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Modal Semantics for Reasoning with
Probability and Uncertainty

Nino Guallart

Abstract
This paper belongs to the field of probabilistic modal logic, focusing on a

comparative analysis of two distinct semantics: one rooted in Kripke seman-
tics and the other in neighbourhood semantics. The primary distinction lies
in the following: The latter allows us to adequately express belief functions
(lower probabilities) over propositions, whereas the former does not. Thus,
neighbourhood semantics is more expressive. The main part of the work is a
section in which we study the modal equivalence between probabilistic Kripke
models and a subclass of belief neighbourhood models, namely additive ones.
We study how to obtain modally equivalent structures.

Keywords:Neighbourhood semantics, Kripke semantics, Dempster-Shafer
belief function, probability, modal logic.

1 Introduction

The convergence of probability theory and modal logic has garnered signifi-
cant attention across multiple disciplines. Probabilistic modal logic has been
the object of intense research in these fields over the last few decades. Authors
such as Nilsson [28], Bacchus [4], Fagin and Halpern [18, 17, 10, 13, 11], Au-
mann [2, 3], Samet, Heifetz and Mongin [20, 19, 21] have applied modal logic
for the formalisation of subjective probability in different fields: economics,
artificial intelligence or philosophy of science. The basic idea is to develop a
probability space within some kind of structure, with Kripke models being
the most obvious choice. Modal semantics allows the combination of prob-
ability with other modal operators, and hence its applicability to different
kinds of modal logics such as epistemic logic or dynamic epistemic logic [24].

The idea of generalising probability is not new and early works on lower
probabilities can be dated to Keynes [23] and Koopman [25]. In this work,
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2 Nino Guallart

however, we will focus on belief functions, probably the most known gen-
eralisation of probability, developed from the works of Dempster [8] and
Shafer [31]. There is also an extensive work on logic for belief functions:
Sossai [35, 36] Ruspini ([30] and Smets [33, 34] have developed works in the
field. A remarkable point is the similarity between modal epistemic logics and
Dempster-Shafer’s belief functions, which has been studied since the late 80’s
[14] [5]1. We are mainly interested in the interpretation of belief functions as
generalisation of probability, leaving aside the interpretation of Dempster-
Shafer theory as a theory of evidence. Some approaches to the topic, such as
[15, 9, 16], [9] focus on the uncertainty of fuzzy events.

Goals and structure of this work. The purpose of this work is to
develop a neighborhood semantics for belief functions that is modally equiv-
alent to Kripke structures with probability, making the latter a subclass of
neighbourhood structures. The structure of the paper is as follows: Section 2
offers a summary of the main theoretical concepts in probability that will be
used. This work develops a modal logic for probability and belief functions
and two semantics for it: in section 3 we introduce the syntax of the lan-
guage, and then we focus on two possible semantics for it: We first develop a
standard Kripke semantics 4.1, and then a semantics based in neighbourhood
semantics 4.2. We make a study of several issues related to the structure of
the system of neighbourhoods in section 5, which will be used in section 6,
where it is studied the correspondence between probabilistic Kripke models
and a subclass of belief neighbourhood models, additive ones. It is based
on the proofs of the relationship between augmented neighbourhood models
and Kripke models. Thus we will compare them, observing their differences
in expressiveness. Section 7 concludes the paper.

2 Basic concepts

Subjective probability is an agent’s estimate or belief about the likelihood of
an event. In this work, we will use propositional formulas to represent events
using atomic and compound propositions, while modal operators ranging over
propositions will serve to represent the agent’s degrees of belief. Probability
is defined over σ-algebras, but here we will work over Boolean algebras.

Definition 1. (Probability measure on a Boolean algebra.) Given a
Boolean algebra A, the probability measure pr : A → [0, 1] is a function that
satisfies the following axioms:

1. pr(A) > 0 for any A ∈ A.
2. pr(⊤) = 1.
3. Finite additivity: pr(

⋃n

i=1 Ai) =
∑n

Ai=1 pr(Ai), for a family of pairwise dis-
joint events {Ai}ni=1, n ∈ N.

1 See [14] for a comprehensive description of different works in the area.
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For σ-algebras in general, the third axiom is stated for countable sets:
pr(

⋃∞
i=1 Ai) =

∑∞
Ai=1 pr(Ai).

Belief functions are a generalisation of subjective probabilities [18]. The
following definition is taken from [7], which is an adaptation to Boolean
algebras of the definition in [31]:

Definition 2. (Belief function on a Boolean algebra.) A belief function
on a Boolean algebra A is a function bel : A→ [0, 1] satisfying:

1. bel(⊤) = 1 and bel(⊥) = 0.
2. bel(A) > 0 for any A ∈ A.
3. Superadditivity: bel(

⋃n
i=1An) =

∑n
i=1

∑

J⊆{1,...,n}:|J|=i(−1)i+1bel(
⋂

j∈J Aj)

The last condition is also called monotonicity. It can be seen as a weakened
form of additivity. Belief functions are a subset of a broader family, lower
probabilities. For the purposes of this work, it is sufficient to know that lower
probabilities encompass belief functions, that the lower probability of ⊤ is 1,
and the lower probability of ⊥ is 0, whereas monotonicity is not met, but a
more general condition instead [18]. Lower probabilities and belief functions
can be seen as the lower bound of a set of probabilities, that is, stating
bel(A) = α entails that all probabilities for A greater than or equal to α are
compatible with that belief function. From now on, when the term “lower
probabilities” in mentioned in this work, it actually refers to belief functions
as described above.

