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Abstract—In this work, we aim to improve transparency and
efficacy in human-robot collaboration by developing machine
teaching algorithms suitable for groups with varied learning
capabilities. While previous approaches focused on tailored
approaches for teaching individuals, our method teaches teams
with various compositions of diverse learners using team belief
representations, to address personalization challenges within
groups. We investigate various group teaching strategies, such
as focusing on individual beliefs or the group’s collective beliefs,
and assess their impact on learning robot policies for differ-
ent team compositions. Our findings reveal that team belief
strategies yield less variation in learning duration and better
accommodate diverse teams compared to individual belief strate-
gies, suggesting their suitability in mixed-proficiency settings
with limited resources. Conversely, individual belief strategies
provide a more uniform knowledge level, particularly effective
for homogeneously inexperienced groups. Our study indicates
that the teaching strategy’s efficacy is significantly influenced
by team composition and learner proficiency, highlighting the
importance of real-time assessment of learner proficiency and
adapting teaching approaches based on learner proficiency for
optimal teaching outcomes.

Index Terms—explainable decision-making, human-robot
teams, group machine teaching, adaptive explainability, team
modeling

I. INTRODUCTION

Robots are increasingly becoming an integral part in peo-
ple’s lives, evolving from human assistants to partners. For safe
and effective interaction in human-robot collaboration, it is
crucial for humans to understand how robots make decisions.
Explainable decision-making aims to clarify the underlying
decision-making process of the robot to human collaborators.

Explanations are found to be more useful when they are
personalized to the individual [1]–[3]. However, this requires
the robots to track the individual’s knowledge or understanding
of the system and the surroundings to develop explanations
that are better suited for them. In prior work, the human is
frequently modeled as an inverse reinforcement learner [4]
and learns a robot policy from demonstrations of its behavior
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Fig. 1. The figure illustrates the complexity of group machine teaching,
highlighting the disparity in understanding from common examples among
diverse group members. Personalizing examples to a group is challenging
due to varied individual beliefs and learning abilities. Our approach utilizes
estimations of individual and collective team beliefs to tailor demonstrations
for effective communication of the robot’s policy to the entire group.

[5]. While traditional machine teaching [6] aims to generate
informative demonstrations for individual human learners,
real-world scenarios often involve the robot working with di-
verse groups, introducing the need for teaching methodologies
that accommodate groups with varying learning abilities, and
experiences. This work investigates approaches for robots to
effectively communicate their decision-making to groups of
human learners through demonstrations.

Teaching a group as a whole instead of individually is
preferable, especially with limited time and resources. Con-
sider, for instance, an ad hoc emergency response team tasked
with building shelters after an earthquake. They are given a
robot that can bring requested items. The robot has limited
maneuverability over rubble, a limited range, and may prefer
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to recharge when possible. These capabilities and preferences
(i.e. its decision-making) must be taught to the team quickly
because of the time-sensitive situation. A challenge in group
teaching is accommodating individuals with varied learning
abilities through a common set of demonstrations. Prior work
has shown that it is possible to teach a heterogeneous group
of learners using common examples [7], albeit for simple
concepts. While groups can also learn from each other through
communication and information sharing, we focus only on
learning from common examples. Also, group heterogeneity
could imply variations in prior knowledge, but we assume
similar prior knowledge, focusing solely on differences in the
learning ability among the group.

In a classroom, a teacher could personalize the lessons to the
class based on various objectives — focus on naive learners
who need more support, or on proficient learners, or consider
the class as a whole using class average or similar measures
— and adapt their teaching accordingly. Yeo et al. [8] explored
categorizing learners based on learning rates and provided
personalized teaching to each category. Melo and Lopes [9],
on the other hand, generated personalized demonstrations for
each learner, but at a high teaching cost. An active teacher that
personalizes and adapts to the learner can improve learning
[10], [11]. But a challenge in groups is identifying to whom
the personalization should cater.

