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THE FROBENIUS EQUIVALENCE AND BECK–CHEVALLEY

CONDITION FOR ALGEBRAIC WEAK FACTORISATION

SYSTEMS

WIJNAND VAN WOERKOM AND BENNO VAN DEN BERG

Abstract. If a locally cartesian closed category carries a weak factorisation sys-

tem, then the left maps are stable under pullback along right maps if and only if

the right maps are closed under pushforward along right maps. We refer to this

statement as the Frobenius equivalence and in this paper we state and prove an

analogical statement for algebraic weak factorisation systems. These algebraic

weak factorisation systems are an explicit variant of the more traditional weak

factorisation systems in that the factorisation and the lifts are part of the struc-

ture of an algebraic weak factorisation system and are not merely required to

exist. Our work has been motivated by the categorical semantics of type theory,

where the Frobenius equivalence provides a useful tool for constructing depen-

dent function types. We illustrate our ideas using split fibrations of groupoids,

which are the backbone of the groupoid model of Hofmann and Streicher.

1. Introduction

In this paper we contribute to theory of algebraic weak factorisation systems (or
awfss, for short). The notion of an awfs is due to Garner [7], building on earlier ideas
by Grandis and Tholen [8]. The notion of an awfs is a refinement of the well-known
notion of a weak factorisation system (wfs), which has become quite important in
homotopy theory and category theory. In particular, Quillen’s influential notion of a
model category involves two weak factorisation systems which interact in a suitable
manner [10].

The notion of an algebraic weak factorisation system can be seen as a more explicit
version of the more familiar notion of a wfs. To explain this, let us recall that a wfs

on a category C consists of two classes of maps in C, let us denote them by L and R,
which have the following properties:

(1) Any map in C factors as a map in L followed by a map in R.
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2 THE FROBENIUS EQUIVALENCE AND BECK–CHEVALLEY CONDITION FOR AWFS

(2) Any map in L lifts again any map in R, in the sense that in any solid com-
mutative square

• •

• •

∈L ∈R

in which the map on the left belongs to L and the map on the right toR, there
exists a dotted arrow (the lift) as shown, making both triangles commute.

(3) Maps in L and R are closed under retracts.

The theory of awfss is more “explicit” in that when we are given an awfs, we will
have explicit witnesses for the truth of axioms (1) and (2): that is, for an awfs both
the factorisation in (1) as well as the lift in (2) can be obtained in an explicit manner
and are not just assumed to exist. However, in (2) the lift is given as a function which
includes explicit witnessing information for the fact that the map on the left belongs
to L and the map on the right to R. Indeed, when one is given an awfs, this involves
both a monad R = (R, η, µ) and a comonad L = (L, ε, δ) on the category of arrows
of C. The property of being an L-map is then replaced by the structure of being a
coalgebra for the comonad L and the property of being an R-map is then replaced by
the structure of being an algebra for the monad R; and it is terms of this structure
that the lift in (2) can be constructed.

The theory of algebraic weak factorisation systems has a number of advantages
over the usual theory:

(1) Due to its explicit nature, it is more constructive than the usual theory.
(2) In an awfs, the coalgebras are closed under colimits and the algebras under

limits, in an appropriate sense.
(3) They can be used to describe situations that are not wfss, because alge-

bras and coalgebras need not be closed under retracts. For example, split
Grothendieck fibrations are the algebras for a monad in an awfs, while not
being closed under retracts.

For the purposes of this paper, points (1) and (3) are the important ones. Indeed,
we feel that point (1) has recently become especially important due to the influence
of homotopy type theory (HoTT) [16]. Here, type theory refers to formal systems,
like the Calculus of Constructions or Martin-Löf’s intuitionistic type theory, which
are both constructive foundations for mathematics and functional programming lan-
guages. Recent developments have amply demonstrated how ideas from homotopy
theory and higher category theory are highly relevant to type theory. In particular,
Voevodsky has shown how one can exploit the Kan–Quillen model structure on sim-
plicial sets to construct a model of type theory there which validates principles like
his Univalence Axiom or Higher Inductive Types [13].

This paper focuses on an important aspect of model constructions like those of
Voevodsky which make use of Quillen’s model categories to obtain models of type
theory: how they model Π-types. Π-types, or dependent function types, are arguably
the most important type former in type theory and the argument for why these
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model categories model them is basically always as follows. The underlying category
is a presheaf category and hence locally cartesian closed: this means that pullback
functors have right adjoints, which we will call pushforward functors. To show that we
have a model of Π-types, we need that pushforward functors alongR-maps (fibrations)
preserve R-maps (fibrations). Using general facts about adjoints (as well as axiom
(3) for a wfs), this is equivalent to the pullback functors along R-maps preserving
L-maps. We will refer to this equivalence as the Frobenius equivalence and the latter
property as the Frobenius property. The Frobenius property is often easier to check
than the original statement; for instance, the Frobenius property will hold in a model
category if it is right proper and the cofibrations are stable under pullback.

The main contribution of this paper is to find suitable analogues of these statement
for algebraic weak factorisation systems. That is, we will formulate appropriate forms
of the statement that algebras are closed under pushforward along algebras and the
Frobenius property for awfss, and we will prove that these are equivalent. In order
to model type theory, one needs suitably “stable” versions of both the pushforward
and the Frobenius property. This amounts to requiring an additional property, a
version of the well-known Beck–Chevalley condition, and we will also formulate an
appropriate version of the Beck–Chevalley conditions for awfss.

To prove the various equivalences, the connection between awfss and double cate-
gories will be crucial. The way double categories come in is that as double categories
the algebras and coalgebras in an awfs still determine each other. To explain this
a bit better, recall that the algebras and coalgebras are not closed under retracts in
an awfs as axiom (3) for a wfs would suggest. However, axiom (3) is equivalent to
another axiom. To formulate it, let us say that f has the right lifting property (RLP)
against g and g the left lifting property (LLP) against f , denoted f ⋔ g, if for any
solid commutative square

• •

• •

g f

there exists a dotted lift as shown. If A is some class of maps in a category C, we will
write:

A⋔ = {f : (∀g ∈ A) g ⋔ f},
⋔A = {g : (∀f ∈ A) g ⋔ f}.

In those terms, axiom (3) is equivalent (over axioms (1) and (2)) to:

(3)′ ⋔R ⊆ L and L⋔ ⊆ R.

(So axioms (2) and (3) together are equivalent to ⋔R = L and L⋔ = R.) The fact that
L and R determine each other through lifting properties is very useful and, indeed,
this is what is used in the proof of the Frobenius equivalence. While we no longer
have that algebras and coalgebras are closed under retracts, we do still have that
they determine each other through lifting properties, but to state these we need the
language of double categories.
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As it happens, in recent work [2], John Bourke has shown that the notion of an
awfs can be formulated purely in terms of double categories and a double-categorical
lifting property. It is this definition (called a lifting awfs there) that is especially
useful for this paper and we will use that definition, and not the equivalent one using
monads and comonads, to prove the Frobenius equivalence for awfss.

In this paper we develop this Frobenius equivalence for awfss in a step-by-step
manner as it allows us to gradually introduce the main technical and conceptual points
of this paper. Indeed, it has been our experience that by conceptualising matters in
the right way we can tell a clear story while also avoiding a lot of messy calculations.
For that reason, we start this paper by going over the Frobenius equivalence for weak
factorisation systems in some detail in Section 2. This material is well-known, but
we will develop it in a particular way, as this allows us to smoothly transition to
the more technical setting of an algebraic weak factorisation system. In particular,
we emphasise that it is more convenient to think of pullback and pushforward as
operations acting on the maps of a slice category (the “arrow view”) rather than
the objects of a slice category (the “object view’). Before developing a Frobenius
equivalence for double categories of maps, we first develop a Frobenius equivalence
for categories of maps in Section 3. After that, we define double categories and
(lifting) awfss in Section 4 and state and prove the Frobenius equivalence for double
categories of maps and awfss in Section 5, building on the work in Section 3. For
obtaining models of type theories with dependent function types, we need another
stability condition for these Π-types: the Beck-Chevalley condition. We take a closer
look at this condition in Sections 6 and formulate an equivalent condition that should
make it easier to verify in concrete cases. After a digression in Section 7, where
we discuss a strengthening of the Frobenius condition one also encounters in the
literature, we show how our framework can be used to obtain a model of type theory
with dependent function types, as well as other type formers, such as identity and
dependent sum types. We illustrate these ideas using split fibrations of groupoids,
the backbone of the groupoid model of Hofmann and Streicher [11].

This paper is based on the MSc thesis of the first author, which was supervised by
the second author [20].

2. The Frobenius equivalence for classes of maps

In this section we will go over the Frobenius equivalence for weak factorisation
systems in some detail. We do this, not because this material is novel (it is not),
but because we found that by thinking about this material in a certain way, the
generalisation to settings like that of algebraic weak factorisation systems becomes
much more natural. Therefore we start this section by recalling the definition of a
weak factorisation system and outlining a perspective on the Frobenius equivalence.
We will then go on to give a detailed proof of the Frobenius equivalence for weak
factorisation systems following this outline.
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2.1. Weak factorisation systems. In what follows we frequently work in the con-
text of some (small) ambient category C which is (sufficiently) locally cartesian closed,
and write C1 for the set (or class) of morphisms in C. Of central importance will be
various notions of lifting. Given two morphisms f, g ∈ C1 we say f has the left lifting
property with respect to g, and g the right lifting property with respect to f , denoted
f ⋔ g, if every commutative square (u, v): f → g has a diagonal filler φ: cod f → dom g
making both of the induced triangles commute:

(2.1)

• •

• • .

f g

u

v

φ

Given a subclass J ⊆ C1 of morphisms in C we define
⋔J = {f ∈ C1 | f ⋔ g for all g ∈ J}, and

J⋔ = {f ∈ C1 | g ⋔ f for all g ∈ J}.

Definition 1. A weak factorisation system (wfs) on C is a pair (L,R) of subclasses
L,R ⊆ C1 satisfying two axioms:

(1) Axiom of lifting: L = ⋔R and R = L⋔.
(2) Axiom of factorisation: every morphism f ∈ C1 admits a factorisation f = r.l

with l ∈ L and r ∈ R.

The set L is referred to as the left class of the wfs, and R as the right class.

Remark 2. Throughout this work we follow the notational conventions of [2, 3], in
using the letters J and K to denote arbitrary classes of morphisms in a category,
and the letters L and R to denote the classes making up a weak factorisation system.
However, we will often also consider general pairs (J,K) of subclasses of C1, and
also then we will speak of left and right maps to refer to morphisms from J and K,
respectively.

2.2. The Frobenius equivalence in outline. When C is locally cartesian closed
every morphism f ∈ C1 induces an adjunction f∗ ⊣ f∗ of pullback and pushforward
along f , respectively. The two properties of a wfs on such a category that we will
be concerned with in this paper are the following.

Definition 3. A wfs (L,R) on a locally cartesian closed category C satisfies the
Frobenius property if L is closed under pullback alongR, and the pushforward property
if R is closed under pushforward along R.

Proposition 4 (Frobenius equivalence for a wfs). A wfs satisfies the Frobenius
property if and only if it satisfies the pushforward property.

The statement of the Frobenius equivalence of Proposition 4 can be understood as
the result of combining the following two well-known results on wfs.

Proposition 5. Let F ⊣ G:D → C be an adjunction, (L,R) a wfs on C, and (L′, R′)
one on D; then F (L) ⊆ L′ if and only if G(R′) ⊆ R.
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This statement roughly says that a left adjoint preserves left maps if and only if
its right adjoint preserves right maps. Following the terminology of [3] we will refer
to this and similar results as change of base.

