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Abstract—Combining millimetre-wave (mmWave) communi-
cations with an extremely large-scale antenna array (ELAA)
presents a promising avenue for meeting the spectral efficiency
demands of the future sixth generation (6G) mobile communica-
tions. This technology achieves a high data rate and establishes
high-gain directional transmission links. However, beam training
for mmWave ELAA systems is challenged by excessive pilot
overheads as well as insufficient accuracy, as the huge near-field
codebook has to be accounted for. In this paper, inspired by the
similarity between far-field sub-6 GHz channels and near-field
mmWave channels, we propose to leverage sub-6 GHz uplink
pilot signals to directly estimate the optimal near-field mmWave
codeword, which aims to reduce pilot overhead and bypass
the channel estimation. Moreover, we adopt deep learning to
perform this dual mapping function, i.e., sub-6 GHz to mmWave,
far-field to near-field, and a novel neural network structure
called NMBEnet is designed to enhance the precision of beam
training. Specifically, when considering the orthogonal frequency
division multiplexing (OFDM) communication scenarios with
high user density, correlations arise both between signals from
different users and between signals from different subcarriers.
Accordingly, the convolutional neural network (CNN) module
and graph neural network (GNN) module included in the
proposed NMBEnet can leverage these two correlations to further
enhance the precision of beam training. To better evaluate the
performance of the proposed algorithm, we employ the state-
of-the-art system simulation software to obtain realistic channel
data. Simulation results demonstrate the superior performance of
the proposed strategy compared to the exhaustive search scheme
and existing deep learning-based schemes.

Index Terms—ELAA, near field, beam training, sub-6 GHz,
mmWave, CNN, GNN, hybrid precoding.

I. INTRODUCTION

Since millimetre-wave (mmWave) bands can offer abun-
dant spectral resources and support high transmission rates,
mmWave communications are pivotal in both current fifth
generation (5G) and anticipated sixth generation (6G) mobile
networks. [1], [2]. However, mmWave signals would experi-
ence greater path loss during propagation compared to sub-
6 GHz signals. To mitigate path loss, 5G communication
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systems deploy massive antenna arrays at the base station
(BS) for establishing directional transmissions. [3]–[5]. For 6G
communication systems, the BS is expected to deploy more an-
tennas and extremely large-scale antenna arrays (ELAA) have
been proposed in [6]. Benefiting from more antennas, ELAA
can achieve higher directional transmissions gain, greatly im-
proving the spectral efficiency of the communication system.
[7]. Hence, combining mmWave communications with ELAA
represents a promising technology to meet the rapidly growing
demand for spectral efficiency in future 6G communication
systems. [8].

In mmWave communication systems, enhancing received
signal power involves widely employing beam training based
on a predefined codebook. Here, the BS searches for the code-
word with the highest gain in the predefined codebook to form
a directional beam. However, beam training is challenging for
communication systems with ELAA. Specifically, the deploy-
ment of ELAA leads to an expansion of the boundary between
the near field and the far field, i.e., the Rayleigh distance,
which is proportional to the size of the antenna array [9].
Hence, it’s crucial to consider near-field communication based
on the spherical wave assumption, since users are often located
within the near-field domain. In near-field communications,
specialized near-field codebooks tailored for spherical waves
must be adopted. These codebooks contain significantly more
codewords than traditional far-field codebooks because near-
field codewords need to be searched not only in terms of
angles but also distances [7]. Obviously, searching for the
optimal codeword in a larger codebook would result in a higher
pilot overhead and a lower success rate of finding the optimal
codeword. This represents a qualitative rather than just quan-
titative difference. Consequently, in communication systems
employing ELAA, addressing the challenge of reducing pilot
overhead in beam training and improving the success rate of
searching for the optimal codeword, i.e., the precision of beam
training, is a pressing issue.

A. State-of-the-art

In conventional far-field communications, several beam
training schemes have been proposed to diminish pilot over-
head [10]–[13] or to enhance the precision of beam training
[14]. The authors of [10], [11] introuduced a classical beam
training algorithm based on hierarchical codebooks to diminish
the pilot overhead. Initially, the optimal wide-beam codeword
is identified, followed by the determination of the optimal
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narrow-beam codeword within the coverage of the wide-beam
codeword. Another classical beam training scheme capable
of reducing pilot overhead is the alternate beam search in-
trouduced in [12], [13], wherein the search for the optimal
transmit beam at the BS and the optimal receive beam at
the user are conducted separately. Furthermore, a two-stage
beam training scheme was introduced in [14] to enhance the
precision of beam training. Although the proposed scheme can
satisfy the power constraints, it does not reduce the overhead.

To meet the demands of extensive traffic and numerous
connections, future 6G communication systems are anticipated
to operate across multiple frequency bands, encompassing
the sub-6 GHz band and the mmWave band. [1]. As a
matter of fact, current 5G communication systems have al-
ready exploited the full potential of the sub-6 GHz band
and the mmWave band [15]. The authors of [16] conducted
extensive experiments in various indoor and outdoor settings.
They demonstrated that sub-6 GHz channels and mmWave
channels exhibit spatial correlation, which can be utilized to
diminish the pilot overhead of mmWave beam training. Hence,
to mitigate the pilot overhead required for mmWave beam
training, various literature has proposed the exploitation of
information from the sub-6 GHz band to aid beam training in
the mmWave band. In [17], [18], mmWave beam training was
conceptualized as a sparse signal recovery problem and the
spatial parameters of the sub-6 GHz channel were extracted
to assist the mmWave beam training. Moreover, the authors
of [19] proposed to utilize the parameters of the sub-6 GHz
channel to construct the mmWave channel covariance matrices,
after which the mmWave channel covariance matrices can be
used to assist mmWave beam training.

While the schemes proposed in [16]–[19] reduced the pilot
overhead by exploiting knowledge of the sub-6 GHz band,
they all relied on parameter estimation, which makes their
performance sensitive to estimation errors. In order to alleviate
this drawback, a number of deep learning-based beam training
schemes were proposed [20]–[23] to reduce or bypass pa-
rameter estimation and thus the sensitivity to estimation error
is mitigated. The authors of [20] proposed a beam training
scheme utilizing fully connected neural networks (FCNN),
in which FCNN is utilized to map sub-6 GHz channel state
information (CSI) into optimal mmWave beam. Similarly,
[21] introduced an FCNN-based beam training scheme. The
distinction lies in the input to the FCNN, which is the
estimated power delay profile (PDP) of the sub-6 GHz channel.
Furthermore, to enhance the precision of the mmWave beam
training, the authors of [23] exploited not only the sub-6 GHz
channels but also a few mmWave pilot signals. A novel neural
network structure called FusionNet was proposed in [23] to
fuse these two types of data and predict the optimal mmWave
beams. Further, the authors of [22] exploited both sub-6 GHz
channel and partial mmWave wide beam test information to
diminish the overhead and enhance the precision of beam
training, where the convolutional neural networks (CNN) were
employed.