Drawing inspiration from pedagogical literature on teaching
classrooms [12], our key insight is that machine teaching
can be tailored to a group of learners by considering the
group as a whole and generating demonstrations based on
the aggregation of the group’s understanding. In this work,
we developed team belief models that facilitate group teaching
focusing on the entire team. We utilized a closed-loop teaching
framework that effectively incorporates feedback from the
robot teacher to aid human learners. We adapted a human
belief model to generate simulated human learners of vary-
ing learning abilities. We conducted a simulation study to
explore how different group teaching strategies affect the
group’s learning and how team composition of learners with
varying learning abilities — naive and proficient — moderate
group learning. Our findings suggests that teaching methods
designed for individual beliefs weren’t much affected by how
knowledgeable team members were. However, these methods
did affect how long team members interacted, depending on
team composition. On the other hand, teaching methods that
focused on team beliefs helped increase knowledge, especially
in groups with more proficient learners.

II. BACKGROUND

Machine teaching for policies: We model the environment
as a Markov Decision Process (MDP), given by the tuple
⟨S,A, T,R, γ,S′⟩, representing the state and action spaces,
transition function, reward function, discount factor, and initial
state distribution respectively. An optimal trajectory ξ∗ is
a sequence of (si, a, s

′
i) tuples obtained by following the

robot’s optimal policy π∗. Similar to prior work [13], R =
w∗⊤ϕ(s, a, s′) is represented as a weighted linear combination

of reward features. We define a group of MDPs that share
R,A, and γ but differ in Ti, Si, and S0

i , as a domain. Sharing
the same R ensures that all demonstrations within the domain
support inference over a common w∗. We use the MDP
formulation to model an item delivery task where a robot
is tasked with delivering an item in an environment that has
rubble, blockages, and a battery recharge station (see Fig.1).

We adapt the machine teaching framework for policies [14]
to select a set of demonstrations D of size n that maximizes
the similarity ρ between optimal policy π∗ and the policy π̂
recovered using a computational model M (e.g., IRL) on D,
argmaxD⊂Ξ ρ(π̂(D,M), π∗) s.t. |D| = n, where Ξ is
the set of all demonstrations of π∗ in a domain. Once w∗

is approximated through IRL, this approach assumes that the
learner can deduce π∗ by planning on the underlying MDP.
Thus, the objective reduces to selecting demonstrations that are
informative in conveying w∗, which can be measured using
behavior equivalence classes.

Behavior equivalence class: The behavioral equivalence
class (BEC) of a policy π is the set of reward functions under
which π is optimal. For a reward function that is a weighted
linear combination of features, the BEC of a demonstration
ξ of π is the intersection of half-spaces [15] formed by the
exact IRL equation

BEC(ξ|π) := w⊤
(
µ(s,a)
π − µ(s,b)

π

)
≥ 0, ∀(s, a) ∈ ξ, b ∈ A. (1)

where µ
(s,a)
π = E [

∑∞
t=0 γ

tϕ (st) | π, s0 = s, a0 = a] is the
vector of reward feature counts accrued from taking action a in
s, then following π after. Any demonstration can be converted
into a set of constraints on w using (1), with each constraint
being a knowledge component (KC) [16] that captures a facet
of the reward function (e.g., tradeoffs between the underlying
reward features). Consider the item delivery domain, which
has binary reward features ϕ = [traversed rubble, battery
recharged, action taken]. In practice, we require ||w∗||2 = 1
to bypass both the scale invariance of IRL and the degenerate
all-zero reward function. If no prior knowledge is assumed, the
potential belief space on reward weights would uniformly span
the surface of the n−1 sphere (where n is number of domain
features) due to the L2 norm constraint on w∗. We instead
assume that learners begin with a prior that action weight is
negative (e.g. favoring shortest path, see Fig. 2).

Team modeling: A common way to represent a team
characteristic such as team knowledge is by aggregating the
knowledge of individuals. Team characteristics are normally
represented as average, median, sum, range, minimum, or
maximum values of the characteristic of individuals [17]. More
recently, team knowledge is represented using a latent collec-
tive intelligence parameter that is highly correlated with team
process and performance [18]. However, operationalizing such
a latent parameter is challenging and we thus represent team
belief through observable behaviors by aggregating individual
beliefs. We focus on two aggregated representations of team
belief — common belief and joint belief. We define common
team belief as the belief that all team members have. It can be



visualized as the intersection of individual beliefs. We define
joint team belief as the knowledge that at least one individual
in the team has, visualized as the union of individual beliefs
(see Fig. 3 (b) for visual representations of these).