Proposition 6. Given a wfs (L,R) on a category C and an object A ∈ C there is a
wfs (L/A,R/A) on the slice category C/A.

The wfs produced by Proposition 6 are often called slice wfs. The left and right
maps of the slice wfs on C/A are those maps in C/A whose underlying morphisms
are left or right maps, respectively.

Proposition 5 now combines with Proposition 6 to yield a slightly more general
version of the Frobenius equivalence.

Corollary 7. Let f :A → B be a morphism in C and (L,R) a wfs on C, then
f∗(L/B) ⊆ L/A if and only if f∗(R/A) ⊆ R/B.

Proof. By Proposition 6 we obtain two slice wfs (L/A,R/A) and (L/B,R/B) on
C/A and C/B respectively. We have an adjunction f∗ ⊣ f∗: C/A → C/B and so
Proposition 5 tells us f∗(L/B) ⊆ L/A if and only if f∗(R/A) ⊆ R/B. �

Remark 8. While Proposition 4 and Corollary 7 are clearly very similar, there are
still some notable differences between them; for example, Proposition 4 is about base
change along right maps, whereas in Corollary 7 the base change is performed along
an arbitrary morphism. We will get back to these differences in Section 2.6.

As a matter of fact, the proofs of Propositions 5 and 6 do not rely on the axiom
of factorisation of wfs, but only on the axiom of lifting. They can therefore be
stated for what are called pre-wfs in [2, 4], but which we will call closed lifting pairs,
i.e. pairs (J,K) satisfying J = ⋔K and K = J⋔. We thus see that the Frobenius
equivalence of Corollary 7 consists of the following key components.

(1) Lifting: A definition of lifting with respect to a subclass J ⊆ C1, giving rise to
subclasses of left lifting ⋔J ⊆ C1 and right lifting J⋔ ⊆ C1. In turn, this yields
the notion of a closed lifting pair (J,K) satisfying J = ⋔K and K = J⋔.

(2) Base change: A result relating closed lifting pairs along adjunctions.
(3) Slicing: An extension of the slice category construction C/A for some object

A ∈ C to a subclass J ⊆ C1, yielding a subclass J/A ⊆ (C/A)1. This con-
struction should preserve closed lifting pairs, meaning that when (J,K) is a
closed lifting pair, then so is (J/A,K/A).

Once these components have been established, definitions of the Frobenius and push-
forward properties, as well as the equivalence between them, follow readily.

We will now consider components (1)–(3) of lifting, base change, and slicing in
some detail in Sections 2.3, 2.4, and 2.5, respectively. We conclude with the Frobenius
equivalence for weak factorisation systems in Section 2.6.
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2.3. Lifting. As mentioned in Section 2.1, we write f ⋔ g for f, g ∈ C1 when every
lifting problem (u, v): f → g has a diagonal filler φ as in (2.1). We extend this
notation to subclasses J,K ⊆ C1, by writing J ⋔ K when f ⋔ g for every f ∈ J and
g ∈ K; for singletons we omit brackets. We define, as before, ⋔J = {f ∈ C1 | f ⋔ J}
and J⋔ = {f ∈ C1 | J ⋔ f}. Let P(C1) denote the poset category of subclasses of C1
ordered by the inclusion relation, then ⋔(−) and (−)⋔ give a Galois connection:

(2.2) (P(C1))
op P(C1) .

⋔(−)

(−)⋔

⊣

In this notation we have a string of equivalences:

J ⊆ ⋔K iff J ⋔ K iff K ⊆ J⋔.(2.3)

We are particularly interested in cases where the inclusions of (2.3) are equalities.

Definition 9. A pair (J,K) of subclasses J,K ⊆ C1 is called a lifting pair if J ⋔ K.
A lifting pair (J,K) is called closed if the induced inclusions of (2.3) hold both ways,
so that J = ⋔K and K = J⋔.

Remark 10. In [15, Definition 1.1.3] a lifting pair is defined as what we call a closed
lifting pair in Definition 9. We make this further distinction to align terminology
with [2], cf. Definition 35.

Example 11. We remark, as in [2, Examples 5 & 6], that any subclass J ⊆ C1
induces two canonical lifting pairs (⋔J, J) and (J, J⋔), because from (2.3) we get:

⋔J ⊆ ⋔J iff ⋔J ⋔ J iff J ⊆ (⋔J)⋔, and

J ⊆ ⋔(J⋔) iff J ⋔ J⋔ iff J⋔ ⊆ J⋔.

The inclusions J ⊆ (⋔J)⋔ and J ⊆ ⋔(J⋔) correspond to the unit and counit of (2.2).
The lifting pairs (⋔J, (⋔J)⋔) and (⋔(J⋔), J⋔) so obtained are called fibrantly generated
and cofibrantly generated by J , respectively. In fact, since (2.2) is a Galois connection,
these fibrantly and cofibrantly generated pairs are always closed.

2.4. Base change. The notion of lifting pair can be generalized relative to adjunc-
tions of categories. This is because for J ⊆ C1 and K ⊆ D1, with an adjunction
F ⊢ G between two categories C and D, we have the following string of equivalences:

F (J) ⊆ ⋔K iff F (J) ⋔ K iff J ⋔ G(K) iff G(K) ⊆ J⋔.(2.4)

Proposition 12. Let F ⊣ G:D → C be an adjunction, and J ⊆ C1, K ⊆ D1 classes
of maps in C and D respectively; then F (J) ⊆ ⋔K if and only if G(K) ⊆ J⋔.

Proof. We only prove left to right; the other direction is dual. To show Gk ∈ J⋔ for
k:A→ B ∈ K we consider j:C → D ∈ J and (u, v): j → Gk as on the left of:

C GA FC A

D GB , FD B .

Gkj

u

Fj k

ū

v̄

φ

v

φ̄
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Transposing gives a lifting problem (ū, v̄) for Fj and k which has a solution φ by the
assumption F (J) ⊆ ⋔K, and its transpose φ̄ is a solution to (u, v). �

In the context of closed lifting pairs Proposition 12 tells us that a left adjoint
preserves left maps if and only if its right adjoint preserves right maps.

Corollary 13. Let F ⊣ G:D → C, and (J,K) and (L,M) be closed lifting pairs on
C and D respectively, then F (J) ⊆ L if and only if G(M) ⊆ K.

2.5. Slicing. A large part of our work relates to slicing. Recall that if C is a category
and A an object in C, then the slice category C/A is the category whose objects are
maps a:X → A with codomain A and whose morphisms (b:Y → A) → (a:X → A)
are maps f :Y → X in C making the triangle below commute:

Y X

A .

f

b a

Note that f (considered as a morphism in C) does not uniquely determine a morphism
in C/A, as there could be other arrows besides a in C(X,A). On the other hand, the
domain b of f (considered as a morphism in C/A) can be inferred from the data f and
a. This means an arrow in C/A is equivalently a pair (f, a) of composable morphisms
such that cod a = A, and we will henceforth refer to them using this notation. In this
setting we say a is an extension of f to A. Two morphisms (f, a) and (g, b) in C/A
are composable when a = b.g, and their composition is given by (g.f, b).

Next, we extend the slicing operation on categories to one on classes of maps.

Definition 14. Given a subclass J ⊆ C1 and an object A ∈ C we define the slice
subclass J/A ⊆ (C/A)1 by J/A = {(f, a) ∈ (C/A)1 | f ∈ J}.

The goal will now be to prove the following proposition, which uses the above
notion of slicing to create new closed lifting pairs from old.

Proposition 15. If (J,K) is a closed lifting pair on C, and A ∈ C is some object,
then (J/A,K/A) is a closed lifting pair on C/A.

We start by considering how lifting works in a slice category. A lifting problem for
morphisms (f, a) and (g, b) in C/A is a square ((u, c), (v, d)): (f, a) → (g, b), as in:

(2.5)

a.f b.g • •

a b , • •

A .

f g

u

v

φ

a b

(f,a) (g,b)

(u,c)

(v,d)

(φ,e)
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This boils down to a lifting problem (u, v): f → g for f and g such that the induced
triangle over the extensions to A commutes, as illustrated on the right above. More-
over, a lifting solution (φ, e) to the problem ((u, c), (v, d)) is just a solution φ to the
problem (u, v), as e necessarily equals b.g. In other words, lifting in C/A is very
similar to lifting in C, with the difference being that in C/A a restricted set of lifting
problems is considered—namely those commuting with the extensions to A.

Lemma 16. Let (f, a), (g, b) ∈ (C/A)1 for A ∈ C, then f ⋔ g implies (f, a) ⋔ (g, b).

Proof. A lifting problem ((u, c), (v, d)) for (f, a) and (g, b) as on the left of (2.5)
yields a problem (u, v) for f and g as on the right of (2.5), which has a solution φ by
assumption; now (φ, b.g) is a solution to ((u, c), (v, d)). �

Lemma 17. Let J,K ⊆ C1 and A ∈ C, then J ⋔ K implies J/A ⋔ K/A.

Proof. Let (f, a) ∈ J/A, (g, b) ∈ K/A, then f ∈ J and g ∈ K so f ⋔ g by assumption,
and so (f, a) ⋔ (g, b) by Lemma 16. �

Lemma 17 tells us the slicing operation on subclasses of maps preserves lifting
pairs. To see that it also preserves closed lifting pairs we appeal to a more general
statement about commutativity between slicing and lifting. The first step towards
proving commutativity of lifting is taken by the following consequence of Lemma 17.

Lemma 18. Let J ⊆ C1 and A ∈ C, then (J⋔)/A ⊆ (J/A)⋔ and (⋔J)/A ⊆ ⋔(J/A).

Proof. By applying Lemma 17 to the canonical lifting pairs (⋔J, J) and (J, J⋔) we get
(⋔J)/A ⋔ J/A and J/A ⋔ (J⋔)/A, which is equivalent to the desired inclusions. �

Only one of the converse inclusions of Lemma 18 holds in general.

Lemma 19. Let J ⊆ C1 and A ∈ C, then (J/A)⋔ ⊆ (J⋔)/A.

Proof. Let (f, a) ∈ (J/A)⋔, to show f ∈ J⋔ we consider (u, v): j → f for j ∈ J , as in:

• • a.v.j a.f

• • a.v a .

A ,

j f

u

v

φ

a.v a

(j,a.v) (f,a)

(u,a.f)

(v,a)

(φ,a.f)

Now (j, a.v) ∈ J/A, and we have a commuting square ((u, a.f), (v, a)): (j, a.v) → (f, a)
in C/A which has a solution (φ, a.f); and φ is a solution to the square (u, v). �

Corollary 20. Let J ⊆ C1, then (J/A)⋔ = (J⋔)/A.
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The trick in the proof of Lemma 19 is to make an extension for j by precomposing
the extension of f with the lower half of the lifting problem. This does not work when
we try to prove the remaining inclusion ⋔(J/A) ⊆ (⋔J)/A, which involves a square
(u, v): f → j in which the positions of f and j are swapped. To work around this, we
place an additional requirement on J .

Lemma 21. Let J ⊆ C1 be closed under pullbacks and A ∈ C, then ⋔(J/A) ⊆ (⋔J)/A.

Proof. Let (f, a) ∈ ⋔(J/A), to show f ∈ J⋔ we consider (u, v): f → j for j ∈ J , as in:

• • • a.f a.v∗j

• • • , a a .