Nevertheless, the aforementioned literature solely addressed
far-field channels and codebooks, making it challenging to
extend them to near-field scenarios. Recognizing the distinct

characteristics of near-field communication, several near-field
beam training schemes have been proposed to mitigate pilot
overheads [24]–[27]. In [24], a hierarchical codebook applica-
ble to near-field channels was introduced to decrease the pilot
overheads. Nevertheless, beam training schemes relying on
near-field hierarchical codebooks still necessitate substantial
feedback, mirroring the requirements of far-field communi-
cation. Beyond traditional algorithms, deep learning has also
been employed in beam training for near-field communication.
For example, neural network based beam training schemes
were proposed in [25] and [26]. The schemes only required to
test partial far-field wide beams, and then the test information
was mapped by the neural network to the optimal near-field
codeword. Similarly, the authors of [27] proposed to test partial
near-field codewords and the test results were mapped by a
CNN into optimal near-field codeword.

B. Main Contributions

As far as we are aware, none of the existing studies can
fully harness the sub-6 GHz band to predict the optimal
mmWave beam in the near-field domain. To address this gap,
we introduce a beam training approach that utilizes sub-6
GHz band information to estimate the optimal mmWave beam
in the near-field. In contrast to the literature which assumed
that perfect sub-6 GHz channels are known [20], [22], [23]
or require parameter estimation [17]–[19], [21], our proposed
scheme only needs the uplink pilot signals received at the sub-
6 GHz BS to estimate the optimal near-field mmWave beam,
which is more feasible and can bypass the channel estimation.
Subsequently, motivated by the success of deep learning in
handling complex non-linear mapping problems, we propose
utilizing neural networks to map far-field sub-6 GHz pilots
to the optimal near-field mmWave codeword. Note that this
mapping is not only from sub-6 GHz to mmWave but also from
far field to near field, i.e., dual mapping. Our main contribution
is that we are the first to demonstrate how deep learning is
suitable for this double mapping.

Furthermore, in contrast to the literature [17]–[27], we
consider a user-intensive orthogonal frequency division multi-
plexing (OFDM) system [28] in this paper. Leveraging user-
intensive OFDM systems as a foundation, we propose a novel
approach to enhance the accuracy of near-field mmWave beam
training. Our method introduces a novel near-field mmWave
beam estimation network, termed NMBEnet, which integrates
both a CNN module and a graph neural network (GNN)
module to effectively leverage the correlation among users and
subcarriers. Specifically, in 6G systems characterized by high
user-density, particularly in massive communication scenarios
proposed by the International Telecommunication Union (ITU)
[29], users tend to be in close proximity to each other, resulting
in similar wireless propagation environments [1], [8]. Since the
received signal is the product of the interaction between the
transmitted signal and the wireless propagation environment
[30], the sub-6 GHz uplink pilots from various users will
exhibit similarities, which is called inter-user correlation. The
similarity in the received signals allows not only the user’s
own pilot signals to aid the BS in determining the optimal
near-field mmWave beam but also enables the utilization of
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pilot signals from neighboring users to infer the optimal near-
field mmWave codeword, resembling a form of “diversity
gain”. The GNN module included in NMBEnet can leverage
correlation between users to improve beam training accuracy
and can accommodate any number of users [31].

Moreover, since the subcarriers have similar frequencies
in OFDM systems, the channels under different subcarriers
would show similarities in terms of paths, delays, and angles
[32], [33]. Hence the received signals at different subcar-
rier frequencies also exhibit similarity, which is called inter-
subcarrier correlation. This correlation enables the pilot signals
on each subcarrier to be used to infer user’s optimal near-
field mmWave beam, which can also be viewed as a sort of
“diversity gain”. The CNN module included in NMBEnet can
handle the correlation between subcarriers and enhance the
precision of beam training.

Our primary contributions are outlined as follows:

1) We introduce a learning-based beam training scheme
that utilizes only the sub-6 GHz uplink pilot signals to
estimate the optimal near-field mmWave beam, which
reduces the pilot overhead required for beam train-
ing in near-field mmWave communication systems and
bypasses the channel estimation phase. The proposed
scheme achieves accurate dual mapping from sub-6 GHz
to mmWave and from far field to near field.

2) We introduce a novel neural network termed NMBEnet
designed to map sub-6 GHz uplink pilot signals to the
optimal near-field mmWave beam. This neural network
leverages both inter-user and inter-subcarrier correla-
tions, effectively enhancing the precision of beam train-
ing in multiuser OFDM systems.

3) We present comprehensive simulation results to analyze
the performance of our proposed scheme. Furthermore,
we adopt the state-of-the-art simulation software called
Wireless Insite (WI) in our simulation to model the
multiuser OFDM communication system as realistically
as possible. Our simulation results demonstrate that
the proposed scheme surpasses existing beam training
schemes relying on conventional neural network models
and approximates the exhaustive algorithm across mul-
tiple metrics.

The subsequent sections of this paper are structured as
follows: Section II elucidates the system model adopted in
this study and formulates the underlying problem. Section III
delineates the rationale behind and the architecture of the
proposed NMBEnet. Furthermore, it presents the proposed
near-field mmWave beam training scheme based on NMBEnet.
Section IV furnishes the results of our simulations, followed
by our concluding remarks in Section V.

In this paper, we employ the following notations. Bold lower
case and bold upper case letters denote vectors and matrices,
respectively, e.g., a and A; Scalar and a set are represented
by a and A, respectively; The i-th element of a and the
(i, j)-th element of A are represented by [a]i and [A]i,j ,
respectively; Absolute value is represented by |·|; Conjugate,
transpose, and conjugate transpose are denoted by (·)∗, (·)T

and (·)H, respectively; The Gaussian distribution is denoted by

Fig. 1: Illustration of the adopted system model.
CN (µ, σ2) where µ is mean and σ2 is variance. The Frobenius
norm is denoted by ∥·∥F.

II. SYSTEM MODEL

Consider a multi-user OFDM communication system con-
sisting of a sub-6 GHz BS, a mmWave BS and U users, which
is shown in Fig. 1. Note that each variable for the sub-6 GHz
band are added an upper line to distinguish them from those
for the mmWave band. The mmWave BS is deployed with
ELAA containing M -antenna uniform linear array 1 and N
radio frequency (RF) chains, where U ≤ N ≤M is satisfied.
To save transmission power, it is commonly assumed that
redundant RF chains are switched off, so that the number of
RF chains is equal to the number of users, i.e., N = U [34],
[35]. Since the number of RF chains is limited, mmWave BS
is assumed to employ hybrid precoders, which consist of an
analog precoder and a digital precoder. The sub-6 GHz BS
is equipped with M antennas. Since M is generally small,
the sub-6 GHz BS is assumed to be fully digital, where each
antenna is connected to an independent RF chain. Furthermore,
each user is equipped with a sub-6 GHz antenna and a
mmWave antenna.