The following remark, that is a consequence of the previous definitions.
will be one of the central ideas of this paper.

Remark 1. (Probability functions and belief functions.) A probability
function is an additive belief function (an additive lower probability). [7]

As we will see, whereas Kripke semantics is able to interpret probabilities
directly, in neighbourhood semantics they are a special case of belief func-
tions. Neighbourhood semantics thus offers a broader expressiveness than
Kripke semantics.

3 Syntax of LPR

We now develop a modal propositional language to express probabilistic be-
liefs. It is a variation of works such as [13], [19], [3], and other similar works,
although with a different notation. At will denote a non-empty finite set of
atomic propositions.

Definition 3. (Syntax.) We define recursively the formulas of the language
LPR as follows, where p ∈ At:

φ ::= p | ¬φ | (φ ∨ φ) | B>αφ | B>αφ
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The usual equivalences hold: φ ∧ ψ stands for ¬(¬φ ∨ ¬ψ), and ⊤ and ⊥
are for φ ∨ ¬φ and φ ∧ ¬φ. α ∈ [0, 1] is a rational value. B>αφ is read in
the same way that Lα in [19]: “ the agent assigns to φ a probability equal to
or greater than α (at least α)”. Similarly B6αφ is shorthand for B>1−α¬φ,
which is read as “the agent assigns to φ a probability at most α”. B=αφ, “the
agent assigns to φ a probability of (exactly) α”, is just B>αφ ∧B6αφ. B<αφ
is ¬B>αφ and B>αφ is ¬B>1−α¬φ.

Analogously, B=αφ refers to a belief function, which can be understood as
a lower probability, and could be read as “the agent assigns a lower probability
of α to φ”, or more informally as “the agent considers that the probability
of φ is at least α” (that is, α is the lower probability of φ). B>αφ has a
rather complicated translation, as “the agent assigns a lower probability to φ,
which is at least α”. B6αφ, B>αφ and B<αφ are defined as their probability
counterparts.

4 Semantics of LPR

4.1 Kripke semantics

Works on Kripkean semantics for probabilistic modal logic such as [32] define
a probability distribution over the worlds that are accessible from a certain
world w, and it is the type of semantics that we will develop here. Fagin and
Halpern [12] provide another approach, a probability distribution defined for
measurable sets of accessible worlds in a Kripke model.

Definition 4. (Probabilistic Kripke model.)A probabilistic Kripke model
MP

K is a tuple 〈W,µ,R, v〉, where W is a non-empty and finite set of worlds
or states, v : At → ℘(W ) a valuation function that assigns to each letter the
set of worlds in W that satisfy it, µ : W ×W → [0, 1] a probability function
following these rules for a given w:

1. µ(w,w′) > 0
2.

∑

wi∈W µ(w,wi) = 1

R : W ×W is defined in this way: (w,w′) ∈ R (usually stated as wRw′) iff
µ(w,w′) > 0, and (w,w′) /∈ R iff µ(w,w′) = 0.

The definition of R and the requirement that
∑

wi∈W µ(w,w′) = 1 entail
that for every w there is at least one w′ such that wRw′. Neither R nor µ
are symmetric: In general, µ(w,w′) 6= µ(w′, w) and wRw′ does not equate to
w′Rw.

Remark 2. (R and µ:) The accessibility relationship R is not strictly neces-
sary, since it is implicit in the probability measure µ. We have included it for
simplifying some explanations.
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Definition 5. (Probability and belief measures in Kripke frames.)
Given a X ⊆ W , we define its probability and belief measures from world
w ∈W as follows:

pr(w,X) = bel(w,X) =
∑

wi∈X

µ(w,wi)

A pointed model is a pair 〈M,w〉 with M a model and w an world of its
domain W . We will write M,w |=K φ if the formula φ is true at the world
w ∈ W in Kripke model M . We assign truth values to formulas at a certain
world as follows:

Definition 6. (Interpretation of LPR in probabilistic Kripke mod-
els.) Given a probability Kripke model MP

K , the satisfaction relation |=K

between pointed models and formulas is defined as follows:

1. MP
K , w |=K p iff w ∈ v(p).

2. MP
K , w |=K ¬φ iff MP

K , w 6|= φ.
3. MP

K , w |=K (φ ∨ ψ) iff MP
K , w |= φ or MP

K , w |= ψ.
4. MP

K , w |=K B>αφ iff pr(w, JφKM ) > α
5. MP

K , w |=K B>αφ iff bel(w, JφKM ) > α

JφKMP
K
denotes the set {w ∈ W |M,w |=K φ}. We simply use JφKM or JφK

if there is there no possibility of confusion. The interpretation of the prob-
abilistic modal operator we have just defined is close to previous works in
subjective probabilities ([32] for example), and formally it is close to proba-
bilistic labelled transition systems [26].

Definition 7. (Logical consequence and logical equivalence in prob-
abilistic Kripke models.) A formula ψ is a logical consequence of φ in
probabilistic Kripke models if for all pointed models such that MP

K , w |= φ,
it is also that MP

K , w |= ψ. φ and ψ are logically equivalent in probabilistic
Kripke models provided that, for all pointed models, MP

K , w |= φ if and only
if MP

K , w |= ψ.