A

f j

u

a

(f,a) (v∗j,a)

(α,a.v∗j)

(1,a)

(φ,a.v∗j)

v1

a

φ

α εv

v∗j

y

By assumption v∗j ∈ J and so (v∗j, a) ∈ J/A. The morphism α: dom f → dom v∗j
induced by v∗j gives rise to a lifting problem ((α, a.v∗j), (1, a)): (f, a) → (v∗j, a) in
C/A, which has a solution (φ, a.v∗j); and εv.φ is a solution to (u, v). �

This additional assumption on J is satisfied in the case we are interested in.

Lemma 22. For J ⊆ C1 the class J⋔ is closed under pullbacks.

Proof. Let f ∈ J⋔ and (u, v): g → f be a pullback. To show g ∈ J⋔ we consider a
lifting problem (w, x): j → g for j ∈ J :

• • •

• • • .

j g f

u

v

y

w

x

φ
α

By assumption the outer rectangle (u.w, v.x) has a solution φ, by which the pullback
induces a morphism α that solves (w, x). �

Corollary 23. Let J,K ⊆ C1 with K = J⋔, then ⋔(K/A) = (⋔K)/A.

We are now ready to prove that slicing preserves closed lifting pairs.

Proof of Proposition 15. Let (J,K) be a closed lifting pair on C; we want to show
that (J/A,K/A) is a closed lifting pair on C/A. By Corollaries 20 and 23 we have:

(J/A)⋔ = (J⋔)/A = K/A, and ⋔(K/A) = (⋔K)/A = J/A. �
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2.6. Frobenius equivalence. In a locally cartesian closed category C, any morphism
f :A → B induces an adjunction f∗ ⊣ f∗: C/A → C/B of pullback and pushforward
along f . The action of the pullback functor f∗ on an object g in C/B is depicted on
the left diagram below:

(2.6)

• •

• • • •

A B , A B .

b

g

f

f∗b

f∗(b.g)

f∗g

gf∗g

f

y

The action of f∗ on an arrow (g, b) in C/B is depicted on the right above; it is
defined as the morphism induced by the pullback f∗b from the pullback f∗(b.g) of
the composition b.g. In this case we (abusively) write f∗g for the first component of
the resulting morphism in C/A, so f∗(g, b) = (f∗g, f∗b).

Definition 24. A morphism f :A→ B ∈ C1 has the Frobenius property with respect
to a pair (J,K) of subclasses J,K ⊆ C1 if f∗(J/B) ⊆ J/A, and the pushforward
property if f∗(K/A) ⊆ K/B.

Theorem 25. A morphism f :A → B in C has the Frobenius property with respect
to a closed lifting pair (J,K) if and only if it has the pushforward property.

Proof. By Propositions 12 and 15 we have:

f∗(J/B) ⊆ J/A iff f∗(J/B) ⊆ ⋔(K/A)

iff f∗(K/A) ⊆ (J/B)⋔

iff f∗(K/A) ⊆ K/B. �

The definition of the Frobenius property we give in Definition 24 differs from how
it is usually phrased for wfs (Definition 3 above), in two ways. Firstly, Definition 3
requires the object component of the pullback functor f∗ to preserve left maps, while
in Definition 24 it is the arrow component of f∗ which is required to do so. This
is illustrated in (2.6)—both versions of the Frobenius property require that g ∈ L
implies f∗g ∈ L, but Definition 3 is phrased with respect to the left diagram of (2.6)
and Definition 24 with respect to the right diagram. The latter is slightly stronger.

Proposition 26. Let (J,K) be classes of morphisms in C which are closed under
isomorphisms, and f a map in C. If the arrow component of f∗ preserves J maps
then so does its object component; the same statement holds for f∗ w.r.t. K maps.

Proof. To avoid confusion we write f∗ for the action of the pullback functor along f
on objects, and f⋆ for its action on arrows. Let g:C → B be a J map, we want to
show that f∗g ∈ J . Note that g can be considered a morphism (g, 1A) in C/B, and
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so f⋆g ∈ J . Therefore, we have f∗g ∈ J from (1, f∗1): f⋆g ∼= f∗g:

• •

• •

A B .

1f∗1

f

gf⋆g

f∗g

The argument for the pushforward functor f∗ is analogous. �

The converse implications do not hold in general for an individual morphism f . To
obtain something of a converse we should make the statement for a class of morphisms
K which is closed under pullbacks.

Proposition 27. Let (J,K) be closed under isomorphisms, K closed under pullbacks,
and f a map in K. If the object component of f∗ preserves J maps then so does its
arrow component. Furthermore, if the object components of all pushforward functors
of K maps preserve K maps, then the arrow component of f∗ preserves K maps.

Proof. Let f :A → B be a K map, and (g, b) ∈ C/B. Writing ε for the counit of
f! ⊣ f

∗, we have that εb ∈ K by assumption, and so ε∗bg
∼= f∗g ∈ K; as on the left of:

• • • • • • •

• • • • •

A B , A B .
f

b

g

f∗b

εb

ε∗bg
f∗g

a

f

g

f∗a
f∗f∗a

εf∗aνa

ν∗

ag f∗g
h

∼ ∼

Consider (g, a) ∈ C/A, and let ν: f∗f∗ → 1 denote the counit of f∗ ⊣ f∗. AsK is closed
under pullbacks, we have that ν∗ag and εf∗a are both inK, and so (εf∗a)∗ν

∗
ag = h ∈ K.

It can be shown that h has the universal property of f∗g, and so h ∼= f∗g ∈ K. �

Despite the fact that under the assumptions of Proposition 27 the Frobenius and
pushforward properties for arrows can be reduced to those for objects, we still regard
the ones for arrows as being the most fundamental. Indeed, the versions for arrows
are the ones that can most readily be generalised to the case of categories and double
categories of maps, as we will see in the subsequent sections.

Proposition 27 brings us to a second difference between Definitions 3 and 24, which
is that in the former both the pullback and pushforward is performed along a K map,
whereas the latter is phrased with respect to an arbitrary morhpism in the ambient
category. There are two reasons why Definition 3 is phrased this way. Firstly, as
Proposition 27 suggests, it is necessary for obtaining Proposition 4 (as the right class
of a wfs is always closed under pullbacks). The second reason relates to type theory;
we want to interpret dependent types as right maps of a wfs, and the dependent
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product as pushforward, so that R should be closed under pushforward. For this
reason, we adapt Definition 24 of the Frobenius property to pairs of classes of maps.

Definition 28. A pair (J,K) of subclasses J,K ⊆ C1 satisfies the Frobenius property
if every f ∈ K does, and likewise the pushforward property when every f ∈ K does.

3. The Frobenius equivalence for categories of maps

In this section we move from classes of maps to categories of maps and show
that the results from the previous section can be generalised to this setting. This
generalisation stems from Garner’s paper on understanding the small object argument
[7] and the extension of the Frobenius equivalence to this setting can be found in [6].
We give a different account of the Frobenius equivalence here, which shows that it
can be derived rather cleanly from the work of Bourke and Garner in [3], provided we
follow the outline we sketched in Subsection 2.2 and take the “arrow view” instead
of the “object view”, as discussed in Subsection 2.6; moreover, the extension of the
Frobenius equivalence to algebraic weak factorisation systems that we will see in
later sections builds on this particular way of developing the Frobenius equivalence
for categories of maps.

In what follows we will write Ar(C) for the arrow category of a category C, that is,
the category whose objects are the arrows of C and whose morphisms are commutative
squares in C. Note that Ar can be considered as a functor Cat → Cat, and there
are natural transformations dom, cod:Ar ⇒ 1Cat.

We formalise the idea of a category of maps as a functor J → Ar(C): indeed, we
think of J as consisting of a category of structured morphisms in C and structure-
preserving maps between those. The following examples illustrate this.

Example 29. Recall that a mono i in a category C is split if it has a retraction. One
option would be to regard the split monos just as a class of maps, as in the previous
section. However, we can also regard the splitting as additional structure, so that
we are interested in pairs (i, r) where r is a retraction of i. Split monos can then
be given categorical structure by defining a morphism between split monomorphisms
(i, r), (i′, r′) as a serially commuting square of functors (u, v):

• •

• • .

i i′r r′

u

v

We denote the category of split monos defined in this manner by SplMono, and we
have a (faithful) forgetful functor SplMono → Ar(C) sending the pair (i, r) to i.

Example 30. As a special case of the previous example, consider the case where
C = Cat and the split mono (i, r) is a split reflection in that r ⊢ i with identity counit
(split reflections are better known as right adjoint right inverses or rari, for short);
see [3, Section 4.2]. We can then define SplRef as a full subcategory of SplMono

containing the raris in Cat, and we obtain a functor SplRef → Ar(Cat). Note that
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a morphism in SplMono between split reflections is guaranteed to commute with
the units of the adjunctions; the reader is referred to [3, Section 4.2] for more details.

Example 31. A Grothendieck fibration is called split if it comes equipped with
an explicit choice of cartesian lifts which preserves identities and compositions. A
morphism of split fibrations P , Q is defined as a commutative square (U, V ):P → Q
in Cat that also commutes with the splitting. By this we mean that if f is the chosen
lift of f : b → Pa in codP and V f the chosen lift of V f :V b → V Pa in codQ, then
we have Uf = V f . This yields a category SplFib together with a (faithful) forgetful
functor SplFib → Ar(Cat). The same definition applies to split opfibrations, so
that we also have a forgetful functor SplOpFib → Ar(Cat).

Before we proceed, we make some remarks on notation. In this setting, and in the
double categorical setting that follows, we will use the name of the domain J of a
morphism J → Ar(C) to refer both to the domain and the morphism, rather than
naming the morphism separately. Furthermore, following [2, 3], given such a functor
J → Ar(C) we use bold type to denote an element f ∈ J , and italic type for the
corresponding image f of f under J . Moreover, we use double letters for morphisms
in J : that is, if f and g are objects in J , then a map f → g will usually be written
uv and the image of this map under J will be (u, v): f → g.

3.1. Lifting. Lifting for categories of maps is defined as a more structured version
of (2.1), demanding a specific and coherent choice of lifts.

Definition 32. Let J ,K → Ar(C); a (J ,K)-lifting operation φ assigns to each f ∈ J ,
g ∈ K, and lifting problem (u, v): f → g, a solution φf ,g(u, v):

(3.1)

• •

• • .

f g

u

v

φf,g(u,v)

This choice is required to respect morphisms of J and K, in the sense that if wx: f ′ →
f in J , (u, v): f → g, and yz:g → g′ in K, then y.φf ,g(u, v).x = φf ′,g′(w.u.y, x.v.z):

• • • • • •

=

• • • • • • .

u

v

gff ′ g′

x

y

φf,g

w

z

f ′ g′

y.u.w

z.v.x

φf′,g′

Remark 33. Note that the lifting operation chooses the lift on the basis of f and g

rather than f and g. This means, for example, that if K is the category SplMono

of split monos, as in Example 29, the choice of lift may depend on the retraction.

The assignment (J ,K) 7→ Lift(J ,K) of functors J ,K to the class Lift(J ,K) of
(J ,K)-lifting operations can be made the object part of a functor

(3.2) Lift: (Cat/Ar(C))op × (Cat/Ar(C))op → Set.
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A (J ,K)-lifting operation is to functors J ,K → Ar(C) what the statement J ⋔ K
is to subclasses J,K ⊆ C1. Further extending this analogy, we have the following
restriction of [3, Proposition 15] to the case of categories of maps.

Proposition 34. Lift is representable in both arguments, inducing an adjunction:

(3.3) (Cat/Ar(C))op Cat/Ar(C) .