A. mmWave Signal Model

For mmWave links, we consider a time division duplex
(TDD)-based multiuser OFDM signal model, where K OFDM
subcarriers are used for data transmissions to tackle frequency
selective fading. Let us denote the signal vector transmitted
on the k-th subcarrier by s [k] = [s1 [k] , s2 [k] , . . . , sU [k]]

T,
where su [k] denotes the symbol transmitted to user u. Before
transmission, the signal vectors on each subcarrier are first
precoded by the digital precoder, after which a cyclic prefix
of length L is appended and the signals are transformed to the
time domain by using K-point inverse fast Fourier transforms
(IFFTs). Finally, the transformed signals are precoded by the
analog precoder and then transmitted by the antenna array.
Note that the analog precoding follows after the IFFT, hence
the analog precoder is the same for signals on all subcarriers.

After the signals arrive at the users, the received signals are
transformed to the frequency domain by FFT and the cyclic

1Our proposed scheme can be easily adaptable to systems employing
uniform planar arrays (UPA). For UPAs, the scheme needs substituting the
2-dimensional near-field codebook with a 3-dimensional counterpart and
employing separate networks to determine the azimuth and elevation angle
indices.
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prefixes are removed. Consider a block-fading channel model,
the signal received by user u on the k-th subcarrier can be
represented as

ydlu [k] = hdl
u [k]FRFFBB [k] s [k] + ndlu [k]

= hdl
u [k]FRF

U∑
u=1

fBB
u [k] su [k] + ndlu [k] ,

(1)

where hdl
u [k] ∈ C1×M denotes the downlink channel of the u-

th user on the k-th subcarrier, FRF =
[
fRF
1 , fRF

2 , . . . , fRF
U

]
∈

CM×N and FBB [k] =
[
fBB
1 [k] , fBB

2 [k] , . . . , fBB
U [k]

]
∈

CN×N denote the analog precoder and the digital precoder,
respectively. Since the analog precoding is implemented by
the phase shifters, the elements of FRF satisfy the constraint
of constant modulus, i.e.

∣∣∣[FRF]m,n

∣∣∣ = 1√
M

. To satisfy the

power constraints,
∥∥FRFf

BB
u [k]

∥∥2
F

= 1, u = 1, 2, ..., U. and

E
[
s [k] s [k]

H
]

= Pdl

U IU are satisfied, where Pdl denotes
the downlink transmission power assigned to each subcarrier.
Moreover, ndlu [k] ∼ CN

(
0, σ2

dl

)
denotes additive white Gaus-

sian noise, where σ2
dl denotes the downlink noise power.

Based on the signal model given in (1), the spectral effi-
ciency of the u-th user at the k-th subcarrier is expressed as

Ru [k] = log2

(
1 +

Pdl

U

∣∣hdl
u [k]FRFf

BB
u [k]

∣∣2
Pdl

U

∑
i ̸=u

∣∣hdl
i [k]FRFfBB

i [k]
∣∣2 + σ2

dl

)
.

(2)

B. mmWave Channel Model

Due to the deployment of ELAA, the boundary between
the near field and the far field, i.e., the Rayleigh distance,
is expanded. Therefore, near-field communication based on
the spherical wave assumption has to be taken into account,
because users are more likely to be situated within the near-
field domain. To characterize the near-field mmWave channel,
we adopt the near-field wideband geometric channel model
[36], [37]. We derive the uplink channel first, after which the
downlink channel can be easily obtained by transposing the
uplink channel in TDD systems. We use α [i] to represent the
discrete-time baseband transmitted signal having sampling pe-
riod Ts = 1

fs
. Then, the continuous time baseband transmitted

signals can be obtained by

x (t) =

+∞∑
i=−∞

α [i] g (t− iTs), (3)

where g (t) is the pulse shaping function. After modulation,
the transmitted passband signal can be represented as

x̃ (t) = R
{
x (t) ej2πfct

}
, (4)

where fc denotes the centre carrier frequency. The number of
paths between the user and the mmWave BS is denoted by L
and the complex channel gain of each path is denoted by βl.
Let τl denote the propagation delay from the user to the centre
antenna of the mmWave BS. The extra propagation delay of
the m-th antenna compared to the central antenna of the l-th
path is denoted by ∆l,m. From [7], ∆l,m can be obtained by

∆l,m =
rl − r

(m)
l

c
=
rl −

√
r2l − σ2

md
2 − 2rlθlσmd

fcλc
, (5)

where rl denotes the distance from the centre antenna to the
user or the last scatterer on the l-th path, r(m)

l denotes the
distance from the m-th antenna to the user or the last scatterer
on the l-th path. σm = 2m−M+1

2 ,m = 0, 1, . . . ,M−1 denotes
the index of the antenna. θl denotes the sine of the arrival angle
of the central antenna on the l-th path. c, λc and d denote the
speed of light, wavelength and antenna spacing, respectively,
where d is assumed to be λc/2. Subsequently, the baseband
received signal at the m-th antenna can be represented as

ym (t) =

L∑
l=1

βlx (t− τl −∆l,m)e−j2πfc(τl+∆l,m)

=

(
L∑

l=1

β̃le
−j2πfc∆l,mδ (t− τl −∆l,m)

)
∗ x (t) ,

(6)

where δ (t) is the impulse signal and β̃l = βle
−j2πfcτl denotes

the equivalent complex channel gain. Note that in systems
with massive antenna arrays, it is commonly assumed that
x (t− τl −∆l,m) ≈ x (t− τl) because that ∆l,m ≪ Ts is
always stisfied for each m = 0, 1, . . . ,M − 1. However,
this approximation will no longer hold in systems containing
ELAA because of the large value of M . After performing the
Fourier transform on ym (t), the frequency domain signal can
be obtained by

ym (f) =

∫ +∞

−∞
ym (t)e−j2πftdt

=

(
L∑

l=1

β̃le
−j2πfc∆l,me−j2πf(τl+∆l,m)

)
x (f)

=

(
L∑

l=1

β̃le
−j2πfcτle−j2π(1+ f

fc
)ϕl,m

)
x (f) ,

(7)

where ϕl,m = fc∆l,m =
rl−r

(m)
l

λc
. Then the received signal

vector at M antennas can be represented as
y (f) = [y1 (f) , y2 (f) , . . . , yM (f)]

T

= hul (f)x (f) ,
(8)

and the channel model can be expressed as

hul (f) =

L∑
l=1

β̃le
−j2πfcτlb (θl, rl) , (9)

where

b (θl, rl) = [e−j2π(1+ f
fc
)ϕl,1 , e−j2π(1+ f

fc
)ϕl,2 , . . .