Remark 3. (Events and propositions.) We can identify each event with
the set of all logically equivalent propositions, instead of with propositions.
Thus, if φ and ψ are logically equivalent, for any Kripke model and any world
in it, MP

K , w |= B>αφ if and only if MP
K , w |= B>αψ.

Remark 4. (Equivalence between probabilities and belief functions in
LPR.) Given that the conditions for the satisfaction of B>αφ and B>αφ are
the same, they are logically equivalent. This is not surprising, since probabil-
ities are a kind of belief functions 1. However, we cannot adequately interpret
a formula whose interpretation is a belief function which is not a probability.
Since we are going to study the relationship between Kripke and neighbour-
hood semantics for LPR, we have included the operator B>α in order to
ensure that both semantics interpret all the formulas of the same language.
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Example 1. (Example 1: A simple probabilistic Kripke model.)
Let us define W = {w1, w2, w3, w4}. µ : W ×W is defined in the following

matrix, where M(µ)i,j = µ(wi, wj) (for example, µ(w1, w2) = M(µ)1,2 =
0.4):

M(µ)ij =







0 0.4 0.6 0
0.4 0 0.6 0
0 0 0.1 0.9
0 0 0 1







It can be verified that the sum of each row is 1. We add a valuation function
such that v(p) = {w1, w3} and v(q) = {w1, w2}. In the picture belowe, we
have omitted the relationships when µ is 0.

w1 w2

w3 w4

p, q

p

q

0.4

0.6

0.4

0.6

0.9
0.1 1

Picture 1. Example of probabilistic Kripke model.

We have that R(w1) = {w2, w3}. In this model, M,w1 |=K B>0.6p and
M,w1 |=K B1B>0.1p.

4.2 Neighbourhood semantics

Example 2. (Example 2: Expressing bounded probabilistic beliefs.)
Probability modal logic is commonly used for expressing beliefs with a

certain degree, but its formulation in natural language may be misleading.
For example, if r means that it will rain tomorrow, B>0.5r is understood as
“Ann believes that the probability of raining tomorrow is at least 50% (i.e.
0.5)”, where the modal operator is used to express the graded beliefs of the
agent we are considering, namely Ann. However, the interpretation of the
modal formula according to the previous definition is not exactly what has
been expressed in natural language. B>0.5r actually means that Ann believes
with a certain degree of confidence that it will rain tomorrow, and that degree
is at least 0.6: There is a definite probability value, which is at least 0.5.

“Ann believes that the probability of raining tomorrow is at least 50%” is
usually interpreted in natural language as a lower probability: Ann is consid-
ering that the probability of raining cannot be lower than 50%, but she does
not have a definite value, and therefore all values above 50% are compatible
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with her belief. If we see the model in Example 1, w1 satisfies B>0.5r. If we
try to express a lower probability by stating B>0.5r ∧ ¬B>0.5r, w1 does not
satisfy that formula, which actually expresses that the agent believes that
the probability of raining is exactly 50%. Thus, we need another semantics
for interpreting lower probabilities.

A possible alternative to Kripke semantics is neighbourhood semantics.
It is better suited for non-normal logic, and probabilistic modal logic is a
monotonic, non-normal modal logic. Neighbourhood semantics for probability
modal logic are much rarer than Kripke semantics: Arló-Costa [1] proposed
a model for a non-normal high probability operator, and Herzig [22] offered
a qualitative interpretation of the modal operator.

We briefly recall a few preliminary definitions of neighbourhood semantics:

Definition 8. (Neighbourhood frame and neighbourhood model.) A
neighbourhood frame is the ordered pair 〈W,N〉 formed by a non-empty and
finite set W and a neighbourhood function over it N : W → ℘(℘(W ))
that assigns a set of subsets of W to each w ∈ W . Given a neighbourhood
frame 〈W,N〉 and a set of atomic propositional formulas At with a valuation
function v : At → ℘(W ), a neighbourhood model is a triple M = 〈W,N, v〉.

In neighbourhood semantics, M,w satisfies �φ if JφKM ∈ N(w), that is,
if the set formed by all worlds that satisfy φ is one of the sets in the neigh-
bourhood of w.

Definition 9. (Some properties of neighbourhoods.) These are some
properties that neighbourhoods may have:

1. A neighbourhood is monotonic if X ∈ N(w) and X ⊆ Y entails Y ∈ N(w).
2. A neighbourhood is closed under finite intersections provided that for a fam-

ily of sets {Xi}i∈J such that for each i ∈ J (J finite), Xi ∈ N(w), then
⋂

{Xi}i∈J ∈ N(w).
3. A neighbourhood is closed under finite unions provided that for a family of

sets {Xi}i∈J such that for each i ∈ J (J finite), Xi ∈ N(w), then
⋃

{Xi}i∈J ∈
N(w).

4. A neighbourhood is closed under complement provided that for each X ∈
N(w), XC ∈ N(w).

5. A neighbourhood N(w) contains its core ∩N(w) if the core of the neighbor-
hood, the intersection of all sets in N(w), is a set in N(w).

6. A monotonic neighbourhood that contains its core is said to be augmented.

A high-probability modal operator is monotonic (P (φ ∧ ψ) → Pφ ∧ Pψ /
Pφ∨Pψ → P (φ∨ψ) is a valid axiom scheme), where “high probability” refers
to a probability higher than a given threshold. However, this axiom can be
generalised for any probability, We will consider a belief function operator,
intended to be a lower probability operator. To define the neighbourhood
semantics of our modal probabilistic operator, we will add a probabilistic
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metrics. We will combine the previous idea of the high probability operator
with a set of nested neighbourhoods, akin to Lewis’ sphere model in [27], one
for each probability. We will also add a belief function.