⋔(−)

(−)⋔

⊣

Proof. The representing object of Lift(−,J ) is a category ⋔J → Ar(C) of which
the objects are pairs (f, φf−) with φf− ∈ Lift(f,J ) (where we consider f to be a
functor f : 1 → Ar(C)), and in which a morphism (f, φf−) → (g, φg−) is a square
(u, v): f → g which commutes with the lifting operations. This means that for j ∈ J
and (w, x): g → j we have φf,j(w.u, x.v) = φg,j(w, x).v:

• • • • •

=

• • • • • .

f g j

u

v

w

x

f j

w.u

x.v

φg,j φf,j

The representing object J ⋔ → Ar(C) of Lift(J ,−) is defined analogously. �

Birepresentability of (3.2) gives us the following analog of (2.3):

(3.4) Cat/Ar(C)(J , ⋔K) ∼= Lift(J ,K) ∼= Cat/Ar(C)(K,J ⋔).

In turn, this gives an analog of Definition 9 of (closed) lifting pairs. However, since
this is no longer a property but additional structure—in the form of a (J ,K)-lifting
operation φ—we will now speak of lifting structures, following terminology of [2].

Definition 35. A triple (J , φ,K) of functors J ,K → Ar(C) and a (J ,K)-lifting
operation φ is called a lifting structure. A lifting structure (J , φ,K) is called closed
when the functors φl:J → ⋔K and φr:K → J ⋔ induced by (3.4) are invertible.

Example 36. Let J → Ar(C); applying (3.4) to the identities on ⋔J and J ⋔ yields
lifting operations λ ∈ Lift(⋔J ,J ) and ρ ∈ Lift(J ,J ⋔), and so we get, as we did
in Example 11, two canonical lifting structures (⋔J , λ,J ) and (J , ρ,J ⋔). Again,
this yields lifting structures (⋔J , ρ, (⋔J )⋔) and (⋔(J ⋔), λ,J ⋔) which are said to be
fibrantly generated and cofibrantly generated by J . Whether these are closed in
general seems to be an open question; see [2, Remark 10].

Example 37. The functors SplRef → Ar(Cat) and SplFib → Ar(Cat) form part
of a lifting structure. Indeed, suppose

C A

D B

R

X

P

Y

φ

is a commutative diagram of categories in which P is a split fibration and R is a split
reflection with left adjoint L⊣R and unit θ: 1 → R.L. If d is an object in D, then we
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can consider the image of the unit θd: d→ RLd under Y . Since Y RLd = PXLd and
P is split fibration, we find a cartesian lift of Pθd as in

(3.5)

φ(d) XLd

Y d Y RLd ,
Pθd

Pθd

whose domain we define to be φ(d). This definition of φ can be extended to morphisms
d→ d′ using that Pθd′ is cartesian. Then, P.φ = Y by construction, while φ.R = X
follows from θRc = 1Rc and the fact that the splitting of P lifts identities to identities.
It is readily verified that this way of constructing the lift φ respects the morphisms
in both SplRef and SplFib; for more details, the reader is referred to [2, Examples
4 (ii)]. Note that this lifting structure is not closed, as can be seen from the fact that
split fibration are not closed under retracts.

3.2. Base change. As with classes of maps, lifting structures can be phrased relative
to adjunctions of categories. Following the approach in [3, Section 6.4], we do so by
extending the adjunction (3.3). Let Catladj denote the category of small categories
with fully specified adjunctions between them, pointing in the direction of the left
adjoint; Catradj is defined dually, i.e. Catradj = Cat

op
ladj. These come with functors

Catladj,Catradj → Cat forgetting the right and left adjoints, respectively. We now
define Cat/Ar(−ladj) by the following pullback:

Cat/Ar(−ladj) Catladj

Ar(Cat) Cat .cod

y

The category Cat/Ar(−radj) is defined similarly, using Catradj → Cat.

Proposition 38. The adjunction of Proposition 34 extends to:

(3.6) (Cat/Ar(−ladj))
op Cat/Ar(−radj) .

⋔(−)

(−)⋔

⊣

Proof. The functors ⋔(−) and (−)⋔ act as before on objects, and on arrows by the
construction in Proposition 12. See [3, Proposition 21] for further details. �

The Frobenius equivalence relies essentially on the fact that (3.6) is an adjunc-
tion, so it is worth stating this property separately; it is the categorical analog of
Proposition 12.

Corollary 39. Let F ⊣ G:D → C be an adjunction, and J → Ar(C), K → Ar(D)
be functors; then there is a bijection between lifts F and G as in the diagrams below:

J ⋔K K J ⋔

Ar(C) Ar(D) , Ar(D) Ar(C) .

F

Ar(F )

G

Ar(G)
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3.3. Slicing. We now proceed to define an analog of slicing for functors J → Ar(C).

Definition 40. Given a functor J → Ar(C) and an object A ∈ C we define the slice
functor J /A→ Ar(C/A) as the pullback of J along Ar(dom):Ar(C/A) → Ar(C):

J /A J

Ar(C/A) Ar(C) .
Ar(dom)

y

Here we denote by dom the forgetful functor C/A→ C: a 7→ dom a.

Spelling out the meaning of Definition 40, we find that an object of J /A is equiva-
lently a pair (f , a) with f ∈ J and (f, a) a morphism in C/A. The associated functor
to Ar(C/A) forgets this J -structure, i.e. J /A→ Ar(C/A): (f , a) 7→ (f, a).

The goal will now be to prove that this slicing operation preserves closed lifting
structures. We begin by adapting the construction of Lemma 16.

Proposition 41. Let (J , φ,K) be a lifting structure on C and A ∈ C some object,
then there is a lifting structure (J /A, φ/A,K/A) on C/A.

Proof. We define the (J /A,K/A)-lifting operation φ/A by:

φ/A(f ,a),(g,b)((u, c), (v, d)) = (φf ,g(u, v), b.g). �

Proposition 42. If (J , φ,K) is a closed lifting structure then so is (J /A, φ/A,K/A).

To prove Proposition 42, we use the strategy from Section 2.5 in showing that the
operations defined in Proposition 34 commute with the slicing operation, which is
to say that (J ⋔)/A ∼= (J /A)⋔ and (⋔J )/A ∼= ⋔(J /A) as functors over Ar(C/A).
Again, only the first of these isomorphisms exists in general. For the second desired
isomorphism we do always obtain a functor (⋔J )/A → ⋔(J /A), but for its inverse
to exist we require that J , in some suitable sense, is closed under pullbacks.

Proposition 43. Given a functor J → Ar(C) and an object A ∈ C there are functors
(λ/A)l: (

⋔J )/A→ ⋔(J /A) and (ρ/A)r : (J
⋔)/A→ (J /A)⋔.

Proof. Apply Proposition 41 to the canonical lifting structures induced by J . �

Proposition 44. The functor (ρ/A)r of Proposition 43 is an isomorphism.

Proof. We make a functor (J /A)⋔ → J ⋔ using the construction in Lemma 19; given
(f, a) with a (J /A, (f, a))-lifting operation φ−(f,a) we define a (J , f)-lifting operation
θ−f by θj,f(u, v) = φ(j,a.v),(f,a)((u, a.f), (v, a)). By the universal property of (J ⋔)/A

this induces the desired inverse (ρ/A)−1
r : (J /A)⋔ → (J ⋔)/A. �
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Definition 45. A functor J → Ar(C) is a comprehension category if cod .J is a
Grothendieck fibration making J into a cartesian functor:

J Ar(C)

C .

J

cod .J cod

Proposition 46. Let J → Ar(C); then J ⋔ → Ar(C) is a comprehension category.

Proof. Assume we have maps g:B → A and y:C → A and φ−g is a (J , g)-lifting
operation. Since C has pullbacks, there is a pullback square (x, y): g′ → g, induc-
ing a (J , g′)-lifting operation ψ−g′ for g′ by the construction of Lemma 22. Now
(x, y): (g′, ψg′−) → (g, φg−) is a cartesian morphism in J ⋔. �

The following is [6, Proposition 5.4].

Proposition 47. Let J → Ar(C) be a comprehension category, and A ∈ C be some
object; then the functor (λ/A)l of Proposition 43 is an isomorphism.

Proof. Let ((g, a), φ(g,a)−) ∈ ⋔(J /A) and consider f ∈ J with (u, v): g → f . By
assumption there is a cartesian morphism v∗f → f ∈ J over v and a pullback square
(v+, v): v∗f → f , and so a lift φ(g,a),(v∗f ,a)(α, 1) of the induced morphism α:

(3.7)

• • •

• • • .

g f

1 v

v+

v∗f

α

φ y

In other words, following the construction in Lemma 22, we define a (g,J )-lifting
operation ψg− on (u, v): g → f for f ∈ J by

(3.8) ψg,f (u, v) = v+.φ(g,a),(v∗f ,a)(α, 1).

This morphism is independent of the choice of cartesian lift v∗f → f , by an argument
similar to the one which now follows.

We should check that the lifting function ψg− defined this way satisfies the func-
toriality condition of (3.1). To this end, consider wx: f → f ′ in J and (u, v): g → f .
We get lifts φ(α) = φ(g,a),(v∗f ,a)(α, 1) and φ(β) = φ(g,a),(v∗f ′,1)(β, 1), as on the left
and middle below, with y = x.v, v∗f → f cartesian over v, and v∗f ′ → f ′ cartesian
over y:

• • • • • • • • • •

• • • • , • • • , • • • .

g v∗f f

v1

α v+

φ(α) g v∗f ′ f ′

y+

y

β

1

φ(β) g

α

1

γ

1

v∗f ′v∗f
φ(α)

φ(β)f ′

w

x

It follows from the universal property of the cartesian lift v∗f ′ → f ′ that there is a
J -morphism γ: v∗f → v∗f ′ over (γ, 1), as on the right above, and so we get γ.φ(α) =
φ(γ.α) = φ(β); hence w.v+.φ(α) = y+.γ.φ(α) = y+.φ(β) as desired. �
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3.4. Frobenius equivalence. It is now straightforward to define and prove a Frobe-
nius equivalence for categories of maps.

Definition 48. Let f :A → B be a map in C, and (J ,K) a pair of functors over
Ar(C). A Frobenius structure f∗ on f for (J ,K) is a filler as on the left below:

J /B J /A K/A K/B

Ar(C/B) Ar(C/A) , Ar(C/A) Ar(C/B) .
Ar(f∗)

f∗

Ar(f∗)

f∗

Similarly, a pushforward structure f∗ on f is a filler as on the right above.

Theorem 49. For a map f :A → B in C and a closed lifting structure (J , φ,K) on
C, there is a bijection between Frobenius and pushforward structures on f for (J ,K).

Proof. The previous results give us the following string of isomorphisms:

Cat/Ar(−ladj)(J /B,J /A) ∼= Cat/Ar(−ladj)(J /B,
⋔(K/A))

∼= Cat/Ar(−radj)(K/A, (J /B)⋔)

∼= Cat/Ar(−radj)(K/A,K/B),

where we consider morphisms in Cat/Ar(−ladj) and Cat/Ar(−radj) w.r.t. f∗ ⊣ f∗.
�

Definition 50. A Frobenius structure for a pair (J ,K) of functors over Ar(C) is a
choice of Frobenius structure f∗ for every f ∈ K; likewise, a pushforward structure
for (J ,K) is a choice of pushforward structure f∗ for every f ∈ K.