, e−j2π(1+ f
fc
)ϕl,M ],

(10)

According to (9) and (10), the downlink channel on the k-th
subcarrier can be represented as

hdl [k] =
(
hul (fk)

)T
, (11)

where fk denotes the k-th subcarrier frequency.

C. sub-6 GHz Signal Model

For sub-6 GHz links, we also consider a TDD-based mul-
tiuser OFDM signal model, where K OFDM subcarriers are
used on the uplink. Furthermore, U users are assumed to
transmit mutually time-orthogonal uplink pilot signals to the
sub-6 GHz BS. Since the sub-6 GHz BS is fully digital, the
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received pilot signals of the u-th user on the k-th subcarrier
can be represented as

yu[k] = h
ul

u [k]zu[k] + nul
u [k], (12)

where zu[k] ∈ C and h
ul

u [k] ∈ CM×1 denote the transmitted
uplink pilot symbol and uplink channel, respectively. zu[k] is
assumed to satisfy the power constraint

∣∣zu[k]∣∣2 = P ul, where
P ul denotes the uplink transmission power on each subcarrier.
Furthermore, nul

u [k] ∼ CN
(
0, σ2

ulI
)

denotes additive white
Gaussian noise, where σ2

ul denotes the uplink noise power.

D. sub-6 GHz Channel Model

For sub-6 GHz systems, users are more likely to locate in
the far-field domain of sub-6 GHz systems due to the smaller
size of the antenna array and the smaller Rayleigh distance.
Consider a wideband geometric channel model for the far field,
which can be represented as

h
ul
(f) =

L∑
l=1

βle
−j2πfcτ la

(
θl, f

)
, (13)

where L denotes the number of paths. βl, τ l and θl denote the
complex channel gain, free-space propagation delay and the
sine of arrival angle on the l-th path, respectively. Furthermore,
the far-field steering vector a

(
θl, f

)
is represented as [36],

[37]

a
(
θl
)
=

[
1, e

−j 2πd
λc

θl , . . . , e
−j(M−1) 2πd

λc
θl

]
. (14)

Based on the above channel model, the sub-6 GHz uplink
channel on the k-th subcarrier can be written as

h
ul
[k] = h

ul (
fk
)
. (15)

E. Problem Formulation

Our main objective is to design the analog precoder and
digital precoder based on the sub-6 GHz uplink pilot signals
to maximize the sum of the spectral efficiency of the mmWave
system, i.e.

∑
u

∑
kRu [k].

For the analog precoder, since the hardware constraint of
the RF that the phase shifters can only use quantized angles,
the column vectors of the analog precoder have to be selected
from a predefined finite-size codebook [34], [35]. The discrete
Fourier transform (DFT) codebook has been widely used
in far-field communication to design the analog precoder.
However, the DFT codebook is not applicable to near-field
communications, as the assumption of planar-waves no longer
holds in the near-field domain. Therefore, we adopt the near-
field codebook based on the spherical wave assumption pro-
posed in [7], which incorporates not only the search for angle
but also for distance. In particular, the space is uniformly
divided into M angles in terms of direction by the near-field
codebook, while the space is divided into S distance rings in
terms of distance. Then, the near-field codebook is given by
N = {b (ψ1, r1,1) , . . . ,b (ψM , r1,M ) , . . . ,b (ψM , rS,M )} .

(16)
where ψm denotes the m-th sampling angle and rs,m denotes
the sampling distance from the BS to the s-th distance ring
under the angle ψm.

Then the problem of maximizing the sum spectral efficiency
is given by

max
FRF,FBB[k]

U∑
u=1

K∑
k=1

Ru [k]

s.t. [FRF]:,u = fRF
u ∈ N , u = 1, 2, . . . U∥∥FRFf

BB
u [k]

∥∥2
F
= 1, u = 1, 2, . . . , U k = 1, 2, . . .K.

(17)

Note that solving the optimization problem given in (17) is
difficult because it is non-convex. Depending on the existing
contributions [34], [35], [38], [39], a common approach to
solving Problem (17) is to design the analog precoder and dig-
ital precoder separately. Specifically, we first need to select the
optimal codewords for each user to form the analog precoder
with a fixed digital precoder, after which the digital precoder
is determined. When determining the analog precoder, the
problem of selecting the optimal codeword for each user can
be written as

max
fRF
u

K∑
k=1

∣∣hdl
u [k] fRF

u

∣∣, u = 1, 2 . . . U

s.t. fRF
u ∈ N , u = 1, 2, . . . U,

(18)

where gu =
∑K

k=1

∣∣hdl
u [k] fRF

u

∣∣ represents the sum beamform-
ing gain from fRF

u for the u-th user on all subcarriers. It can
be seen that Problem (18) is a typical beam training problem.
Since there are already established schemes for the design of
digital precoders [34], [35], [38], e.g., using zero-forcing (ZF)
or minimum mean-squared error (MMSE) algorithms, hence
we mainly focus on how to design a beam training scheme to
solve Problem (18) in this paper.

Since near-field codebooks contain not only the search in
angle but also in distance, the number of codewords in the
near-field codebook increases dramatically. Searching for the
optimal codeword within an extensive codebook inherently
leads to increased pilot overhead and diminished likelihood
of finding the optimal codeword. This distinction is not only
quantitative but also qualitative in nature. Consequently, in
communication systems employing ELAA, the imperative
challenge lies in minimizing pilot overhead during beam train-
ing while concurrently enhancing the success rate of finding
the optimal codeword, i.e., the accuracy of beam training.

III. NMBENET-BASED BEAM TRAINING WITH DUAL
MAPPING

A. Motivation

Since the existing literature has demonstrated the spatial
correlation between sub-6 GHz channels and mmWave chan-
nels [40], [41], the information of sub-6 GHz bands can
be used to aid beam training of the mmWave bands [20].
Moreover, according to the definition of the Rayleigh distance
[9], the near-field spherical wave model can be approximated
to the far-field planar wave model when the maximum phase
discrepancy among all antennas is less than π/8. This ap-
proximation suggests that there are also correlations between
the near-field channel and the far-field channel, enabling the
utilization of far-field information for near-field beam training.
In addition, we use the latest simulation software called WI
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Fig. 2: Similarity between beam patterns of far-field sub-
6 GHz channel and near-field mmWave channel.

to obtain the far-field sub-6 GHz channel and the near-field
mmWave channel to validate this correlation [42]. For a more
intuitive view of the channel’s characteristics, the channel is
left-multiplied by the DFT matrix and normalized to obtain the
beam pattern of the channel which is shown in Fig. 2 where
the horizontal coordinate is the beam angle and the vertical
coordinate is the normalized beamforming gain (NBG) for
each beam. From Fig. 2, we can readily observe the correlation
between the far-field sub-6 GHz channel and the near-field
mmWave channel.

