, then

|Fν(ξ)| ≤ |Fν1(ξ)| + |Fν2(ξ)| +
∞
∑

j=2

|Fνj(ξ) − Fνj−1(ξ)|

≤ CM2|ξ|−1 + C|ξ|− δ−ε
2

≤ C|ξ|− 1
2 + C|ξ|− δ−ε

2
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≤ C|ξ|− δ−ε
2 ,

because 0 < δ < 1.

Remark (Fourier decay estimates of νj). Notice that for each j ∈ N,

|Fνj(ξ)| ≤ |Fν1(ξ)| + |Fν2(ξ)| +

∞
∑

k=3

|Fνk(ξ) − Fνk−1(ξ)| .

The Fourier decay estimate of the Cantor measure ν in Theorem 1.5 also applies to the Cantor
measure νj at each iteration j ∈ N.

Recall that the density function ρj of the Cantor measure νj is given by

ρj(x) =
M j

Aj
1Cj (x) for x ∈ R.

It then follows that

F1Cj(ξ) =
Aj

M j
Fνj(ξ) for all ξ ∈ R.

Hence, with the same conditions as Theorem 1.5,

∣

∣F1Cj (ξ)
∣

∣ ≤ C
Aj

M j
|ξ|− δ−ε

2 for all j ∈ N and |ξ| ≥ M4. (3.3)

4. From Fourier decay to the FUP

In this section, we prove the FUP in Theorems 1.3 and 1.4, following the approach to the FUP
by the Fourier decay suggested by Dyatlov [Dy, Section V]. See also Bourgain-Dyatlov [BD1,
Section 4], in which they used the (generalized) Fourier decay estimate of the Patterson-Sullivan
measures to establish an FUP for the related fractal sets (that is, the limit sets of Schottky
groups).

We first prove the FUP in Theorems 1.4 for the random Cantor measures ν:

‖T‖L2
ν(R)→L2

ν(R) ≤ Ch
δ
4
−ε,

in which

Tu(ξ) =

∫

R

e−
ix·ξ
h u(x) dν(x) for u ∈ L2

ν(R).

Here, the Cantor set C is chosen from G ⊂ A∞ in Theorem 1.5 so that the corresponding Cantor
measure ν satisfies the Fourier decay estimate:

|Fν(ξ)| ≤ C|ξ|− δ−ε
2 for all |ξ| ≥ M4.

Notice that
‖T‖L2

ν(R)→L2
ν(R) = ‖T ⋆T‖L2

ν(R)→L2
ν(R)

,

in which T ⋆T is an integral operator with kernel

Kν(ξ, η) =

∫

R

e
i(ξ−η)x

h dν(x) =
√

2π · Fν

(

η − ξ

h

)

.

The Fourier decay estimate of ν in Theorem 1.5 implies that if |η−ξ
h
| ≥ M4, then

|Kν(ξ, η)| =
√

2π ·
∣

∣

∣

∣

Fν

(

η − ξ

h

)∣

∣

∣

∣

≤ C

∣

∣

∣

∣

η − ξ

h

∣

∣

∣

∣

− δ−ε
2

= Ch
δ−ε
2 |η − ξ|− δ−ε

2 .
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Here, C > 0 is an absolute constant. Whereas if |η−ξ
h
| ≤ M4, then the trivial estimate holds:

|Kν(ξ, η)| =
√

2π ·
∣

∣

∣

∣

Fν

(

η − ξ

h

)∣

∣

∣

∣

≤ C.

By Schur’s test,

‖T ⋆T‖L2
ν(R)→L2

ν(R)

≤
√

sup
ξ∈R

∫

R

|Kν(ξ, η)| dν(η) · sup
η∈R

∫

R

|Kν(ξ, η)| dν(ξ)

= sup
ξ∈R

∫

R

|Kν(ξ, η)| dν(η).

Since ν is supported on [0, 1], divide the integral to the ones on dyadic intervals of the form
[

ξ + 2−j, ξ + 2−j+1
]

with j = 1, ..., J,

in which J is the largest integer such that 2−J ≥ M4h. Then
⌊ |log (M4h)|

log 2

⌋

≤ J ≤
⌊ |log (M4h)|

log 2

⌋

+ 1.