Definition 10. (Belief neighbourhood model.) A tuple MB
N = 〈W, b,

{N>α}α∈[0,1], {N>α}α∈[0,1), v〉 is a belief neighbourhood model if W is a
non-empty, finite set of worlds, N a neighbourhood function W → ℘(℘(W )),
b a belief function W × ℘(W ) → [0, 1], and v : At →W a valuation function.

Definition 11. (Belief function in N(w).) The function b : W ×℘(W ) →
[0, 1] assigns a value to each X ∈ N>0(w), satisfying:

1. b(w,W ) = 1, b(w,∅) = 0.
2. bel(w,

∨n

i=1 φn) >
∑n

i=1

∑

J⊆{1,...,n}:|J|=i(−1)i+1bel(w,
∧

j∈J φj)

Definition 12. (Monotonicity of in N>α(w).) All N>α(w) are monotonic:
If X ∈ N>α(w) and X ⊆ Y , then Y ⊆ N>α(w).

Definition 13. (Nα(w) and b(w,X).) For all w ∈ W , if b(w,X) > α, then
X ∈ N>α(w), and if b(w,X) > α, then X ∈ N>α(w).

Proposition 1. (Nesting of neighbourhoods.) From the previous defini-
tions, the system of nested neighbourhoods is established in this way:

1. If α > β, then N>α(w) ⊆ N>β(w).
2. N>α(w) ⊆ N>α(w).
3. If α > β, then N>α(w) ⊆ N>β(w).

Remark 5. (A remark about the relationship between N>α(w) and
b(w,X).) Analogously to 2, the system of nested neighbourhoods N>α is not
strictly necessary. We could develop it just by using the belief measure b. If
we did so, however, we should redefine neighbourhood semantics’ concepts
in terms of a neighbourhood measure, and all the concepts we are going to
introduce here should be formulated in those terms.

Since b(w,∅) = 0 for all w ∈W , then ∅ ∈ N>0(w). Therefore, all subsets
ofW ∈ N>α(w). In practice, we are only interested in the sets that correspond
to the truth set of some φ. Thus, for any w ∈ and any formula φ, JφKM ∈
N>0(w). If β = b(w, JφKM ), then JφKM ∈ N>α(w) for all α 6 β. In order to
do that, we must define the semantics of the model.

Definition 14. (Semantics in belief neighbourhood models.)
Given a belief neighbourhood model MB

N , the satisfaction relation |=N

between pointed models and formulas is defined as follows:

1. MB
N , w |= p iff w ∈ v(p).

2. MB
N , w |= ¬φ iff MB

N , w 6|= φ.
3. MB

N , w |= (φ ∨ ψ) iff MB
N , w |= φ or MB

N , w |= ψ.
4. MB

N , w |= B>αφ iff JφK ∈ N(w) and b(w, JφK) > α.
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5. MB
N , w |= B>αφ iff JφK ∈ N(w) and b(w, JφK) > α.

The following definition derives from the previous one:

6. MB
N , w |= B>αφ iff JφK ∈ N(w) and b(w, JφK) > α and b(w, J¬φK)M +

b(w, JφK)M = 1.

A special case of the latter is MB
N , w |= B=αφ, which is b(w, JφK)M = α.

b(w, J¬φK)M = 1− α according to the last definition.
JφKMB

N
denotes the set {w ∈ W | M,w |=N φ}. Again, we will denote it

by JφKM or JφK is there no possibility of confusion about the semantics we
are using.

Definition 15. (Logical consequence and logical equivalence in belief
neighbourhood models.) A formula ψ is a logical consequence of φ if for
all belief neighbourhood pointed models MB

N , w that satisfy φ, it is also that
MB

N , w |=K ψ. φ and ψ are logically equivalent provided that, for all pointed
belief neighbourhood models, MB

N , w |=K φ if and only if MB
N , w |=K ψ.

Remark 6. (Probabilities and belief functions in neighbourhood mod-
els.) In neighbourhood semantics, B>αφ is a logical consequence of B>αφ.
The converse is not true, so therefore they are not logically equivalent.

Proposition 2. Some properties of the set of nested neighbourhoods in the
belief neighbourhood model are the following:

1. N>0(w) and N1(w) are the only neighbourhoods that contain their respective
cores (∅ for N>0(w)). Since all neighbourhoods are monotonic, N>0(w) and
N1(w) are augmented.

2. N>0(w) and N1(w) are the only neighbourhoods that are closed under inter-
section, complement and union.

3. N>0(w) is also the only one in which W and ∅ belong to the neighbourhood.

Example 3. (Example 2: A belief neighbourhood model.)
W = {w1, w2, w3, w4}. In the following table, we show the truth sets in

N>0(w1) and their belief value. For readability, we write b(X) instead of
b(w1, X). We define just the neighbourhood of w1:

b(w1,W ) = 1
b(W\{w1}) = 0.9 b(w1,W\{w2}) = 0.7 b(W\{w3}) = 0.6 b(W\{w4}) = 0.6
b({w1, w2}) = 0.2 b({w1, w3}) = 0.3 b({w4}) = 0.4
b({w2, w3}) = 0.4 b(, {w2, w4}) = 0.5 b(w3, {w4}) = 0.6
b({w1}) = 0.1 b({w2}) = 0.1 b({w3}) = 0.2 b({w4}) = 0.3

b({}) = 0

Table 1. Example of neighbourhood frame (only b(w1, X)).