Motivated by the above, we adopt the information of far-
field sub-6 GHz to assist in the search for optimal near-field
mmWave codewords, which can significantly reduce the pilot
overheads. Not only that, in order to reduce the complexity,
we bypass the channel estimation and directly use the far-
field sub-6 GHz pilot signals to assist the far-field mmWave
beam training, because the uplink pilot signals are shown
to be sufficient for solving some optimisation problems for
downlink [43]. This beam training model can be expressed
mathematically as

{b⋆
u} = fm(yu[k]), u = 1, 2, . . . , U, (19)

where b⋆
u denotes the index of the optimal near-field mmWave

codeword for the u-th user and fm (·) denotes the mapping
function. However, this beam training model, which relies only
on a single user’s pilot signals at a single carrier, was shown
to have poor accuracy [22].

In future 6G communication systems that are expected
to deploy ELAA, the utilization of OFDM technology will
persist and user-intensive scenarios will be common [1], [29].
Consequently, it becomes imperative to address user-intensive
OFDM systems. Leveraging inter-user and inter-subcarrier
correlations presents an opportunity to enhance beam training
accuracy. Specifically, in 6G systems, particularly in high
user-density environments such as those outlined in ITU’s
proposed massive communication scenarios, users are often in
close proximity, leading to comparable wireless propagation
environments thus similar channels. We perform simulations
using WI to obtain the channels of different users in a user-
intensive scenario and the beam patterns are shown in Fig. 3,
through which similarity of the channels can be observed. As
the received signal is influenced by the interaction between the

transmitted signal and the wireless propagation environment,
uplink pilot signals from various users exhibit inter-user cor-
relation. Leveraging this similarity in received signals, both
the user’s own pilot signals and those of neighbouring users
can aid in determining the optimal near-field mmWave beam,
akin to a form of “diversity gain”.

Furthermore, in OFDM systems, the similarity in frequen-
cies among subcarriers results in analogous characteristics
across channels, including path, delay, and angle [32], [33].
Through the beam patterns of the channels at different sub-
carrier frequencies in Fig. 4, we can observe this inter-channel
similarity. Consequently, received signals across different sub-
carrier frequencies would also demonstrate inter-subcarrier
correlation. This correlation facilitates the utilization of pilot
signals on each subcarrier to deduce the optimal near-field
mmWave beam for users, which is also akin to a form of
“diversity gain”.

In order to take advantage of inter-user and inter-subcarrier
correlations, the beam training scheme is rewritten as
{b⋆

1,b
⋆
2, . . . ,b

⋆
U}

= fm

({
y1[k]

}K
k=1

,
{
y2[k]

}K
k=1

, . . . ,
{
yU [k]

}K
k=1

)
,

(20)

which exploits the pilot signals of all users on all subcarriers
simultaneously. Here it is important to note the difference
between (19) and (20): in (19) the beam training for each user
is separate and only a single carrier is considered, which is
the common idea adopted in the existing literature [20]–[23],
while in (20) the beam training for all the users is performed
simultaneously and the pilot signals on all the subcarriers are
employed. However, the mapping function in the beam training
model (20) is difficult to implement because not only is the
relationship between the far-field sub-6 GHz signal and the
near-field mmWave beam highly non-linear, but also the two
correlations are difficult to extract and exploit.

In order to implement the mapping function in (20), we
decide to adopt the deep learning approach and conceive
a neural network called NMBEnet, whose package mainly
contains a CNN module and a GNN module, for the fol-
lowing main reasons. Firstly, the relationship between b⋆u

and
{
yu[k]

}K
k=1

is highly non-linear, which makes traditional
estimation methods difficult to work or impose unacceptable
computational complexity [22], [44]. For this reason, deep
learning with its strong ability to learn non-linear relationships
is employed to realize this tricky mapping task [20]. However,
traditional FCNNS still struggles to achieve the mapping in
(20) because they cannot exploit the two correlations.

Due to the excellent performance of CNNs on the image
classification task [45], we decide to use CNNs to do the
initial feature extraction on the sub-6 GHz pilot signal, in
which the inter-subcarrier correlation is explored. Specifically,
given the finite number of codewords, beam training can be
conceptualized as a classification task, with each codeword
representing a category [44]. Moreover, since the sub-6 GHz

pilot signals
{
yu[k]

}K
k=1

share many of the same features with
the image, the sub-6 GHz pilot signals can be regarded as
an image with K layers, which is adopted by much of the
existing literature [46]. The convolution kernel in the CNN



7

Fig. 3: Similarity between the beam patterns of
different users’ channels.

Fig. 4: Similarity between beam patterns of channels
with different subcarriers.

Fig. 5: Overall architecture of the poposed NMBEnet.

can exploit the correlation between image layers and extract
features from multiple layers of the image simultaneously [45].
Hence, the CNN can also exploit the correlation of sub-6
GHz pilot signals under different frequencies, i.e., the inter-
subcarrier correlations.

Furthermore, we also consider GNN because it can leverage
the correlation between users. Specifically, unlike FCNNs,
GNNs have a unique structure of “combination” and “ag-
gregation”, which makes it feasible to take into account the
features of the other users when updating user’s own features
[31]. Therefore, the GNN can search for optimal codewords
based on the features extracted by the CNN and leverage the
correlation between users in the process.

B. Architecture of the NMBEnet

The complete architecture of our proposed NMBEnet is
shown in Fig. 5, which consists of a preprocessing module, a
CNN-based feature extraction module, a GNN-based feature
updating module, and an output module.

1) Preprocessing Module: Since neural networks can only
handle real values, we first have to convert the uplink sub-6
GHz pilot signals in complex values to real values. Further-
more, in order to better exploit the advantages of CNNs for
image processing and to fully explore the correlation between
subcarriers, we treat the pilot signals as an “image” and take

the pilot signals under each subcarrier as a layer of the input
“image”. This preprocessing step is given by

Su

[
k
]
=
[
R
{
yu[k]

}
, I
{
yu[k]

}]
, (21)

where Su ∈ CK×2×M is the input of the u-th user and Su

[
k
]

is the K-th layer of the input. R (·) and I (·) denote the real
and imaginary parts of a complex number, respectively.
2) CNN-based Feature Extraction Module: In this module,

LC convolutional layers are employed to extract hidden fea-
tures in the input image as well as to explore the connections
between different layers of the image, which is shown in
Fig. 6. Each convolutional layer is followed by a ReLU layer
and a BatchNorm layer, whose roles are to provide nonlinear
fitting capability and speed up convergence, respectively. The
module ends with a flattening layer, which is responsible for
flattening the extracted feature matrices of multiple layers into
the vector v0

u. Thanks to the fact that the number of layers of
the convolutional kernel is the same as that of the input image,
the convolutional network can extract features from each
layer of the image simultaneously, which makes it possible
to explore the correlation between subcarriers. Note that the
output {Su}Uu=1 from the preprocessing module is processed
by U same CNN modules simultaneously, generating feature
vectors

{
v0
u

}U
u=1

which are then fed to the GNN module.
3) GNN-based Feature Updating Module: After obtaining

the feature vectors extracted by the CNN module from each
user, we construct them into a graph-based structure, which is
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Fig. 6: Architecture of the CNN module included in the proposed NMBEnet.