For each I ⊂ R, ν(I) ≤ C|I|δ. Hence,
∫

R

|Kν(ξ, η)| dν(η)

≤
∫

[ξ,ξ+M4h]

|Kν(ξ, η)| dν(η) +
J
∑

j=1

∫

[ξ+2−j ,ξ+2−j+1]

|Kν(ξ, η)| dν(η)

≤ C

[

ν
([

ξ, ξ + M4h
])

+

J
∑

j=1

h
δ−ε
2

(

2−j
)− δ−ε

2 · ν
([

ξ + 2−j, ξ + 2−j+1
])

]

≤ C

[

(

M4h
)δ

+
J
∑

j=1

h
δ−ε
2

(

2−j
)− δ−ε

2 ·
(

2−j
)δ

]

≤ Ch
δ−ε
2 | log h|

≤ Ch
δ
2
−2ε,

provided that h ≤ M−8 (so (M4h)δ ≤ h
δ
2 ≤ h

δ−ε
2 ).

We next prove the FUP in Theorems 1.4 for the h-neighborhood C(h) of the random Cantor
set C:

∥

∥1C(h)Fh1C(h)

∥

∥

L2(R)→L2(R)
= ‖Fh‖L2(C(h))→L2(C(h)) =

∥

∥F⋆
h1C(h)Fh

∥

∥

L2(C(h))→L2(C(h))
,

in which F⋆
h1C(h)Fh is an integral operator with kernel

KL(ξ, η) =
1

2πh

∫

C(h)

e
i(ξ−η)x

h dx =
1√
2πh

F1C(h)

(

η − ξ

h

)

.

Here, the Cantor set C is chosen from G ⊂ A∞ so that the corresponding Cantor measure ν
satisfies the Fourier decay estimate in Theorem 1.5. By (3.3), for the Cantor set Cj at each
iteration j ∈ N,

∣

∣F1Cj (ξ)
∣

∣ ≤ C
Aj

M j
|ξ|− δ−ε

2 for all |ξ| ≥ M4.
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Recall that Cj at the j-th iteration is a union of Aj intervals of equal length M−j . Let J is the
largest integral such that M−J ≥ h. Then

⌊ | log h|
logM

⌋

≤ J ≤
⌊ | log h|

logM

⌋

+ 1.

We compare the Fourier transform of 1C(h) and of 1CJ . Notice that

|C(h)△Cj | = |C(h) \ CJ | + |CJ \ C(h)| ≤ CAJh ≤ CM δJh ≤ Ch1−δ.

Then for all η ∈ R,
∣

∣F1C(h)(ξ) − F1CJ (ξ)
∣

∣ ≤ C · |C(h)△Cj | ≤ Ch1−δ.

Therefore, for all |ξ| ≥ M4,
∣

∣F1C(h)(ξ)
∣

∣ ≤
∣

∣F1Cj(ξ)
∣

∣+
∣

∣F1C(h)(ξ) − F1CJ (ξ)
∣

∣

≤ Ch1−δ|ξ|− δ−ε
2 + Ch1−δ

≤ Ch1−δ|ξ|− δ−ε
2

As a consequence, if |η − ξ| ≥ M4h, then

|KL(ξ, η)| =
1√
2πh

∣

∣

∣

∣

F1C(h)

(

η − ξ

h

)∣

∣

∣

∣

≤ Ch− δ+ε
2 |η − ξ|− δ−ε

2 .

Whereas if |η−ξ
h
| ≤ M4, then the trivial estimate holds:

|KL(ξ, η)| =
1√
2πh

·
∣

∣

∣

∣

F1C(h)

(

η − ξ

h

)∣

∣

∣

∣

≤ Ch−δ.

Here, we used the fact that |C(h)| ≤ Ch1−δ.
With this finite scale version of the Fourier decay estimate, we repeat the same process as

above: By Schur’s test,

‖F⋆
hFh‖L2(C(h))→L2(C(h))

≤
√

sup
ξ∈C(h)

∫

C(h)

|KL(ξ, η)| dη · sup
η∈C(h)

∫

C(h)

|KL(ξ, η)| dξ

= sup
ξ∈C(h)

∫

C(h)

|KL(ξ, η)| dη.

Divide the integral to the ones on dyadic intervals of the form
[

ξ + 2−j, ξ + 2−j+1
]

with j = 1, ..., J,

in which J is the largest integral such that 2−J ≥ M4h. Then
⌊

log (M4h)

log 2

⌋

≤ J ≤
⌊

log (M4h)

log 2

⌋

+ 1.