We can verify that b is superadditive: For example, b(w1, {w1, w2, w3, w4}) =
1 > b(w1, {w1, w2}) + b(w1, {w3, w4}) = 0.2 + 0.6.

If we add a valuation, we obtain a model. Let us make {w3, w4} = JpKM .
b(w1, JpKM ) = 0.7, and we have that M,w1 |= B0.7p.
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5 The non-monotonic core of N>0(w)

This section provides a characterisation of the sets in the nested neighbour-
hoods in terms of disjoint unions of certain sets that we will call elementary
sets. In particular, we will see the relationship between the core of N1(w) and
these sets, which are the sets in N>0(w) that are closed under the inclusion
relation in that neighbourhood. This will be especially useful in the next sec-
tion for the proofs of the equivalence between a certain subclass of additive
belief neighbourhood models and probabilistic Kripke frames. The following
two definitions are taken from [29]:

Definition 16. (Non-monotonic core.) The non-monotonic core of a
neighbourhood N(w), denoted N(w)NC , is a subset of N(w) defined as fol-
lows:

N(w)NC = {X ∈ N(X) | For all X ′ ⊆W , if X ′ ⊂ X,X ′ /∈ N(w)}

N(w)NC contains the subset of minimal elements in N(w) under the sub-
set relationship. Regarding our system of nested neighbourhoods, we have
the following: From the definition of non-monotonic core, it is immediate
that N>0(w)

NC contains just the empty set, whose belief measure is 0, and
N1(w)

NC contains just ∩N1(w).

Definition 17. (Core complete.) A monotonic neighbourhood N(w) is
core-complete if for all X ∈ N(w), there is some X ′ ∈ N(w)NC such that
X ′ ⊆ X .

A neighbourhood is core-complete if every set in it has a subset in the
non-monotonic core of the neighbourhood. If a certain N(w) is monotonic
and contains a finite number of sets, it is core-complete [29].

In this work, we are dealing with a finite W , so the previous comment
applies in particular to all nested neighbourhoods:

Proposition 3. All nested neighbourhoods N>α)(w) (α ∈ [0, 1]) and N>α)(w)
(α ∈ [0, 1)) are core-complete.

We are going to use the previous concepts to study the core of N1(w) in
terms of the sets in the non-monotonic core of N>0(w).
N>0(w)

NC contains just one set, the empty set. N>0(w)
NC is the subset of

N>0(w) formed by the sets in N>0(w) whose belief function is greater than 0
and do not have subsets. We will call the sets in N>0(w)

NC elementary sets.

Lemma 1. The elementary sets in N>0(w)
NC are pairwise disjoint.

Proof. The sets in a non-monotonic core are closed under the subset relation.

The following lemma is immediate, given that N>0(w) is core-complete:
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Lemma 2. Any X ∈ N>0(w), have as a subset the disjoint union of some
elementary sets in NNC

>0 (w).

We introduce the following definition:

Definition 18. (Interior of a set in N>0(w).) We define the interior of a
set X ∈ N>0(w) as the union of all the sets in the maximal set of elementary
sets of X , that is, the set that contains all elementary sets that are subsets
of X :

intN (X) =
⋃

Ei⊆X,Ei∈N>0(w)NC

Ei

We have chosen the name by analogy with the concept of interior in topol-
ogy, although the concept is not the same, since the elementary sets men-
tioned here are not open spaces. This maximal subset will allow us to define
b(w,X) in terms of the belief functions of the elementary sets in the maximal
subset, given that the belief function is superadditive, and the elementary
sets are pairwise disjoint.

Proposition 4. (Belief function of a set X ∈ N>0(w).) Given some
X ∈ N>0(w), b(w,X) > intN (X)

If the maximal subset is empty, b(w,X) = 0.

Proposition 5. ∩N1(w) is equal to the disjoint union of all elementary sets
in N>0(w)

NC .

Proof. By lemma 2, ∩N1(w) has a a maximal subset of elementary sets,
whose union is intN (∩N1(w)). We must prove that all wi ∈ ∩N1(w) belongs
to some elementary set. If this were not the case, then xi ∈ A for some set A
such that b(w,A) = 0. In this case b(w,∩N1(w)\A) = 1, and being disjoint
A and ∩N1(w)\A, then b(w,A) + b(w,∩N1(w)\A) = 1. but this would mean
that ∩N1(w) ⊆ (∩N1(w)\A) and (∩N1(w)\A) ⊆ ∩N1(w), that is, ∩N1(w) =
∩N1(w)\A. Therefore, A is empty and all worlds in ∩N1(w) belong to some
elementary set. Now we must prove that all elementary sets are subsets of
∩N1(w). Let us suppose that there is an elementary set Ei 6⊆ ∩N1(w). We
have that b(w,∩N1(w)∪Ei) > b(w,∩N1(w))+ b(w,Ei) > 1, because the sets
are disjoint. Therefore, all elementary sets are subsets of ∩N1(w).

All elementary sets are pairwise disjoint, so ∩N1(w) is the pairwise union
of all elementary sets: ∩N1(w) = intN (∩N1(w)) = intN (W ).

Proposition 6. (Belief function of the maximal subset of elemen-
tary sets of N1(w).) The sum of the belief functions of all elementary sets
is equal to or less than 1.