III. METHODS

In this section, we discuss an approach using particle filters
(PF) for modeling individual and team beliefs about the robot’s
decision-making, i.e. its reward. We use these different beliefs
to select corresponding demonstrations that are shown to the
entire team. [11] originally proposed a PF-based approach to
model individual human belief that supports iterative Bayesian
updates and sampling for generating informative and tailored
demonstrations using counterfactual reasoning. We extend this
approach to group teaching to model aggregated team beliefs
in addition to individual beliefs. We use this model in a
closed-loop teaching framework leveraging insights from the
education literature and adaptively generating demonstrations
based on individual and aggregated team beliefs. In addition,
after seeing demonstrations, we provide tests, which collect
responses on expected optimal robot trajectory in an unseen
enrivonment to evaluate their understanding.

A. Particle filter model of human learner belief

Humans generally perform approximate inference from
demonstrations [5] and thus we model the human learner’s
belief about the robot’s reward weights using a particle filter,
where each particle represents a potential belief about the
reward weights [11] and the particle weight represents the
belief probability. The particle filter follows a Bayesian update
process that uses constraints corresponding to the expected
information gain for demonstrations and actual information
gain for tests. This formulation enables iterative updates on
learner belief from demonstrations and tests.

Initial belief space Updated belief space

Consistent

uniform
von-
Mises 
Fisher

Demos

pdf for belief 
update

Fig. 2. Update process of a learner’s belief represented by a particle filter. A
cross-section of the custom probability density function (pdf) used to update
particle weights is shown. Particles consistent with the demonstrated behavior
receive higher weights via a uniform distribution (yellow ring), while those on
the inconsistent side are weighted less, decreasing exponentially with distance
from the constraint, via a von-Mises Fisher distribution. The updated belief
distribution is shown on the right.

From demonstrations, constraints on reward weights can be
obtained using Eq. 1, by comparing the optimal demonstration
with possible counterfactuals. Similarly, the correct test re-
sponse can be compared with the incorrect learner response to

P1 P2

Common Joint

Fig. 3. This figure illustrates an example set of test responses for a team with
two individuals, P1 and P2. The test responses are transformed to constraints.
The yellow partial spheres show the regions that are consistent with their test
response, i.e. agree with the constraint. When their responses are different,
the constraints space of their common belief of their tests is their intersection
of individual beliefs and that of their joint belief is the union of individual
beliefs as depicted. These constraints spaces are used to update the weights
of the PF distributions.

get these constraints using Eq. 1. Each constraint ci generated
from the demonstrations and test responses is a half-space
constraint, meaning, one side is consistent with the demo or
test response and the other is not. Each constraint ci can be
converted to a probability distribution p(xi|ci) that is used to
update the particle weights wi of particles xi.

We use the custom probability distribution (refer Fig. 2)
proposed in [11], designed such that any particle on the
consistent side of the constraint (yellow region in Fig. 2)
is equally valid and could have generated the demonstration
(represented by the uniform distribution) and the particles
on the inconsistent side are exponentially less likely to have
generated the demonstration (represented by the von Mises-
Fisher distribution). Fig. 2 shows how the initial learner
belief for the delivery robot’s reward gets updated using this
custom pdf after seeing the demonstrations. The belief updates
after demonstrations and feedback are similar to the predict
stage and the update based on the learner’s test response
is similar to the correct stage of Bayesian estimation. The
robot teacher uses the learner belief space to sample possible
counterfactuals for generating learner-centric demonstrations.
To handle potential sample degeneracy in particle filtering, we
add a Gaussian noise η when updating the particles [19]. We
also add a small Gaussian noise ν while updating the particles
after test to account for the teacher’s estimation noise. For
more details on the particle filter model refer [11].