3.5. An example of split reflections and split opfibrations. We now give an
example of a Frobenius structure in the sense of Definition 50, building on [5, Propo-
sition 5.3]. Recall from Examples 30 and 31 the functors SplRef → Ar(Cat) and
SplOpFib → Ar(Cat). Given a split opfibration P :A → B, an object a ∈ A and
a morphism Pa → b in B we write f : a→ f!a for the choice of cocartesian lift of f
along a:

a f!a

Pa b .
f

f

Note that this notation is imprecise, since the lift f also depends on a. Each morphism
f : b → b′ ∈ B thus induces a functor f!:A(b) → A(b′), where A(b) denotes the
preimage category under P , sending an element a ∈ A(b) to the codomain of f .

Proposition 51. The pair (SplRef ,SplOpFib) admits a Frobenius structure.
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Proof. We construct a lift P∗:SplRef/B → SplRef/A for an opfibration P :A → B:

SplRef/B SplRef/A

Ar(Cat/B) Ar(Cat/A) .
Ar(P∗)

P∗

Consider a situation as drawn on the left below, where L ⊣ R is a split reflection with
unit η; the goal is to construct a split reflection G ⊣ P ∗R as on the left of:

(3.9)

A×B D D

A×B C C

A B ,
P

U

R

P∗UF

P∗RG L

πC

a (Uηc)!a

Uc URLc .
Uηc

Uηc

To achieve this we first define an auxiliary functor F :A×BC → A: (a, c) 7→ (Uηc)!a, as
illustrated on the right above. The action of F on a morphism (a1, c1) → (a2, c2) is de-
fined using the universal property of Uηc1 . Now G is defined by (a, c) 7→ (F (a, c), Lc),
i.e. G = F ×B L.πC . Lastly, we need a unit θ: 1 ⇒ P ∗R.G, for which we take

θ(a,c) = (Uηc, ηc): (a, c) → (F (a, c), RLc).

We have to show that G is a left inverse of P ∗R, and that the triangle identities
θ.P ∗R = 1 and G.θ = 1 hold. To start, we note that because η.R = 1, and the
splitting of P preserves units, we have for (a, d) ∈ A×B D that

(3.10) UηRd = U1Rd = 1URd = 1a.

Therefore, F (a,Rd) = (UηRd)!a = (1a)!a = a, and so

G(P ∗R(a, d)) = G(a,Rd) = (F (a,Rd), LRd) = (a, d),

which is to say that G is a left inverse of P ∗R. Similarly, from (3.10) we get

θP∗R(a,d) = θ(a,Rd) = (UηRd, ηRd) = (1a, 1Rd).

Lastly, we check if Gθ(a,c) = (1F (a,c), 1Lc). As L.η = 1 by assumption, this comes
down to verifying that F (Uηc, ηc) = 1F (a,c):F (a, c) → F (F (a, c), RLc). Substituting
Lc for d in (3.10) we find that UηRLc = 1F (a,c) and so F (F (a, c), RLc) = F (a, c).
Therefore, the desired result follows from the universal property of the lift Uηc.
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It remains to check that P∗ preserves morphisms of split reflections; to this end,
we consider a morphism of split reflections (X,Y ): (L′, R′) → (L,R) as drawn below:

A×B F A×B D F D

A×B E A ×B C E C

A B .P

RLR′L′

X

Y

UU ′

P∗Y

P∗X

P∗R′G′ G P∗R

P∗U ′ P∗U

We want that G.P ∗Y = P ∗X.G′, i.e. that (F (a, Y e), LY e) = (F ′(a, e), XL′e) for
(a, e) ∈ A ×B E . In fact, both equalities are simple consequences of the assumption
that L.Y = X.L′ (which implies η ◦ Y = Y ◦ η′). �

4. Algebraic Weak Factorisation Systems

An awfs is a significantly more structured object than a wfs, and at first sight
their definitions appear quite distinct, because awfs are usually defined in terms
of an interacting monad-comonad pair, making no explicit mention of liftings as in
diagram (2.1). However, it was recently shown in [2] that awfs admit an equivalent
definition—there called lifting awfs for distinction—very much akin to Definition 1 of
wfs. In this definition of awfs, the role of the subclasses L,R ⊆ C1 in the definition
of a wfs are played by double functors L,R → Sq(C) over the double category Sq(C)
of squares in C. To explain what that means, let us first briefly recall what we mean
by double categories.

4.1. Double categories. A double category C can be succinctly defined as an inter-
nal category in Cat. This amounts to the following data, satisfying the usual axioms
of a category:

C0 C1 C1 ×C0
C1 .c

id

s

t

More specifically, a double category C consists of a category C0 of objects and a
category C1 of arrows, with operations id, s, t, c for identity arrow assignment, source,
target, and composition operations, respectively. A double category has two types
of morphisms: there are the morphisms of C0, called the horizontal morphisms of C;
and the objects of C1, called the vertical morphisms of C. The morphisms of C1 are
called squares of C. There is an associated notion of double functor, which yields
the category Dbl of double categories. There is a functor Sq:Cat → Dbl sending a
category C to its double category of squares Sq(C). The object category of Sq(C) is
C itself, and the arrow category of Sq(C) is the arrow category Ar(C).

We saw in Section 3 that a notion of structured morphisms in the ambient category
C can be given as a functor J → Ar(C). If we wish to impose in addition a condition
saying that the morphisms in J are closed under composition, the natural way to
capture this is as a double functor over Sq(C), i.e. morphisms J → Sq(C) in Dbl.
Note, however, that in principle a double functor J → Sq(C) endows C with more
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structure than just that on its arrows; for example, it also imposes structures on its
objects through the functor J0 → C. In many examples of interest, no additional
structure is imposed except that on the arrows. Such double categories are called
concrete in [3].

Definition 52. A double functor J → Sq(C) is concrete if J0 is an isomorphism and
J1 is faithful.

By internalising the definition of natural transformations the category Dbl can
be made a 2-category. Spelling this out, a double natural transformation α:F ⇒ G
between double functors F,G:C → D is a functor α:C0 → D1 subject to various con-
ditions, such as sD.α = F0. This means that, by virtue of how we defined horizontal
and vertical morphisms, a double natural transformation would assign to each object
of C a vertical morphism of D. However, a second candidate for the 2-cells of Dbl is
given by first transposing the double categories and functors involved. This is a type
of duality for double categories in which the sets of vertical and horizontal arrows are
switched. We thus obtain a notion of double natural transformation which assigns
to each object of C a horizontal morphism of D, again subject to various conditions.
Following [3], we will consider Dbl as a 2-category by taking the latter of these two
options for the 2-cells.

Example 53. Given adjunctions L ⊣ R:D → C and L′ ⊣ R′: E → D there is a
composite adjunction L′L ⊣ RR′: E → C, given by pasting the units and counits:

C C C C D E

D D C D D E

E D C , E E E .

L

L′

L

R

1

1

1 1

R′ R

1

1
η′

η
L

L′

R R′

1

1

11

R′

1

1

L′

ε

ε′

More explicitly, the unit of the composed adjunction is given by (R ◦ η′ ◦L).η, where
◦ denotes horizontal composition. Split reflections are closed under composition,
and so the functor SplRef → Ar(Cat) forms the arrow part of a double functor
SplRef → Sq(Cat).

Example 54. Given split opfibrations P :A → B and Q:B → D the composition
Q.P is made into a split opfibration by first lifting along Q and then along P . We
can thus extend SplOpFib → Ar(Cat) to a double functor SplOpFib → Sq(Cat).

4.2. Lifting. A lifting operation for a pair of double functors J,K → Sq(C) is one for
their underlying functors over Ar(C), satisfying a further coherence condition with
respect to composition in J and K.

Definition 55. Let J,K → Sq(C); a (J,K)-lifting operation φ is a (J1,K1)-lifting op-
eration which respects composition in J andK, in the sense that given vertical compos-
able morphisms f , f ′ in J, and g,g′ in K, as well as a lifting problem (u, v): f.f ′ → g.g′,
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we have φf ,g′(φf ′,g.g′(u, v.f), φf .f ′,g(g
′.u, v)) = φf .f ′,g.g′(u, v):

(4.1)

• • • •

• • =

• • • • .

f ′

f

g′

g

f.f ′ g.g′

u

v

u

v

φf.f′,g.g′φf,g′

The assignment (J,K) 7→ Lift(J,K) of double functors J,K to the class Lift(J,K)
of (J,K)-lifting operations can again be made the object part of a functor

(4.2) Lift: (Dbl/Sq(C))op × (Dbl/Sq(C))op → Set,

which is again representable in both arguments, as shown in [3, Proposition 18].

Proposition 56. Lift is representable in both arguments, inducing an adjunction:

(4.3) (Dbl/Sq(C))op Dbl/Sq(C) .

⋔⋔(−)

(−)⋔⋔

⊣

Proof. The representing object of Lift(−, J) is a double category ⋔⋔J → Sq(C) of which
the vertical morphisms are pairs (f, φf−) with φf− ∈ Lift(f, J) (where we consider f
to be a double functor f : 1 → Sq(C)). Vertical composition in ⋔⋔J is performed as in
(4.1), and a morphism (f, φf−) → (g, φg−) is a square (u, v): f → g which commutes
with the lifting operations. The representing object J⋔⋔ → Sq(C) of Lift(J,−) is
defined analogously. �

We obtain the following analog of (3.4):

(4.4) Dbl/Sq(C)(J, ⋔⋔K) ∼= Lift(J,K) ∼= Dbl/Sq(C)(K, J⋔⋔).

Definition 57. A triple (J, φ,K) of double functors J,K → Sq(C) and a (J,K)-lifting
operation φ is called a lifting structure. A lifting structure (J, φ,K) is called closed
when the functors φl: J → ⋔⋔K and φr:K → J⋔⋔ induced by (4.4) are invertible.

Example 58. Let J → Sq(C); applying (4.4) to the identities on ⋔⋔J and J⋔⋔ yields
lifting operations λ ∈ Lift(⋔⋔J, J) and ρ ∈ Lift(J, J⋔⋔), and so we get, as we did
in Example 11, two canonical lifting structures (⋔⋔J, λ, J) and (J, ρ, J⋔⋔). Again, this
yields lifting structure (⋔⋔J, ρ, (⋔⋔J)⋔⋔) and (⋔⋔(J⋔⋔), λ, J⋔⋔) which are said to be fibrantly
generated and cofibrantly generated by J.

The following is [2, Definition 3] of a lifting awfs.

Definition 59. An algebraic weak factorisation system (awfs) on a category C is a
closed lifting structure (J, φ,K) which satisfies the axiom of factorisation, requiring
every morphism f ∈ C1 to admit a bi-universal factorisation f = h.g for vertical
morphisms g and h of L and R respectively.
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Example 60. The double functors SplRef → Sq(Cat) and SplFib → Sq(Cat)
form part of an awfs, when equipped with the lifting structure defined in Example
37. For the proof we refer to [2, Examples 4 (ii)].

In what follows we will never need the axiom of factorisation, so we will focus on
closed lifting structures instead.

5. The Frobenius equivalence for double categories of maps

In this section we will finally establish a Frobenius equivalence for awfss. For this
we follow the outline we sketched in Subsection 2.2 and build on the work in Section
3. That is, we will establish double-categorical versions of base change and slicing,
from which the Frobenius equivalence will be a direct corollary.

5.1. Base Change. We start with base change. As noted in [3, Proposition 21], the
adjunction in (4.3) can be extended to allow for change of base. This is done by
considering a 2-category Dbl/Sq(−ladj) which can be defined as the pullback:

Dbl/Sq(−ladj) Catladj

Cat

Ar(Dbl) Dbl .cod

y

Sq

The 2-category Dbl/Sq(−radj) is defined dually. We now have an adjunction

(5.1) (Dbl/Sq(−ladj))
coop Dbl/Sq(−radj) .