Proof. From the previous propositions and lemmas, belief function being su-
peradditive and b(w,∩N1(w)) = 1.
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Lastly, we are going to characterise the class of belief neighbourhood
frames in which beliefs are additive.

Definition 19. (Additive belief neighbourhood frame.) A belief neigh-
bourhood frame is additive if the following holds:

For all w ∈W, b(w,
⋃

{Ai}i∈J) =
∑

i∈J

b(w,Ai) (All Aipairwise disjoint)

In this case, the belief function reduces to a probability function. To prove
that a neighbourhood is additive, we do not need to verify it for all possible
sets in N>0(w). We just need to verify the following proposition.

Proposition 7. (Core complete neigbhourhood of N>0(w) and addi-
tive neighbourhoods.) If and only if the frame is additive, then for all
w ∈W and, for all X ∈ N>0(w),

∑

Ei∈N>0(w)NC b(w,Ei) = 1.

Proof. If the frame is additive, by definition of additivity, proposition 6 and
the elementary sets being pairwise disjoint, the sum of all the elementary
sets in the neighbourhood of all w ∈ W is 1. If the frame is not additive,
for some w ∈ W the sum of the belief functions of the elementary sets in its
neighbourhood is less than 1.

We need to provide a condition for a set to be measurable.

Definition 20. (Well-defined set.) A set X in N>α(w) is well-defined if
X ∩ ∩N1(w) = intN (X).

In other words, a set is well-defined if it does not insersect any elemen-
tary set which is not its subset. A consequence of this definition, the last
proposition and proposition 4 is the following:

Lemma 3. If the frame is additive, if a set X in N>α(w) is well-defined,
then. b(w,X) = b(w, intN (X)).

If the frame is not additive or the set is not well-defined, we only can state
b(w,X) > b(w, intN (X)). When we define a model, sets corresponding to
the truth sets of formulas should be well-defined. Otherwise, they may not
be measurable.

6 Relationship between probability and belief models

The relationship between probabilistic Kripke semantics and belief neigh-
bourhood semantics is akin to the relationship between Kripke semantics and
neighbourhood semantics: a Kripke model has a kind of equivalence called
modal equivalence with an augmented neighbourhood model.
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We will ground our proof for probabilistic models in the aforementioned
equivalence between Kripke semantics and a subclass of the neighbourhood
semantics. First, we recall the latter proof, and then we will develop our
own proof for probability and belief. The original proof for the relationship
between Kripke and augmented neighbourhood models can be found in [6].
Here we will follow Pacuit [29], which is also the source of these definitions:

Definition 21. (R-necessity.) Given a Kripke frame 〈W,R〉, X ⊆W is R-
necessary at w if R(w) ⊆W . The set {X ⊆W | R(w) ⊆ X} will be denoted
by NR

w .

Definition 22. (Pointwise equivalence.) Given a non-empty set W , a
Kripke frame 〈W,R〉 and a neighbourhood frame 〈W,N〉 are pointwise equiv-
alent if, for all w ∈W and X ⊆W , X ∈ N(w) iff X ∈ NR

w .

Definition 23. (Modal equivalence.) Given a modal language L and two
classes of models for it M and M ′, we say that M,w is L-modally equivalent
toM,w′ iff the set {φ ∈ L |M,w |= φ} is the same than {φ ∈ L |M ′, w′ |= φ}.

Given models M and M ′, if for every pointed model M,w, there is some
w′ such that M,w and M,w′ are pointwise equivalent, then M and M ′ are
modally equivalent. More generally, a class of modelsM is modally equivalent
to a class of models M ′ iff for each pointed model M,w there is another
pointed model M ′, w′ such that they are modally equivalent.

Modal equivalence is a concept which encloses other well-known ones, such
as bisimulation. However, bisimulation is defined within structures of the
same kind (for example, bisimulation in Kripke or neighbourhood models).
A usual way of proving that M and M ′ are modally equivalent is showing a
way of transforming M into M ′ and vice versa. The following propositions
are also taken from [29]:

Proposition 8. (Kripke models and augmented neighbourhood mod-
els.) Let 〈W,R〉 be a Kripke frame. Then, there is a modally equivalent aug-
mented neighborhood frame.

Proof. For each w ∈ W , let N(w) = NR
w as described above, and 〈W,R〉 is

the desired neighbourhood frame, which is augmented.

Proposition 9. (Kripke models and augmented neighbourhood mod-
els.) Let 〈W,N〉 be an augmented neighborhood frame. Then, there is a
modally equivalent relational frame.

Proof. From an augmented 〈W,N〉, we define a binary relation RN : W ×W
in the following way: For every w,w′ ∈ W , let wRNv iff v ∈ ∩N(w). The
frame 〈W,RN 〉 is the desired Kripke frame.

As a result, we have the following:
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Proposition 10. (Kripke models and augmented neighbourhood mod-
els.) The class of Kripke models is modally equivalent to the class of aug-
mented neighbourhood models.

Proof. If we add a valuation function v : At →W to the previous structures,
we obtain the corresponding Kripke and neighbourhood models. We observe
that the satisfaction of formulas is maintained in all w ∈ W , by induction:

• The satisfaction of atomic formulas is the same, since v is the same.
• The satisfaction of the conjunction and negation of formulas is preserved,

since in both semantics their interpretation is the same.
• Satisfaction of the modal formulas:

– IfM,w |=K �φ, all worlds wi such that wRwi satisfy φ. In the augmented
neighbourhood model, all wi are in ∩N(w) ∈ N(w) and ∩N(w) ⊆ JφKM ′ ∈
N(w), and thus M ′, w |=N φ by the definition of satifaction of �φ in
neighbourhood semantics.