Fig. 7: Architecture of the each GNN layer included in
the proposed NMBEnet.

shown in Fig. 5. In the constructed graph, each point represents
a user and each user is characterised by its feature vector.
Due to the similarity of wireless propagation conditions among
users, channels between any two users are correlated. Hence, it
is assumed that any two users are connected to each other, i.e.,
there are edges between any two nodes, where the edge means
that two nodes are correlated. Based on the constructed graph,
we employ LG GNN layers to update the feature vector of each
user by exploring the correlation between users. The complete
structure of each GNN layer is shown in Fig. 7. The main
part of each GNN layer is a fully connected layer. However,
unlike FCNNs, GNNs add “combination” and “aggregation”
structures in front of each fully connected layer, which help
the GNNs to view and take into account the feature vectors
of other users when updating the feature vector. The feature
update processing for each layer can be formulated as

vl
u = f lG

(
fcom

(
vl−1
u , fagg

({
vl−1
i

}
i∈O(u)

)))
, (22)

where vl
u represents the output vector of the l-th GNN layer

and O(u) = {1, 2, . . . , u− 1, u+ 1, . . . , U} denotes the in-
dices of other users. f lG (·) represents the mapping function of
the l-th fully connected layer. fagg (·) denotes the aggregation
function, which averages the input vectors by element. For
example, when the input is c1, c2, . . . , cn, the i-th element of
the output of fagg (c1, c1, . . . , cn) is given by

[fagg (c1, c2, . . . , cn)]i = mean ([c1]i , [c2]i , . . . , [cn]i) ,
(23)

where mean denotes the averaging operation. Additionally,
fcom (·) denotes the combination function, which splices the
two input vectors into a new vector. For example, when the
input is c1, c2, the output of fcom (c1, c1) is given by

fcom (c1, c1) = [c1; c2] . (24)

Based on the “combination” and “aggregation” structures,
the information of other users is also utilized in the updating of
the features ultimately affecting the estimation of the optimal
beam, in which the correlation between the users is explored.

4) Output Module: In this module, LF fully connected
layers and a Softmax layer are employed to further process
the updated feature vectors from the GNN module and map
them into probability vectors about the codewords.

Since near-field mmWave codewords require not only angle
search but also distance search, we design a dual network
structure which has been shown in our previous work to be
effective in estimating the optimal codeword [25]. Specifically,
we construct two NMBEnets of the same structure, called
angele NMBEnet and distance NMBEnet, both of which
contain the four modules outlined above. Based on the pilot
signals, one of the NMBEnets is trained to estimate the angle
index, and the other is used to estimate the distance index of
the optimal near-field mmWave codeword. Based on the dual-
network structure, the pilot signals are fed into each of the
two NMBEnets and two probability vectors are output, which
is given by

p̂a
u =

[
p̂a
u,1, p̂

a
u,2, · · · , p̂a

u,M

]T
,

p̂d
u =

[
p̂d
u,1, p̂

d
u,2, · · · , p̂d

u,S

]T
,

(25)

where p̂a
u,m denotes the probability that the angle index of the

optimal codeword for user u is m, p̂d
u,s denotes the probability

that the distance index of the optimal codeword for user u is
s. Then, the probability that the near-field mmWave codeword
b (ψm, rs,m) is the optimal codeword is given by

p̂(n,s)
u = p̂a

u,mp̂
d
u,s. (26)

Eventually, each user’s sub-6 GHz pilot signals are pro-
cessed by the two NMBEnet’s to be mapped into probability
vector about the codeword, which is wtitten as

p̂u =
[
p̂(1,1)
u , p̂(1,2)

u , · · · , p̂(S,M)
u

]
. (27)

C. NMBEnet-based Near-Field mmWave Beam Training
This subsection presents the entire NMBEnet-based beam

training process, primarily comprising online and offline
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phases.
For the offline training phase, the training dataset is con-

structed to train the proposed NMBEnets, where each training
data sample contains the uplink sub-6 GHz pilot signals
as inputs, as well as the angle index and distance index
of the optimal near-field mmWave codeword as labels. The
optimal near-field mmWave beams for each user, i.e. the labels
in the dataset, can be obtained by employing a traditional
exhaustive beam search scheme. Based on the constructed
training dataset, we train the two NMBEnets by employing
the cross-loss functions, which are represented as

Lossa = −
∑U

u=1

∑M
m=1p

a
u,mlog10p̂

a
u,m,

Lossd = −
∑U

u=1

∑S
s=1p

d
u,slog10p̂

d
u,s,

(28)

where pa
u,m = 1 and pd

u,s = 1 if the optimal near-field
mmWave codeword is b (ψm, rs,m), otherwise pa

u,m = 0 and
pd
u,s = 0.
Once the two NMBEnets are fully trained, they are switched

to the online estimation phase. Firstly, the users transmit time-
orthogonal sub-6 GHz pilot signals in the uplink, and then the
received signals of each user on each low-frequency subcarrier
can be obtained via (12), which is given by

Ysub =

{{
y1[k]

}K
k=1

, . . . ,
{
yU [k]

}K
k=1

}
. (29)

Then, the received pilot signals are input into the two
proposed NMBEnets, and the probability vectors about the
angle and distance are obtained through (25). After that, The
probability vector {p̂u}Uu=1 is obtained through (26) and (27),
which contains the probability of each codeword being the
optimal codeword. Based on {p̂u}Uu=1, we can obtain the
optimal near-field mmWave codeword b⋆

u = b (ψm⋆ , rs⋆,m⋆)
for the u-th user, where the optimal angle index and distance
index are given by

s⋆,m⋆ = argmax
s,m

p̂(s,m)
u . (30)

After obtaining the optimal near-field mmWave codeword
for each user {b⋆

1,b
⋆
2, . . . ,b

⋆
U}, the analog precoder of the

mmWave base station can be designed as

fRF
u = b⋆

u,FRF =
[
fRF
1 , fRF

2 , . . . , fRF
U

]
. (31)

When the analog precoder is determined, the equivalent
channel can be estimated by sending the mmWave pilot
signal uplink through the user and the digital precoder can
be obtained by the ZF based precoding scheme, which is
described in detail in [34] and [35].