For each dyadic interval I above, |C(h) ∩ I| ≤ Ch1−δ|I|δ. Hence,
∫

C(h)

|Kh(ξ, η)| dη

≤
∫

C(h)∩[ξ,ξ+M4h]

|Kh(ξ, η)| dη +

J
∑

j=1

∫

C(h)∩[ξ+2−j ,ξ+2−j+1]

|Kh(ξ, η)| dη



18 XIAOLONG HAN AND POURIA SALEKANI

≤ Ch1−δ

[

(

M4h
)δ · h−δ +

J
∑

j=1

(

2−j
)δ · h− δ+ε

2

(

2−j
)− δ−ε

2

]

≤ Ch1− 3δ
2
− ε

2 | log h|
≤ Ch1− 3δ

2
−2ε,

provided that h ≤ M−8 (so M4δ ≤ h− δ
2 ≤ h− δ+ε

2 ).

References

[B] G. Bennett, Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc.
57 (1962), 33–45.

[BD1] J. Bourgain and S. Dyatlov, Fourier dimension and spectral gaps for hyperbolic surfaces. Geom. Funct.
Anal. 27 (2017), no. 4, 744–771.

[BD2] J. Bourgain and S. Dyatlov, Spectral gaps without the pressure condition. Ann. of Math. (2) 187 (2018),
no. 3, 825–867.

[BLT] A. Backus, J. Leng, and Zhongkai Tao, The fractal uncertainty principle via Dolgopyat’s method in higher

dimensions. arXiv:2302.11708.
[C1] A. Cohen, Fractal uncertainty for discrete 2D Cantor sets. arXiv:2206.14131.
[C2] A. Cohen, Fractal uncertainty in higher dimensions. arXiv:2305.05022.
[CT] L. Cladek and T. Tao, Additive energy of regular measures in one and higher dimensions, and the fractal

uncertainty principle. Ars Inven. Anal. 2021, Paper No. 1, 38 pp.
[De] C. Demeter, The failure of the fractal uncertainty principle for the Walsh-Fourier transform.

arXiv:2002.09529.
[Dy] S. Dyatlov, An introduction to fractal uncertainty principle. J. Math. Phys. 60 (2019), no. 8, 081505, 31 pp.
[DJ1] S. Dyatlov and L. Jin, Resonances for open quantum maps and a fractal uncertainty principle. Comm.

Math. Phys. 354 (2017), no. 1, 269–316.
[DJ2] S. Dyatloy and L. Jin, Dolgopyat’s method and the fractal uncertainty principle. Anal. PDE 11 (2018), no.

6, 1457–1485.
[DyZa] S. Dyatlov and J. Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle. Geom. Funct.

Anal. 26 (2016), no. 4, 1011–1094.
[EH] S. Eswarathasan and X. Han, Fractal uncertainty principle for discrete Cantor sets with random alphabets.

arXiv:2107.08276. To appear in Math. Res. Lett.
[F] K. Falconer, Fractal geometry. Third edition. John Wiley & Sons, Ltd., Chichester, 2014.
[HS] R. Han and W. Schlag, A higher-dimensional Bourgain-Dyatlov fractal uncertainty principle. Anal. PDE

13 (2020), no. 3, 813–863.
[LP] I.  Laba and M. Pramanik, Arithmetic progressions in sets of fractional dimension. Geom. Funct. Anal. 19

(2009), no. 2, 429–456.
[M] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Uni-

versity Press, Cambridge, 1995.
[JZ] L. Jin and R. Zhang, Fractal uncertainty principle with explicit exponent. Math. Ann. 376 (2020), no. 3-4,

1031–1057.
[S] R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension. Ark. Mat. 1

(1951), 353–365.

Email address : xiaolong.han@csun.edu

Email address : pouria.salekani.474@my.csun.edu

Department of Mathematics, California State University, Northridge, CA 91330, USA

https://arxiv.org/abs/2302.11708
https://arxiv.org/abs/2206.14131
https://arxiv.org/abs/2305.05022
https://arxiv.org/abs/2002.09529
https://arxiv.org/abs/2107.08276

	1. Introduction
	1.1. Random ensembles in the discrete setting and the continuous setting
	1.2. Organization of the paper

	2. Probabilistic estimates
	3. Fourier decay of random Cantor measures
	4. From Fourier decay to the FUP
	References