– If M ′, w |=N �ψ, by defining a relation RN : W × W as stated before,
we obtain a set of worlds wi such that wRnwi, and all of them satisfy φ.
Thus, M,w |=K �φ in the Kripke model.

Fagin and Halpern [11] show that for every probability structure, there
is an equivalent structure in which belief functions have been defined, and
the converse is not true in general, just under specific circumstances. Having
seen the relationship between Kripke frames and augmented neighbourhood
frames, now we will study this relationship for probabilistic Kripke frames
and a subclass of belief neighbourhood frames, namely additive ones. We will
base our proof in the previous ones and the results of the previous section.

Proposition 11. Let MP
K = 〈W,µ,R〉 be a probabilistic Kripke frame. There

is an additive belief neighbourhood frame which is modally equivalent to MP
K.

Proof. If we have MP
K , we first obtain ∩N1(w) for each w ∈ W in an analo-

gous way to the procedure described in proposition 8 for Kripke and neigh-
bourhood models. It will be the core of an augmented neighbourhood 1.

Now let us consider all singletons {wi} ⊆ R(w) = ∩N1(w). They will be the
elementary sets in N>0(w)

NC . We want to define an additive neighbourhood
frame, and then we know by proposition 7 that the following condition has
to be met:

∑

{wi}∈N>0(w)NC b(w, {wi}) = 1. Thus, for all singletons {wi}, we

define a function bk(w, {wi}) = µ(w,wi). We also specify that b(w,∅) = 0,
and thus ∅ ∈ N>0(w).

We have to define the value of b for the rest of the sets in N>0(w). Neigh-
bourhoods are monotonic 12, so for every A ⊆ W , we are going to consider
its interior intN (A) 18. We define b(w,A) = b(w, intN (A)) (see lemma 3).
If intN (A)=0, then b(w,A) = 0.

Proposition 12. Let MB
N = 〈W, b, {N>α,α∈[0,1]}〉 be an additive belief neigh-

bourhood frame. There is a probabilistic Kripke frame which is modally equiv-
alent to MB

N .
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Proof. For all w ∈ W , we define a binary relationship RN : W ×W in this
way: wRNw

′ iff w′ ∈ ∩N1(w). We will denote by RN (w) the set of all w′ in
this relation.

We know from proposition 5 that ∩N1(w) is equal to the disjoint union of
the elementary sets in N>0(w)

NC . The frame is additive, so the sum of the
beliefs of the elementary sets is equal to 1. Thus, we define a function µN :
W ×W → [0, 1] such that µN (w,wi) = 0 if w′ /∈ ∩N1(w) and µ(w,wi) > 0
otherwise. The value of µN(w,wi) > 0 in this second case will be determined
in the following step.

Now we must consider each elementary set Ei. It will correspond to one
or more wi in RN (w). Since each set is disjoint, the exact value of µ(w,wi) is
arbitrary, as long as the sum of µN (w,wi) for all wi within a given elementary
set Ei is equal to b(w,Ei). We make this for all elementary sets.

Since the frame is additive and ∩N1(w) =
⋃n

i=1 Ei for {Ei} disjoint sets,
then b(w,∩N1(w)) = 1 =

∑n

i=1 b(w,Ei). Thus,
∑

wi∈W µN (w,wi) = 1.

As a consequence, we have the following result:

Proposition 13. (Equivalence between probabilistic and belief mod-
els.) The class of probabilistic Kripke models is modally equivalent to the
class of of additive belief models.

Proof. Analogous to proposition 8. If we add a valuation v : At → W to
the previous frames, we obtain the corresponding models. We just need to
consider modal operators:

• From Kripke to neighbourhood models: If MP
K , w |= B>αφ, then there

is a subset of R(w) such that the sum of their probabilities µ(w,wi) is a
certain value α′ > α, and the analogue value for ¬φ is a certain value β
such that α′ + β = 1. By applying the process described in proposition
11, the elementary sets of the modally equivalent neighbourhood model are
formed by a series of singletons, one for each world in R(w). The union
of all the elementary sets corresponding to worlds in R(w) that satisfy φ
is intN (JφKM ). b(w, JφKM ) = b(w, intN (JφKM ) is the sum of the beliefs of
the elementary sets corresponding to worlds satisfying φ. Thus b(w, JφKM ) =
α′ > α. The same reasoning applies to ¬φ, giving a value of b(w, J¬φKM ) = β.
Therefore MB

N |= B>α′>αφ and MB
N |= B>β¬φ. We know that this logically

entails MB
N |= B>αφ.

• From additive neighbourhood to Kripke models: Let us haveMB
N , w |=N

B>αφ. We first obtain R(w) from ∩N1(w) as described in proposition 12:
We define RN : W × W such that wRwi if wi ∈ ∩N1(w). A subset of the
worlds in ∩N1(w) satisfies φ, and this subset is also a subset of JφKM . More
precisely, this subset, ∩N1(w) ∩ JφKM = intN (JφKM ), and by lemma 3,
b(w1, intN (JφKM )) = b(w1, JφKN ). Thus, this value is at least α, and there-
fore, the worlds in R(w) that satisfy φ must sum up a probability of at least
α. Therefore, MP

K , w |=K B>αφ.
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Not all belief neighbourhood frames have a modally equivalent probabilistic
neighbourhood frame: If the neighbourhood frame is not additive, we cannot
obtain a modally equivalent Kripke frame. Instead, there will be an infinite
family of of probabilistic Kripke frames that are compatible with that belief
neighbourhood model. This means that we can obtain an infinite family of
Kripke models, and the formulas that are satisfied on them logically entail
the formulas of the neighbourhood model, but the converse is not true in
general.