⋔⋔(−)

(−)⋔⋔

⊣

extending that of (4.3), where (−)coop denotes reversal of both the 1- and 2-cells.

5.2. Slicing. We now define a double categorical analog of the slicing operation that
we saw in Section 3.3. Given a double functor J → Sq(C) and an object A ∈ C we
define the slice double functor J/A→ Sq(C/A) by the following pullback:

J/A J

Sq(C/A) Sq(C) .
Sq(dom)

y

Pullbacks in Dbl are taken levelwise, so (J/A)1 = J1/A. Vertical composition in J/A
is essentially just vertical composition in J; a pair of vertical morphisms (g, b) and
(f , a) in J/A is composable if b = a.f , and their composition is given by (f .g, a).

Like before, we have:

Proposition 61. Let (J, φ,K) be a lifting structure on C and A ∈ C some object,
then there is a lifting structure (J/A, φ/A,K/A) on C/A.
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Proof. Let φ/A be the lifting operation defined in Proposition 41: it respects vertical
composition whenever φ does. �

We would like to extend this result to:

Proposition 62. If (J, φ,K) is a closed lifting structure then so is (J/A, φ/A,K/A).

For this we need an analog of the results of Section 3.3: that for J → Sq(C) there
are isomorphisms (J/A)⋔⋔ ∼= (J⋔⋔)/A and (⋔⋔J)/A ∼= ⋔⋔(J/A). As before, only the
former of these exists in general, for the latter we need an additional assumption.

Proposition 63. For J → Sq(C), and A ∈ C, there are double functors

(λ/A)l: (
⋔⋔
J)/A→ ⋔⋔(J/A) and (ρ/A)r: (J

⋔⋔)/A→ (J/A)⋔⋔,

with the latter double functor (ρ/A)r being an isomorphism.

Proof. At this point this should be routine. �

Definition 64. A double functor J → Sq(C) is a comprehension double category if
J1 → Ar(C) is a comprehension category as in Definition 45, and, moreover, the
squares in J that are cartesian with respect to the Grothendieck fibration cod .J1 are
closed under vertical composition. That is, if we have two squares in J that can be
composed vertically as in

• •

• •

• •,

g′

u

g

h′

v

h

w

in which the top square is cartesian over v and the bottom square cartesian over w,
then the vertically composed square is cartesian over w.

Proposition 65. J⋔⋔ → Sq(C) is a comprehension double category for any J →
Sq(C).

Proof. This follows from the fact that a square in J⋔⋔ is cartesian precisely when its
image under (J⋔⋔)1 → Ar(C) is a pullback. �

Proposition 66. Let J → Sq(C) be a comprehension double category, and A ∈ C be
some object; then the double functor (λ/A)l of Proposition 63 is an isomorphism.

Proof. We show that the lifting operation defined in (3.7) satisfies the vertical condi-
tion. To this end we consider a vertical composition h.g in J and a square (u, v): f →
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h.g.:

• •

•

• • .

g

h

f

u

v

ψ(h)

ψ(g)

ψ(h.g)

We use the abbreviations ψ(h) = ψf,h(g.u, v), ψ(g) = ψf,g(u, ψ(h)), and ψ(h.g) =
ψf,h.g(u, v), so we should show ψ(h.g) = ψ(g). The diagrams below respectively show
how these are computed:

• • • • • • • • •

• • • , • • • , • • • .

f v∗h

v+

h

v

α

φ(h) f ψ(h)∗g g f v∗(h.g) h.g

β ψ(h)+ γ v++

vψ(h)

φ(g) φ(h.g)

So for instance ψ(h) = v+.φ(h), where φ(h) is an abbreviation for φ(f,a),(v∗h,a)(α, 1),
which is the lift obtained from the J/A lifting operation of (f, a) applied to the J/A
map (v∗h, a).

Our assumption that cartesian square are closed under vertical composition im-
plies that the cartesian square v∗(h.g) → h.g can be assumed to be the vertical
composition of two squares

• •

• •

• •,

v∗g

v++

v∗(h.g)

g

h.g

v∗h

v+

h

v

with v++v+: v∗g → g a cartesian morphism in J over v+. Since v∗g is a vertical
map in J, we get a lift φ′(g) = φ(f,a),(v∗g,a.v∗h)(γ, φ(h)), and by the vertical condition
φ(h.g) = φ′(g).

Furthermore, because v++v+ is cartesian, there is a square ij:ψ(h)∗g → v∗g in J:

• • •

• • •

ψ(h)∗g v∗g g

i

j

v++

v+

with j = φ(h). Since γ = i.β we get that φ(h.g) = φ′(g) = i.φ(g), and so

ψ(h.g) = v++.φ(h.g) = v++.i.φ(g) = ψ(h)+.φ(g) = ψ(g). �
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5.3. Frobenius equivalence. The following is now a direct analogue of the results
from Subsection 3.4.

Definition 67. Let f :A → B be a map in C, and (J,K) a pair of double functors
over Sq(C). A Frobenius structure f∗ on f for (J,K) is a filler as on the left of:

J/B J/A K/A K/B

Sq(C/B) Sq(C/A) , Sq(C/A) Sq(C/B) .
Sq(f∗)

f∗

Sq(f∗)

f∗

Similarly, a pushforward structure f∗ on f is a filler as on the right above.

Theorem 68. For a map f :A → B in C, and a closed lifting structure (J, φ,K),
there is a bijection between Frobenius and pushforward structures on f for (J,K).

Proof. Combining the previous results we get

Dbl/Sq(−ladj)(J/B, J/A) ∼= Dbl/Sq(−ladj)(J/B, (K/A)
⋔⋔)

∼= Dbl/Sq(−radj)(K/A,
⋔⋔(J/B))

∼= Dbl/Sq(−radj)(K/A,K/B),

where we consider morphisms in Dbl/Sq(−ladj) and Dbl/Sq(−radj) w.r.t. f∗ ⊣ f∗.
�

Definition 69. A Frobenius structure for a pair (J,K) is an assignment of a Frobenius
structure f∗ to every vertical morphism f of K.

Remark 70. Let us interpret the meaning of a Frobenius structure on f :A → B
when the double categories are given by the pair (L-Coalg,R-Alg) underlying an
awfs (L,R). The double category L-Coalg/A is then formed as on the left below:

L-Coalg/A L-Coalg L-Coalg/B L-Coalg/A

Sq(C/A) Sq(C) , Sq(C/B) Sq(C/A) .
Sq(dom)

y

Sq(f∗)

f∗

This situation is discussed more generally in [3, Section 4.5], and it is shown there
that the pullback along Sq(dom) yields a slice awfs (L/A,R/A) on C/A such that
(L/A)-Coalg ∼= L-Coalg/A. This means that the square of the Frobenius structure,
pictured on the right above, is in the image of the semantics functor (−)-Coalg.
Therefore, as this functor is full [3, Proposition 2], a Frobenius structure on f can be
understood as making f∗ an oplax morphism of slice awfs (L/B,R/B) → (L/A,R/A).
Dually, a pushforward structure f∗ on f corresponds to a lax morphism of slice awfs.

5.4. An example of split reflections and split opfibrations. As an example of
a pair with a Frobenius structure, we have the following adaptation of Proposition 51.

Proposition 71. The pair (SplRef , SplOpFib) admits a Frobenius structure.
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Proof. We extend the Frobenius structure for a split opfibration P :A → B of Propo-
sition 51 to one for this pair by showing P∗ preserves composition of split reflections,
yielding:

SplRef/B SplRef/A

Sq(Cat/B) Sq(Cat/A) .

P∗

Sq(P∗)

To verify this, we consider the situation sketched below:

A×B E E A ×B E

A×B D D

A×B C C A ×B C

A B A .
P P

πC

πD

πE πE

UP∗UF

F ′

P∗UF ′′

P∗(R.R′)G′′

P∗RG

P∗R′G′

R

πC

L

R′L′

On the left we have the composition of the pullbacks G′.G ⊣ P ∗R.P ∗R′, and on
the right the pullback of the composition G′′ ⊣ P ∗(R.R′). We should show that
G′′ = G′.G, and that the unit θ′′ of G′′ ⊣ P ∗(R′R) is equal to (P ∗R ◦ θ′ ◦G).θ.

These equalities hold precisely because P is split, since this tells us that for a pair
(a, c) ∈ A×B C we have URη′Lc.UηC = URη′Lc.Uηc:

(5.2)

a (Uηc)!c (URη′Lc)!(Uηc)!a

Uc URLc URR′L′Lc .
Uηc

Uηc

URη′Lc

URη′Lc

URη′Lc.UηC

To begin we note that F ′(a, d) = (URη′d)!a, and so:

F ′′(a, c) = (U((R ◦ η′ ◦ L).η)c)!a

= (URη′Lc.Uηc)!a

= (URη′Lc)!(Uηc)!a

= F ′((Uηc)!a, Lc)

= F ′G(a, c);

which is to say F ′.G = F ′′. Therefore,

G′.G = (F ′ ×B L
′.πD).G = F ′.G×B L

′.πD.G = F ′′ ×B L
′.L.πC = G′′.
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The other equality θ′′ = (P ∗R ◦ θ′ ◦G).θ also follows readily from (5.2):

((P ∗R ◦ θ′ ◦G).θ)(a,c) = P ∗R(θ′G(a,c)).θ(a,c)

= (URη′Lc, Rη
′
Lc).(Uηc, ηc)

= (URη′Lc.Uηc, Rη
′
Lc.ηc)

= (U((R ◦ η′ ◦ L).η)c, ((R ◦ η′ ◦ L).η)c)

= θ′′(a,c). �

6. The Beck–Chevalley condition

Ultimately we are interested in constructing models of type theory using the right
adjoint method for splitting comprehension categories, as used in [5]. In order for
this method to work the right maps should satisfy a number of stability conditions,
as outlined in [14, Chapter 2]. The stability condition for the Π-types is ensured by
a Beck–Chevalley condition (cf. Proposition 88) which we will now phrase.

6.1. The categorical case. Consider a closed lifting structure (J , φ,K) with J and
K being categories of maps. For the purpose of interpreting dependent product types
we want this pair to have a pushforward structure. However, in order for this inter-
pretation to satisfy the coherence axioms of the theory with respect to substitution,
this pushforward structure should respect morphisms of K whose underlying square
in the ambient category C is a pullback square.

More specifically, consider f ,g,h ∈ K such that g and h are composable, and a
morphism uv: f → g whose underlying square in C is a pullback square:

(6.1)

•

A C • •

B D , B .

f g

h

u

v

y

f∗u
∗h v∗g∗h

β
−1

h

This gives composite parallel adjunctions u!f
∗ ⊣ f∗u

∗, g∗v! ⊣ v
∗g∗: C/C → C/B:

(6.2) C/B ⊥ C/A ⊥ C/C , C/B ⊥ C/D ⊥ C/C .

f∗

f∗

u!

u∗

v!

v∗

g∗

g∗

These induce a mateship correspondence between natural transformations with signa-
tures u!f

∗ ⇒ g∗v! and v
∗g∗ ⇒ f∗u

∗. There is a canonical map α:u!f
∗ ⇒ g∗v! (itself

obtained as a mate of the identity natural transformation g!u! = v!f!) of which the
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component αw at an object w in C/B is given as follows:

•

• A C

• B D .

f g

u

v

y

w

f∗w

y

g∗v!w

αw

We denote the mate of α with signature v∗g∗ ⇒ f∗u
∗ by β. These transformations

α and β exist regardless of whether (u, v) is a pullback, but when it is they are both
isomorphisms; see e.g. [9, Lemma 3.5]. We call β the Beck–Chevalley isomorphism.