IV. SIMULATION RESULTS

In this section, the performance of our proposed NMBEnet-
based near-field mmWave beam training scheme using infor-
mation from the sub-6 GHz band is evaluated by performing
extensive simulation experiments in which the state-of-the-art
software called WI is adopted.

A. System Setup

The WI software employs ray tracing, a mathematical
technique that models signal paths from transmitter to receiver
as rays, accounting for interactions with surrounding surfaces.
Consequently, the channel data produced by the software

TABLE I: SYSTEM PARAMETERS

System Parameters sub-6 GHz mmWave
Center frequency f c, fc 5.5 GHz 30 GHz
Subcarrier number K, K 32 128
Bandwidth W , W 10 MHz 10 MHz
Antenna number M , M 32 256
Transmit power P ul, Pdl -10 dBm 2 dBm
Nosie power σ2

ul, σ
2
dl -81 dBm -81 dBm

Fig. 8: Top view of the “MIMO Example” scenario [42]

encapsulates details of the wireless propagation environment.
Utilizing WI simulation software enhances the assessment of
our proposed beam training scheme’s performance. Specifi-
cally, the “MIMO Example” scenario that is included in the
WI software is adopted and shown in Fig. 8 and Fig. 9, where
the mmWave BS and the sub-6 GHz base station are co-located
at spot “A” and each red spot represents a user. Furthermore,
unless otherwise stated, the parameters of the mmWave system
and the sub-6 GHz system are shown in Table I. Based on the
system parameters in Table I, we set the number of sampling
distances and the number of sampling angles in the near-field
mmWave codebook N to S = 5 and M = 256, respectively.
Thus, MS = 1280 is the total codeword count in the near-field
mmWave codebook.

Furthermore, the structure as well as the parameters of our
proposed NMBEnet are shown in Table II, where Ci, Co

and Ck denote the number of input channels, the number of
output channels and the size of the convolutional kernel in the
convolutional layer, respectively. Fi and F0 denote the input
dimension and the output dimension in the fully-connected
layer, respectively. In the training process, the Adam optimizer
is employed. We generate a dataset of 20,000 samples for
training, with 95% used for training and 5% for validation.
Training employ a learning rate of 0.006, with a decay by half
after two epochs without significant accuracy improvement.
The training duration spans 50 epochs, with a batch size of
800 per epoch.

B. Metrics and Baselines

Three metrics are adopted to evaluate our proposed beam
training scheme and baseline schemes.

1) The sum of downlink rate on average per subcarrier is
given by

Rsum =
(∑U

u=1

∑K
k=1Ru [k]

)
/K. (32)

2) The effective sum rate is given by

Reff =

(
1− Tp

Tt

)
Rsum, (33)
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TABLE II: NMBEnet PARAMETERS

Module Network Layer Structures Nimbers of parameters

Feature extraction module
Convolution Ci = 32, C0 = 64, Ck = {1, 3}, ReLU, BatchNorm 6.14× 103

Convolution Ci = 64, C0 = 256, Ck = {1, 3}, ReLU, BatchNorm 4.91× 104

Flatten

Feature updating modul FC Combination, Aggregation, Fi = 2304, Fo = 512, ReLU, BatchNorm 1.17× 106

FC Combination, Aggregation, Fi = 512, Fo = 512, ReLU, BatchNorm 2.62× 105

Output module FC Fi = 512, Fo = 128, ReLU, BatchNorm 6.55× 104

FC Fi = 128, Fo = 5/256, Softmax 640 / 3.27× 104

Fig. 9: Flat display of the “MIMO Example” scenario
[42]

where Tt represents the overall duration of a communication
session, while Tp specifically denotes the time allocated for
transmitting pilot signals during this session. Conventionally,
Tp is computed as the product of the number of uplink pilot
symbols and the time required for transmitting each individual
pilot symbol. In our simulations, we assume a transmission
time of 0.1 ms per pilot symbol (or time slot) and set Tt to 0.2
µs. The effective sum rate encompasses both the sum rate and
the pilot overheads, underscoring the importance of achieving
a high sum rate relative to pilot overhead for desirable overall
performance [44].

3) The estimation accuracy of the neural networks Acc is
given by

Acc =
Kr

K
. (34)

In equation (30), (s⋆,m⋆) represents the index of the codeword
with the highest probability in p̂u. If this index also corre-
sponds to the optimal near-field codeword of user k, then user
k is accurately estimated by the neural network; otherwise, the
estimation is inaccurate. Kr signifies the count of accurately
estimated users by the neural network.

We compare the proposed NMBEnet-based near-field
mmWave beam training scheme with three existing prominent
beam training schemes.

1) Baseline 1: The exhaustive search scheme is adopted
as Baseline 1, which requires to test all near-field mmWave
codewords. The exhaustive search scheme requires the most
pilot overhead but yields the best performance, so it can be
used as the upper bound on the performance of beam training
[44].

2) Baseline 2 : The deep neural network model based on
the FCNN structure proposed in [20], which utilizes sub-6
GHz channel information to predict optimal mmWave beam.

3) Baseline 3: The sub-6 GHz feature extraction model
based on the CNN structure proposed in [20], which utilizes
sub-6 GHz channel information to predict optimal mmWave

Fig. 10: Loss v.s. Training epoch

Fig. 11: Accuracy v.s. Training epoch

beam.

C. Simulation Results

Fig. 10 and Fig. 11 show the variation of loss and accuracy
with epoch during the training process of the two NMBEnets,
respectively. Curves labelled with “Train” indicate the per-
formance of NMBEnet on the training dataset, while curves
labelled with “Val” indicate the performance of NMBEnet on
the validation dataset. As can be seen in Fig. 10, when the
training rounds reach about 15, the loss functions tend to level
off and the loss functions on the training dataset gradually
approach that based on the validation data. At the same time,
the accuracy functions reach their peaks and tend to level
off. Fig. 10 and Fig. 11 illustrate that the hyperparameters
we set during training, such as learning rate, batch size, etc.,
are suitable, which allow the angle NMBEnet and the distance
NMBEnet to be adequately trained, avoiding both overfitting
and underfitting.

In Fig. 12, we investigate the impact of uplink user transmit
power on the accuracy of our proposed scheme and the three
baseline schemes. The curve with “angle” in the label and
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Fig. 12: Estimation accuracy v.s. uplink user transmit
power.

Fig. 13: Estimation accuracy v.s. the number of sub-6
GHz BS antennas.