Example 4. (Example 4: From a probabilistic Kripke model to a belief neigh-
bourhood model and back.) From probabilistic Kripke model to belief
neighbourhood model: The MP

K in Example 1 (1) can have a modally
equivalent belief neighbourhood model. Let us study just one world, the pro-
cess in the other ones is identical. Let us take w1, we recall that in MP

K ,
µ(w1, w1) = 0, µ(w1, w2) = 0.4, µ(w1, w3) = 0.6, µ(w1, w4) = 0. We will
assign a certain b to every subset of R(w1) = {w2, w3}. b(∅) = 0, and thus
b(w1, {w3}) = µ(w1, w3)=0.6, and b(w1, {w2}) = µ(w1, w2) = 0.4. b({w1} =
0. The belief function for the rest of the subsets ofW is defined from the belief
function of their interior, that it is some of the previous sets. For example,
b(w1,W ) = b(w1, {w2, w3}) = 1, and b(w1, {w1, w3}) = b(w1, {w3}) = 0.6.

If we apply the valuation function that we have defined in Example 1,
{w1, w3} = JpKM , and thus b(w1, p) = 0.6. Similarly, {w2, w4} = J¬pKM , and
thus b(w1,¬p) = 0.4. That is, b(w1, p) + b(w1,¬p) = 1.

From additive belief neighbourhoodmodel to probabilistic Kripke
model: Now let us see the belief neighbourhood model we have obtained. Let
us take w1 again, for example, and let us observe that ∩N1(w1) = {w2, w3}.
Both {w2} and {w3} are elementary sets in N>0(w1), and we know that
b, (w1, {w2}) + b, (w1, {w3}) = 1, and thus the frame is additive.

Let us define RN : W ×W and µN : W ×W → [0, 1], and µN (w1, w2) = 0.4
and µN (w1, w3) = 0.6. Since each elementary set Ei is formed by a sin-
gle world, we do not have to distribute the value of b(w1, Ei) among sev-
eral worlds. For several worlds, we should operate in this way: Let us as-
sume that E1 = {w2, w5}, then µN (w1, w2) + µN (w1, w5) = b(w1, E1), for
example µN (w1, w2) = 0.3 and µN (w1, w5) = 0.1. Since w1 and w4 are
not in ∩N1(w1), then µN (w1, w1) = 0 and µN (w1, w4) = 0. We have that
RN (w1) = {w2, w3}, which is the set of worlds in ∩N1(w1). We verify that
µN (w1, w2) + µN (w1, w3) = 1, which is the expected value.

Example 5. (Example 5: Belief neighbourhood model with no modally equiv-
alent probabilistic Kripke model.) We can take the belief neighbourhood
model that we have created in the previous example and just make two
small changes. Let us make b(w1, {w2}) = 0.4 and b(w1, {w3}) = 0.3,
but b(w1, {w2, w3}) = 1. We have that b(w1, {w2, w3}) > b(w1, {w2}) +
b(w1, {w3}) and thus additivity is not held 7. Thus, there is not a Kripke
frame that is modally equivalent to this neighbourhood frame, but infinite
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Kripke frames, these with µN (w1, w2) > b(w1, {w2}) = 0.3, µN (w1, w2) >

b(w1, {w3} = 0.4, and µN (w1, w2) + µN (w1, w3) = 1.
Let us suppose a certain Kripke frame such that µ(w1, w2) = 0.4 and

µ(w1, w3) = 0.6, being R(w1) = {w2, w3}. We have that MP
K , w1 |=K B0.4p,

for example. B0.4p logically entails B0.3p, which is satisfied in w1 in the
neighbourhood model. However, B0.3p does not logically entail B0.4p.

7 Concluding remarks and future work

Concluding remarks. It has been shown that every probability can be
understood as an additive belief function 1. In a probability Kripke model, it
is possible to express subjective probabilities, which also are additive belief
functions 4, but it is not possible to express arbitrary belief functions. In
a neighborhood belief model, a probability is a special case of belief func-
tions, additive ones. Thus, neighborhood models allow for a more expressive
interpretation by distinguishing between probability and belief functions. In
the final section, we have seen how to interpret this in terms of relationships
between models: Every probabilistic Kripke model can be converted into a
modally equivalent neighborhood model, but the reverse is only possible for
additive belief neighbourhood models 13. They form a proper subclass of of
belief neighborhood models.

Future works. In this work we have deliberately omitted the consid-
eration of conditional probability and conditional belief, which arise as an
immediate logical extension. In future works, an possible line of research is
their study and their connection to basic logical operations, such as prob-
abilistic deduction and the application of Bayes’ theorem. Specifically, our
aim is to integrate these operations within the framework of belief neigh-
borhood models, considering these operations on probabilistic Kripke models
as equivalent to their counterparts in a specific subclass of neighbourhood
models.

Acknowledgements. Thanks to the two anonymous peer reviewers who
greatly helped with their suggestions to improve the final version of this
article.
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