In the setup of the left diagram of (6.1), we thus get a triangle pictured as the
right diagram of (6.1). When (J , φ,K) is a closed lifting structure, the right class is
always closed under pullbacks, and so if it comes with a Frobenius structure then the
morphisms f∗u

∗h and v∗g∗h have K structure. What we need for the interpretation
of dependent products is that (β−1

h , 1) underlies a morphism of K maps. The goal
of this section is to precisely state this condition, and to show it is equivalent to a
condition that is easier to check in practice. The way we do this is similar to the
statement and proof of [6, Proposition 6.7].

The first step will be to generalize to the case where h is not an object but an
arrow of C/C, i.e. we consider (h, w) ∈ K/C:

(6.3)

•

• • •

A C • •

B D , B .

f g

w

u

v

y

f∗u
∗w v∗g∗w

β−1
w

h

f∗u
∗h v∗g∗h

β
−1

w.h

The square (β−1
w.h, β

−1
w ) on the right above is the component Ar(β−1)(h,w) of the

natural transformationAr(β−1):Ar(f∗u
∗) ⇒ Ar(v∗g∗). For a closed lifting structure

(J , φ,K) an isomorphism in Ar(C) underlies a morphism of J or K maps if and only
if its inverse does, so we will focus on β instead of β−1. To state what it means for
Ar(β)(h,w) to underlie a morphism of K maps we use the following definition.

Definition 72. Let F,G:J → K be lifts of F,G: C → D for some J → Ar(C) and
K → Ar(D), and µ:F ⇒ G a natural transformation. We say that µ:F ⇒ G is a lift



THE FROBENIUS EQUIVALENCE AND BECK–CHEVALLEY CONDITION FOR AWFS 31

of µ if K ◦ µ = Ar(µ) ◦ J , meaning its components are over those of µ:

J K

Ar(C) Ar(D) .

Ar(F )

Ar(G)

F

G

Ar(µ)

µ

Note that a composition functor like u!: C/A → C/C always lifts to a functor
u!:J /A → J /C: (f , a) 7→ (f , u.a). Since (J ,K) has a Frobenius structure, we thus
obtain lifts u!f

∗ and g∗v! as on the left of:

(6.4)

J /B J /C K/C K/B

Ar(C/B) Ar(C/C) , Ar(C/C) Ar(C/B) .

u!f
∗

Ar(u!f
∗)

v∗g∗

Ar(v∗g∗)

Ar(g∗v!) Ar(f∗u
∗)

f∗u
∗g∗v!

Ar(α)

β

Ar(β)

α

Applying the reasoning of Proposition 38 with respect to the adjunctions (6.2),
we obtain corresponding lifts v∗g∗ and f∗u

∗ as on the right above. The condition
that the square (βw.h, βw) is a morphism of K maps is now expressed by requiring
the existence of a lift β as depicted on the right above, due to the requirement that
(K/B)◦β = Ar(β)◦(K/C). Note that—since the lifting structure (J , φ,K) is closed—
the existence of this lift is not additional structure, but is instead just a property of
β. In sum, we have the following definition.

Definition 73. A Frobenius structure for a closed structure (J , φ,K) satisfies the
Beck–Chevalley condition when for every uv: f → g in K overlying a pullback square
(u, v), the Beck–Chevalley isomorphism β lifts to a transformation β:v∗g∗ ⇒ f∗u

∗.

Proposition 74. For a closed lifting structure (J , φ,K) with a Frobenius structure,
the Beck–Chevalley isomorphism β lifts in the sense of (6.4) iff its mate α does.

Proof. By [6, Proposition 5.8], using that J /C ∼= ⋔(K/C) and K/B ∼= (J /B)⋔. �

For future reference we expand on what it means for α to lift in the sense of
Proposition 74. Considering the pullback square (u, v) in (6.3) and (w, b) ∈ Ar(C/B),
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the component Ar(α)(w,b) is given by the square (αb.w, αb):u!f
∗(w, b) → g∗v!(w, b):

(6.5)

• • •

• • •

B A C

D .

f∗b g∗(v.b)

u

f∗w

αb

g∗w

αb.w

f

b

w

v g

If in addition (w, b) ∈ J /B, then f∗w and g∗w underlie J maps f∗w and g∗w, and
α should produce a J morphism α(w,b): f

∗w → g∗w overlying (αb.w , αb).

6.2. The double categorical case. Next, we phrase an analogous version of Defini-
tion 73 for a pair of double categories. More specifically, we consider the case where
(6.3) underlies a square uv: f → g in K for some closed lifting structure (J, φ,K) with
a Frobenius structure. To start, we define lifts of double natural transformations.

Definition 75. Let F,G: J → K be lifts of F,G: C → D for some J → Ar(C) and
K → Ar(D), and µ:F ⇒ G a natural transformation. We say that µ:F ⇒ G is a lift
of µ if K ◦ µ = Sq(µ) ◦ J:

J K

Sq(C) Sq(D) .

Sq(F )

Sq(G)

F

G

Sq(µ)

µ

Note that a composition functor such as u!: C/A → C/C in fact lifts to a double
functor u!: J/A→ J/C, as the assignment (f , a) 7→ (f , u.a) (trivially) preserves verti-
cal composition. Using the Frobenius structure of (J,K) and the adjunction (5.1) we
thus obtains lifts u!f

∗ and g∗v! as on the left below:

(6.6)

J/B J/C K/C K/B

Sq(C/C) Sq(C/B) , Sq(C/C) Sq(C/B) .

g∗v!

u!f
∗

Sq(u!f
∗)

Sq(g∗v!)

v∗g∗

f∗u
∗

Sq(v∗g∗)

Sq(f∗u
∗)

Sq(β)

β

Sq(α)

α

As (J,K) is part of a closed lifting structure, the lifts u!f
∗ and g∗v! can be transposed

to lifts v∗g∗ and f∗u
∗ using (5.1). Now we can phrase the Beck–Chevalley condition

for double categories completely analogously to that for categories.
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Definition 76. A Frobenius structure for a pair (J,K) of double categories satisfies
the Beck–Chevalley condition when for every uv: f → g in K overlying a pullback
square (u, v), the Beck–Chevalley isomorphism β lifts to a transformation β:v∗g∗ ⇒
f∗u

∗.

Of course, the definitions of Frobenius structure and Beck–Chevalley condition
directly apply to closed lifting structures underlying awfs.

As before, lifting β in this way can be done by lifting α, which is easier in practice.

Proposition 77. For a closed lifting structure (J, φ,K) with a Frobenius structure,
the Beck–Chevalley isomorphism β lifts in the sense of (6.6) iff its mate α does.

Proof. By the fact that (5.1) is a 2-adjunction [3, Proposition 21], in combination
with the isomorphisms J/C ∼= ⋔⋔(K/C) and K/B ∼= (J/B)⋔⋔. �

In fact, as we will now show, for concrete double functors Definitions 72 and 75
coincide. This means that checking whether a Frobenius structure for a closed struc-
ture (J, φ,K) satisfies the Beck–Chevalley condition comes down to checking whether
its Frobenius structure for (J1,K1), obtained by an application of (−)1:Dbl → Cat,
satisfies the Beck–Chevalley condition.

Lemma 78. Let J → Sq(C) and K → Sq(D) be concrete double functors, and
F,G: J → K lifts of F,G: C → D; then lifts of µ:F → G to F ⇒ G are in bijec-
tion with its lifts to F1 ⇒ G1:

J K J1 K1

Sq(C) Sq(D) , Ar(C) Ar(D) .

G

F

Sq(F )

Sq(G)

F1

G1

Ar(F )

Ar(G)

Ar(µ)

µ

Sq(µ)

µ

Proof. By spelling out the definitions. �

Lemma 79. For a closed lifting structure (J, φ,K) and A ∈ C the double functors
J/A and K/A are concrete.

Proof. The double functors J⋔⋔ and ⋔⋔J are always concrete for any J, and so be-
cause the lifting structure is closed so are J and K. Furthermore, slicing preserves
concreteness. �

Corollary 80. A Frobenius structure for a closed lifting structure (J, φ,K) satisfies
the Beck–Chevalley condition when its associated Frobenius structure for (J1,K1) does.

Proof. By Lemmas 78 and 79. �

Lastly, we show that our running example satisfies this condition.
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Proposition 81. The Frobenius structure for (SplRef , SplOpFib) of Proposition 71
satisfies the Beck–Chevalley condition.

Proof. Consider a pullback square (X,Y ) between split opfibrations P and Q which
commutes with their splittings. By Corollary 80 it suffices to show that the induced
transformation α:X!P

∗ ⇒ Q∗Y! has a lift α as depicted on the left below:

SplRef/B SplRef/C

Ar(Cat/B) Ar(Cat/C) ,

X!P
∗

Q∗Y!

Ar(X!P
∗)

Ar(Q∗Y!)

α

Ar(α)

F A×B F C ×D F

E A ×B E C ×D E

B A C

D .

P X

QY

U

L R

F P∗U

G P∗R Q∗RG′

Q∗(Y.U)F ′

αU

αU.R
πF

πE

This comes down to showing that the square (αU.R, αU ) = (X.πA×DπF , X.πA×DπE)
is a morphism of split reflections, meaning (X.πA ×D πF ).G = G′.(X.πA ×D πE), as
on the right above. Spelling out the definitions involved we see that this comes down
to showing that for any pair (a, e) ∈ A×BE we haveX((Uηe)!a) = (Y Uηe)!Xa. Since
(X,Y ) is a morphism of opfibrations we have Y Uηe = XUηe, from which the desired
equality follows immediately. �

7. Strong Frobenius structures

We turn to a minor digression concerning strengthened versions of the Frobe-
nius property sometimes encountered in the literature; see e.g. [14, Definition B.6.2]
and [17, Proposition 5.2]. Recall that Definition 3 of the Frobenius property for a
wfs (L,R) states that L is closed under pullback along R; if, in addition, L comes
with a notion of structure preserving squares of L maps, then the Frobenius property
can be strengthened to demand that the pullback squares of L maps along R maps
are structure preserving. We argue that this strengthened Frobenius property can be
understood in terms of the notion of natural transformation lifting of Definition 72.

Let (J ,K) be a pair of functors over an arrow category Ar(C), and f :A → B a
map in C. A Frobenius structure for f is a lift f∗:J /B → J /A. A pair (g, b) in J /B
now gives rise to a pullback square as depicted below, where ε is the counit of f! ⊣ f

∗:

• •

• •

A B .

f∗b b

f

εb

gf∗g

εb.g

y

y
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As mentioned previously, for any such f there is a lift f!:J /A → J /B: (g, a) 7→
(g, f.a), and so the demand that (εb.g, εb) is in the image of a map f∗g → g in J can
be phrased as the requirement that ε has a lift ε: f!f

∗ → 1 in the sense of Definition 72.
What is called the strong Frobenius property in the literature can then be seen as
the special case of this where b = 1B and f∗b = 1A.

Thinking of the strong Frobenius property in this way shows that it has an evident
counterpart, which is the requirement that the unit η of f! ⊣ f

∗ lifts to η: 1 → f∗f!.
Together, these lifts could then be further required to satisfy the triangle identities,
so that f! ⊣ f∗. If (J ,K) is part of a closed lifting structure then we can transpose f∗

and f! to obtain a pushforward structure f∗:K/A→ K/B and (by abuse of notation)
f∗:K/B → K/A. These can then be subjected to similar conditions, asking for a
lifted adjunction f∗ ⊣ f∗. For the sake of discussion we will call such lifted adjunctions
strong Frobenius and strong pushforward structures.