Fig. 14: Sum rate v.s. the uplink user transmit power. Fig. 15: Sum rate v.s. the downlink mmWave BS
transmit power.

the curve with “distance” in the label indicate the estimation
accuracy of angle NMBEnet and distance NMBEnet, respec-
tively. Then, the final estimation accuracy of our proposed
dual NMBEnet-based beam training scheme is indicated by
the curve labelled with “overall”. It can be seen that the
estimation accuracies of both the proposed distance NMBEnet
and angle NMBEnet increase with the uplink transmit power,
which leads to the increase of the overall estimation accuracy.
In addition, the estimation accuracy of angle NMBEnet is
generally lower than that of distance NMBEnet, because the
number of angle indices is much larger than that of distance
indices. First, compared with the Baseline 2 and Baseline 3
schemes that are also based on deep learning, our proposed
scheme surpasses both Baseline 2 and Baseline 3 schemes
in estimating the optimal codeword across all uplink user
transmission powers. This is attributed to the advantages of our
proposed novel NMBEnet in exploiting inter-subcarrier and
inter-user correlations. Note that the CNN and FCNN adopted
in Baseline 2 and 3 are generally considered to be excellent
mapping networks, but struggle to cope with beam training in
OFDM multiuser scenarios. Secondly, our proposed scheme
can approximate Baseline 1 in terms of accuracy, especially

when P ul is larger than -12 dBm. It is to be noted that Baseline
1 based on exhaustive search is generally considered to be the
best beam training scheme.

In Fig. 13, the impact of the number of sub-6 GHz BS’s
antennas on various beam training schemes is investigated.
Again, it can be seen from Fig. 4 that our proposed scheme
outperforms Baseline 2 and the Baseline 3 under any number
of antennas. As the number of sub-6 GHz BS’s antennas in-
creases, more information about the sub-6 GHz band becomes
available, which contributes to the estimation of the optimal
near-field mmWave codeword for the proposed scheme and
Baselines 2, 3. Hence, it can be seen from Fig. 13 that the
accuracy of both the proposed scheme and Baselines 2, and
3 increases with the number of antennas. However, Baseline
1 is not affected by the number of sub-6 GHz BS’s antennas,
because Baseline 1 does not utilize the information about the
sub-6 GHz band.

Taking Fig. 12 and Fig. 13 together, it can be seen that the
proposed NMBEnet-based near-field mmWave beam training
scheme can perform the dual mapping of far-field to near-
field and low-frequency to high-frequency as well. It can also
be seen that both angle NMBEnet and distance NMBEnet
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Fig. 16: Effective sum rate of different schemes as
function of the uplink user transmit power.

Fig. 17: Impact of sub-6 GHz BS’s location on
accuracy for various schemes.

exhibit high estimation accuracy for each system parameter,
which demonstrates that they can effectively extract the angle
information and distance information of the optimal codeword
from the pilot signals, respectively. In particular, it is important
to note that the input to the neural network employed in
our proposed scheme is the uplink pilot signals that can be
obtained directly, rather than the system parameters or channel
state information that needs to be estimated. The excellent
estimation accuracy of our proposed scheme demonstrates
that the uplink pilot signals can be directly used to estimate
the optimal near-field mmWave codewords and proves the
feasibility of the proposed end-to-end architecture.

In Fig. 14, we further investigate the impact of uplink user
transmit power on the sum rate. The total transmit power of
the downlink mmWave base station is set to 20 dBm, i.e.,
KPdl = 20 dBm. As depicted in Fig. 14, our proposed scheme
closely approximates the performance of Baseline 1, which
employs exhaustive search, while surpassing Baselines 2 and
3, both of which are deep learning-based algorithms, in terms
of downlink sum rate. Something similar is also seen in Fig.
15, which depicts the effect of downlink mmWave base station
transmit power on the downlink sum rates. The exceptional
estimation accuracy of our proposed scheme primarily con-
tributes to its outstanding performance, yielding substantial
gains in downlink beamforming and ultimately facilitating a
high sum rate.

While Baseline 1, utilizing exhaustive search, outperforms
the proposed scheme in terms of data rate, it necessitates
considerable pilot overheads. The extensive pilot overheads
would lead to insufficient time for transmitting data during
a communication session. The superiority of our proposed
scheme is difficult to distinguish on the basis of sum rate
metrics alone. To this end, we investigate the impact of the
uplink transmit power on the effective rate, which is shown
in Fig. 16. It can be seen from Fig. 16 that Baseline 1
performs much worse than our proposed scheme due to the
penalty it receives for excessive overhead. However, there is
no performance degradation in our proposed scheme and the
Baselines 2, and 3 since they only use information outside the

mmWave band.
In Fig. 17, we investigate the impact of different locations

of sub-6 GHz BS on the estimation accuracy of the proposed
scheme. Indeed, some of the existing studies rely on the spatial
similarity between sub-6 GHz BS and mmWave BS when
they are located at the same position [16], [23]. However,
it can be seen in Fig. 17 that our proposed NMBEnet-based
algorithm maintains high estimation accuracy at each sub-6
GHz BS’s location. This shows that our proposed scheme does
not depend on the spatial similarity between the BSs of the
two frequency bands, which makes the proposed scheme more
feasible.

V. CONCLUSIONS

In this paper, we revealed and demonstrated the similarity
between far-field sub-6 GHz channels and near-field mmWave
channels. Motivated by this, we proposed a deep learning-
based near-field mmWave beam training scheme which ex-
ploits the information of the sub-6 GHz band to reduce the
pilot overheads. In the proposed beam training scheme, we em-
ployed the uplink sub-6 GHz guide signal to directly estimate
the optimal near-field mmWave codeword. Such end-to-end
design can prevent complex channel estimation. Furthermore,
we proposed a novel neural network structure called NMBEnet
to perform the mapping from far-field sub-6 GHz signals to op-
timal near-field mmWave codeword. The proposed NMBEnet
mainly consist of a CNN module and a GNN module, which
can improve the accuracy of beam training by leveraging inter-
subcarrier correlation and inter-user correlation, respectively.
The simulation results demonstrated that the proposed scheme
can obtain higher beam training accuracy than the existing
deep learning-based beam training schemes.
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[17] A. Ali, N. González-Prelcic, and R. W. Heath, “Millimeter wave Beam-
Selection using Out-of-Band spatial information,” IEEE Trans. Wireless
Commun., vol. 17, no. 2, pp. 1038–1052, Feb. 2018.

[18] Z. Li, C. Zhang, I.-T. Lu, and X. Jia, “Hybrid precoding using Out-
of-Band spatial information for Multi-User Multi-RF-Chain millimeter
wave systems,” IEEE Access, vol. 8, pp. 50 872–50 883, Mar. 2020.
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