B. Team belief modeling

A demonstration’s ability to reveal the underlying reward
function via IRL is highly dependent on the counterfactuals
considered. Thus the learner’s belief space from which the
counterfactuals are sampled critically influences the demon-
strations generated. For groups, we model team belief as
aggregations of individual member beliefs [17], [20]. The main
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Fig. 4. Interactions and corresponding PF belief updates for a team with three people for the first interaction period. The red particle represents the true
reward weight. An interaction period consists of one set of demos related to a KC, followed by a set of tests, and then feedback (corrective or confirmatory).
After the demos, all individual and team beliefs are updated based on expected information gain from demos. The distributions are similar since all individuals
are expected to learn equally. After the demos, they are provided with test(s) to evaluate their understanding and their responses are used directly for updating
individual beliefs and aggregated to update team beliefs. In this case, P1 and P3 got the response correctly and P2 got it incorrect. The difference in the
constraint spaces and the updated distributions after tests can be observed for the individual and team beliefs. Confirmatory or corrective feedback is given
after the tests and they are expected to learn from either feedback. The distributions are updated to reflect this learning from feedback.

difference in modeling team beliefs is how the particles are
updated, specifically how individual constraints are aggregated
and used for updating the particle weights.

We envision a group teaching scenario akin to classroom
teaching and assume that each team member will have the
same kind of interactions, i.e. see the same demonstrations
and are provided the same tests. Thus the constraints from the
demonstrations will be similar for all individuals. However,
let us assume that the team with m members had different
responses to a set of n tests, and their constraints are denoted
as C1 = {c11, c21, ...cn1}, C2 = {c12, c22, ..., cn2}, and Cm =
{c1m, c2m, ...cnm}. The update probability for each member is
given by, Pi =

∏n
j=1 p(x

j
i |c

j
i ).

We model common team belief by considering the con-
straints of all members and representing it as Cck =
{c11, c12, ..., c1m, c21, c

2
2, ..., c

2
m, ..., cn1 , c

n
2 , ..., c

n
m}. We assume in-

dividuals to be independent. Consequently, the particle filter
representing common team belief is updated based on the
probability of all aggregated constraints across all tests in the
set for all the individuals, given by, P =

∏m
i=1

∏n
j=1 p(x

j
i |c

j
i ).

This aligns with our definition of common belief as the belief
that everyone on the team has.

Joint belief, on the other hand, is modeled by consider-
ing the set of constraints for all individuals for each test
separately and is represented as a set of disjointed subsets,
Cjk = {{c11, c12, ..., c1m}, {c21, c22, ..., c2m}, ..., {cn1 , cn2 , ..., cnm}},
where each subset represents the constraints of the individu-
als. Update probabilities are calculated individually for each
team member and the particles are updated based on the
maximum probability of any of the individuals, given by,
P = argmaxi∈[1,2,...,m]

∏n
j=1 p(x

j
i |c

j
i ). This corresponds to

our definition of joint belief as the belief that at least one
team member has.

Feedback is an effective learning mechanism [21]. Fig.
4 shows the effects of the interactions — demonstrations,
tests, and feedback — the team has during one interaction
period. An interaction period aims to teach a specific KC,
for example, the trade-off between mud cost and step cost
for the delivery robot. Each interaction set consists of a
set of demonstrations, a set of tests, and a set of feedback
(corrective or confirmatory feedback based on whether the
response was incorrect or correct). Confirmatory feedback
reinforces the learner’s knowledge while corrective feedback
informs them their learning is incorrect and also provides the
correct response.

We can see in Fig. 4 that for individuals P1 and P3 who
responded correctly, the belief distribution gets more concen-
trated within the area of the constraints. This gets further
strengthened by the confirmatory feedback they receive. On the
other hand, individual P2 responded incorrectly indicating they
may not have learned the KC. Thus their belief distribution
moves away from the constraints region of the KC. However,
getting corrective feedback brings the distribution closer to
the constraints region. The common team belief moves a little
further away because of the incorrect response of P2 but is still
mostly close to the correct reward and the constraints region.