Definition 82. A strong Frobenius structure (f∗,η, ε) on a morphism f :A→ B with
respect to a closed pair (J ,K) is a Frobenius structure on f togther with lifts η and
ε of the unit and counit of f! ⊣ f

∗, giving rise to an adjunction f! ⊣ f∗ as on the left
of:

J /B J /A K/A K/B

Ar(C/B) Ar(C/A) , Ar(C/A) Ar(C/B) .
Ar(f∗)

f∗

Ar(f∗)

f∗

f!

Ar(f!)

f∗

Ar(f∗)

⊣
⊣

⊣
⊣

Similarly, a strong pushforward structure (f∗, η̄, ε̄) on f is a pushforward structure on
f with lifts η̄ and ε̄ of the unit and counit of f∗ ⊣ f∗, such that f∗ ⊣ f∗.

Proposition 83. For a map f :A→ B in C, and a closed lifting structure (J , φ,K),
there is a bijection between strong Frobenius and pushforward structures on f .

Proof. The units and counits of f! ⊣ f
∗ ⊣ f∗ are mates [9, Lemma 3.1], and so—due to

how the various lifts of f!, f
∗, and f∗ are constructed, and that (J , φ,K) is closed—

their lifts are in bijective correspondence by [6, Proposition 5.8]. The triangle equal-
ities do not add any extra requirement because J and K are faithful (as the lifting
structure is closed). �

Of course, similar definitions and results exist for the double categorical case, and
again our running example exhibits such a structure.

Proposition 84. The pair (SplRefl,SplOpFib) admits a strong Frobenius struc-
ture.

Proof. We expand on the proof of Proposition 51 by showing that the Frobenius
structure P∗ of a split opfibration P :A → B comes with the required lifts. Since
SplRefl is faithful, these lifts are not additional structure but just a property of P∗.
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To show that ε:P!P
∗ → 1 lifts, we consider the situation as drawn on the left below:

A× BD D D A×B D D

A×B C C C A ×B C C

A B , A B .

RL G P∗R

U
P∗P!U

F

P

RL

P!U

ηU.R

ηU

U

RL

F

P

P∗U

P∗RG

εU.R

εU

Indeed, (εU.R, εU ) = (πD, πC) is a morphism of split reflections because for (a, c) ∈
A ×B C we have πD(G(a, c)) = πD(F (a, c), Lc) = Lc = L(πC(a, c)). For η: 1 → P ∗P!

we should show that the square (ηU.R, ηU ) = (U.R×B1D, U×B1C), drawn on the right
above, is a morphism of split reflections, too. For c ∈ C, the equation G(ηU (c)) =
ηU.R(Lc) boils down to the equality URLc = (PUηc)!Uc. This is an instance of the
general fact that for any f : a→ b in A, the cocartesian lift Pf is parallel to f because
P is split. Lastly, these lifts satisfy the triangle identities as SplRefl is faithful. �

8. An algebraic model of type theory from groupoids

Comprehension categories are one of the categorical structures used to model vari-
ous forms of type theory. Substitution is modeled using pullbacks, and one difficulty
with this is that pullbacks are usually only associative up to isomorphism, wheras
substitution in type theory is strictly associative. So, in order to faithfully model
type theory, the comprehension category in question should be split. One way to
do this is to use the right adjoint of the forgetful functor SplFib → Fib. In [5,
Theorem 2.6], Gambino and Larrea give a coherence theorem for this method, by
identifying pseudo-stability conditions on a comprehension category that ensure that
its splitting has strict interpretations of the Σ-, Π, and Id-types of Martin-Löf type
theory. Any awfs (L,R) induces a comprehension category L⋔

1 → Ar(C), and con-
ditions are identified in [5, Theorem 4.11] on (L,R) that ensure that the coherence
theorem can be applied to it. They then revisit the Hofmann and Streicher groupoid
model of [11], by exhibiting an awfs on the categoryGpd of groupoids which satisfies
these conditions [5, Theorem 5.5].

An awfs (L,R) induces a second (closely related) comprehension category, namely
R1 → Ar(C), and our goal in this section is to reproduce the aforementioned results
in [5] for this second option—that is, to identify conditions on the awfs (L,R) that
ensure that the coherence theorem can be applied to R1 → Ar(C). (Note that there
is a functor R1

∼= (L⋔⋔)1 →֒ L⋔
1 over Ar(C), which is generally not invertible; L⋔

1

corresponds to the retract closure of R1.) We phrase these conditions, and then show
that the same awfs used by Gambino and Larrea on Gpd satisfies our conditions.
The majority of the work needed for this has been done in the preceeding sections,
and what remains is a straightforward adaptation of the approach of [5]. Therefore,
we only outline the proofs, and the reader is referred to [5] for the rest of the details.
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8.1. Coherence for the comprehension category of right maps. As mentioned,
the forgetful functor of the right class of an awfs is always a comprehension category.

Proposition 85. For an awfs (L,R), R1 → Ar(C) is a comprehension category.

Proof. This follows from Proposition 65 above. �

In fact, no further requirements on the awfs are needed to choose the Σ-types.

Proposition 86. The comprehension category R1 → Ar(C) associated with an awfs

admits a pseudo-stable choice of Σ-types.

Proof. The choice of Σ-types is given simply by the composition operation of R, which
is functorial and preserves pullback squares. The rest of the choices of structure are
made as in [5, Proposition 4.3] (and see [14, Lemma 2.7.7]). �

The Π-types are interpreted using a pushforward structure on the awfs, and the
Beck–Chevalley condition ensures this choice is pseudo-stable. Following terminology
of [12] we introduce a shorthand for an awfs with this required structure.

Definition 87. A π-awfs is an awfs with a Frobenius structure satisfying the Beck–
Chevalley condition as in Definition 76.

Proposition 88. The comprehension category R1 → Ar(C) associated with a π-awfs

admits a pseudo-stable choice of Π-types.

Proof. Consider composable R maps g and f . As the awfs has a Frobenius structure,
f has a pushforward structure f∗ by Theorem 68, which gives an R map f∗g by the
reasoning in Proposition 26; this is the choice of Π-type for g and f . The Beck–
Chevalley condition ensures that the assignment Π: (g, f) 7→ f∗g is functorial:

• •

• • • •

• •
Π

7−→

• • • • ,

• •

u

g
y

i
f∗α

f∗g

βi

f∗v
∗i

w+

w∗h∗i h∗i
v

f

y

h 1 1 w

w

the outer rectangle on the right above is a pullback, and is a square of R because all
three of the squares comprising it are. The rest of the choices of structure are made
as in [5, Proposition 4.6] (and see [14, Lemma 2.7.8]). �

The idea for interpreting identity types using wfs originates from [1] and was
further developed in [18] by the introduction of the notion of stable functorial choice
of path objects. We adapt this definition to the right maps of an awfs as follows.



38 THE FROBENIUS EQUIVALENCE AND BECK–CHEVALLEY CONDITION FOR AWFS

Definition 89. A functorial factorisation of the diagonal on a category C is a functor
P = (r, ρ):Ar(C) → Ar(C) ×C Ar(C) such that ρf.rf = δf for any map f :A → B
in C, where δf :A→ A×B A is the diagonal morphism. Such a factorisation is called
stable if its right leg ρ preserves pullback squares.

Definition 90. A stable functorial choice of path objects (sfpo) on an awfs (L,R)
is a lift P of a stable functorial factorisation of the diagonal P :

R1 L1 ×C R1

Ar(C) Ar(C)×C Ar(C) .

P

P

Proposition 91. The comprehension category R1 → Ar(C) associated with an awfs

with an sfpo admits a pseudo-stable choice of Id-types.

Proof. The choice of Id-type for an R map f is given by the right leg ρf of the
sfpo P = (r,ρ); this assignment is functorial and preserves cartesian morphisms by
definition. The rest of the choices of structure are made as in [5, Proposition 4.9]. �

We thus obtain the desired analog of [5, Theorem 4.11].

Theorem 92. A π-awfs with an sfpo induces a comprehension category with strictly
stable choices of Σ-, Π-, and Id-types.

Proof. By Propositions 86, 88, and 91 the comprehension category associated with
the awfs has pseudo stable choices of these types, and so its right adjoint splitting
has strictly stable choices by [5, Theorem 2.6]. �

8.2. The groupoid model. Recall from Example 60 that the double categories
(SplRef(Cat), SplFib(Cat)) on Cat of split reflections and split fibrations of cate-
gories form an awfs. This pair does not readily admit a Frobenius structure satisfy-
ing the Beck–Chevalley condition—for that we need the right class to consist of split
opfibrations, as shown in Proposition 81. To remedy this, we lift this awfs on Cat

along the inclusion Gpd → Cat to one on Gpd, because for groupoids the notions
of fibration and opfibration coincide.

Proposition 93. The pair of double categories (SplRef(Gpd), SplFib(Gpd)) over
Sq(Gpd), together with the lifting operation of Example 37, is a π-awfs on Gpd.

Proof. This is the projective/injective lift of the awfs (SplRef(Cat), SplFib(Cat))
along the inclusion Gpd → Cat, see [3, Section 4.5]. Fibrations of groupoids are also
opfibrations, so there is an isomorphism SplFib(Gpd) ∼= SplOpFib(Gpd). Hence,
this awfs gets its Frobenius structure from Propositions 71, which satisfies the Beck–
Chevalley condition as per Proposition 81. �

Proposition 94. The awfs (SplRef(Gpd), SplFib(Gpd)) admits an sfpo.

Proof. A straightforward adaptation of [5, Proposition 3.5]. �
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This gives us the following analog of [5, Theorem 5.5].

Theorem 95. The right adjoint splitting of SplRef(Gpd) → Ar(Gpd) yields a
model of dependent type theory with Σ-, Π-, and Id-types.

Proof. By Propositions 93, 94, and Theorem 92. �

9. Conclusion

In this paper we have obtained a Frobenius equivalence and formulated a suitable
version of the Beck–Chevalley condition for algebraic weak factorisation systems. We
have shown how these notions can be used to obtain models of type theory with
dependent function types, as illustrated by split fibrations of groupoids, the basis for
the groupoid model of Hofmann and Streicher [11].

In this way our work is similar to [5, 14], where the authors also utilize an analogical
statement of the Frobenius equivalence for awfss, which is stated and proven in [6].
However, their version differs from the one we propose here in several ways. First of all,
they develop a version of the Frobenius equivalence for awfss which are cofibrantly
generated by a category; we make no such assumption. In addition, their works take
the “object view” rather than the “arrow view”, in that they primarily view pullback
and pushforward as operations on objects rather than arrows of slice categories. We
hope to have demonstrated here that it is conceptually simpler to take the arrow
view. Finally, the works of [5, 6, 14] use an interpretation of type theory in which
the dependent types are interpreted using the algebras of the pointed endofunctor
associated with an awfs, rather than the algebras of the monad associated with an
awfs. In that way their framework targets a different class of examples and does not
cover examples like split fibrations of groupoids.

In future work we hope to find more examples. In particular, we would like to show
how our ideas apply to the effective Kan fibrations from [17]. These are intended to be
a good constructive analogue of the Kan fibrations from simplicial homotopy theory
and to lead to a constructive account of Voevodsky’s model of homotopy type theory
in simplicial sets [13]. In [19] the second author has shown together with Freek
Geerligs how the effective Kan fibrations appear as the right class in an awfs, so our
current framework is the appropriate one for these maps.
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