C. Teaching curriculum development

We employ the methods discussed in [14] to generate
demonstrations and tests for teaching the robot’s policy. The
approach primarily considers likely learner counterfactuals by
estimating the learner’s belief about robot policy (i.e. reward
weights) and sampling n possible counterfactuals from this
belief space. For every possible robot demonstration in a
domain, and for each reward weight, we simulate what the
“human” counterfactual to each demonstration would be if



the human had this reward weight in mind and generate the
corresponding constraints using Eq. 1 and consolidate all these
constraints. We select the demonstration from this set of con-
straints that maximizes knowledge gain before and after seeing
the demonstration. We use the consolidated set of constraints
to identify test environments that examine the concept taught
in the demos (refer [14] for additional information).

D. Simulated learner model

Learners have different cognitive capabilities and under-
stand at different levels the same information provided. Fur-
thermore, the teaching process is likely to be an adaptive and
varied process, catered to the specific learner. Thus our model
of the learner should be able to encompass a wide variety
of learner abilities in different teaching contexts. We again
employ a particle filter-based approach to simulate a learner’s
learning dynamics and belief updates. Similar to the teacher’s
model, each particle represents a potential belief about the
robot’s reward function, but they are the learner’s self-belief
as opposed to the teacher’s estimated learner belief. There
are two key differences between the teacher and the learner
models — first, the learner model updates after seeing the
demonstration and feedback only and not after tests since
we expect that learners will get information only from the
demonstrations and feedback and not from just knowing if
they got test responses correct/incorrect [21] and second, the
learner model does not have any estimation Gaussian noise
(ν) and only the resampling noise (η).

Each individual has a different ability to understand the
information conveyed through visual demonstrations. We
parametrize this ability as β that can vary for each individual.
It is operationalized as the probability mass on the uniform
(consistent) side of the custom distribution of the underlying
constraint (see Fig. 2). It modifies the information gain in
the demonstrations (and feedback) used for particle updates,
IGpf = f(β, IGdemo). A higher β implies that learners
assign more weights to particles on the consistent side of
the constraints, indicating certainty over particles that likely
resulted in the demonstrations.

We initialize, β = β0, as an individual’s ability to learn
from demonstrations. People get better at learning a concept
when they get feedback and are repeatedly exposed to the
concept [21]. To incorporate the effects of feedback, we define
the feedback dynamics of β as,

βt = βt−1 +∆βt−1, with, (2a)

∆βt−1 =

{
δ βc if test at t− 1 is correct
δ βi if test at time t− 1 is incorrect

(2b)

where βc is change in β due to confirmatory feedback,
when the learner’s test response is correct and βi is due
to corrective feedback, when the learner’s test response is
incorrect. Corrective and confirmatory feedback have different
effects on learning [21]. Fazio et al. [21] found that feedback
on incorrect responses led to more learning than feedback on
correct responses, particularly in more difficult tasks. Thus we

define βi > βc. βt resets to β0, for each new concept as we
assume the concepts to be independent. Thus improvement in
β due to feedback is contained within the specific concept or
KC.

IV. SIMULATION STUDY

We ran a simulation study to evaluate the effects of different
teaching strategies on group learning. The strategies differed
in the belief space they utilized for sampling possible counter-
factuals to generate informative demonstrations. We used N=8
counterfactuals in this study. We also examined the effects of
the various team compositions of diverse group members on
group learning.

A. Metrics

We measure the teaching-learning performance using two
measures — (1) the number of interaction periods (Ni) taken
to learn the policy, and (2) the average team knowledge level at
the end of learning. For each individual, their knowledge level
is defined as the proportion of belief space that lies within the
BEC region of the robot’s policy at the end of the learning
session. It is given by pBEC =

∑m
j=1 pi, ∀ i ∈ ϵBEC , where

j is the individual, ϵBEC is the BEC region and i indicates
an individual particle and pi its normalized weight. The team
knowledge level, pBEC is the average knowledge level of all
individuals.

B. Study conditions

The primary condition that we examined was the teaching
strategy employed to generate the demonstrations and tests.
We considered four strategies that samples counterfactuals
from four different belief spaces for each interaction period
— individual low, the belief space is of the individual with
the lowest knowledge about the robot’s reward, individual
high, the belief space is of the individual with the highest
knowledge about the robot’s reward, common, the belief space
is the common team belief, and joint, where the belief space
is the joint team belief. The individual, common and joint
belief spaces are visualized in Fig. 3. The bigger the belief
space, the more diverse the sampled counterfactuals would
be. The individuals with lowest or highest knowledge are
identified at the end of each interaction period and their
corresponding belief spaces are used for the next interaction
period corresponding to the strategy employed. We compared
these different strategies with a baseline strategy of separately
teaching each individual sequentially.

We also examined the influence of team composition on
the group’s learning. Particularly, we considered two cate-
gories of learners, novice and proficient. Novice learners are
considered to be beginners and have a low ability to learn
from demonstrations, given by a low β0. On the other hand,
proficient learners have a higher β0. For the simulation study,
we estimate the distribution of the learner parameters for both
the types of learners (see Table I). We considered four team
compositions, all novice, majority novice, majority proficient,
and all proficient.



We expect that group teaching strategies based on group
belief, especially the ones based on team belief, target the
group as a whole and hence would be able to cater to the entire
group resulting in faster group teaching. However, individual
teaching strategies, specifically “individual low” is likely to
result in higher knowledge as it focuses on the learners who
have the least knowledge. So demonstrations catered for them
will also improve the knowledge of others. We also expect
that teams with more ‘Proficient’ learners will learn quicker
than other teams. We expect that the baseline strategy, which
teaches each learner separately would take more interactions,
would result in better learning because it personally focuses
on each learner. Thus we expect, H1: Group-belief based
strategies to have fewer interactions than individual-belief
based strategies. H2: Individual low strategy to have the
highest knowledge level apart from baseline because of its
personalization. H3: Teams with more high learners to have
both learn faster and high knowledge levels.

C. Study setup

We conducted the study for a team with 3 learners. We
ran a 5 × 4 study for the two conditions of teaching strategy
and team composition including the baseline strategy. For each
combination, we collected 15 ‘simulated’ teams’ data totaling
to 300 teams.

• Teaching strategy: baseline, individual low, individual
high, common, and joint

• Team composition: [N, N, N], [N, N, P], [N, P, P], and
[P, P, P], where ‘N’ denotes Novice and ‘P’ denotes
Proficient learners.

The learning parameters for each type of learner was
estimated (see Table I) from human learner data collected from
a user study discussed in [11]. We performed a grid search of
the parameters by simulating the teaching interactions from
the dataset for all possible grid combinations and choosing
the runs that have performance error with pBEC < ϵ

Learner type β0 (µ , σ) δβc (σ) δβi (σ)
Novice 0.703 (0.034) 0.033 0.056

Proficient 0.809 (0.025) 0.022 0.052
TABLE I

LEARNER PARAMETERS ESTIMATED FROM HUMAN LEARNER DATA.

The demonstrations are selected based on the KCs and
the teaching strategy (which individual/team belief to adapt).
The tests are similarly identified to evaluate the constraints
conveyed by the demonstrations. For the conditions based on
individual beliefs, the individuals with the lowest and highest
knowledge are identified at the end of each interaction period,
where an interaction period consists of a set of demonstrations,
tests, and feedback related to a specific KC. The teaching
moves to the next KC only after all individuals in the team
learn the current KC. If the team does not learn the KC, the
interaction loop continues for the same KC and the demonstra-
tions are generated based on the updated individual or group
belief. For aggregated group belief, for example, common
belief, it is possible that the responses of teammates are such

that there is no common intersecting constraint region. In
such cases, we exclude the conflicting individual(s) constraint
spaces and consider the plausible intersecting region formed
by most team members.

We developed a closed-loop teaching framework to sequen-
tially generate demonstrations, tests, and feedback to teach
and evaluate the team’s understanding of the robot policy.
Utilzing scaffolding techniques discussed in [14], we select
and sequentially introduce knowledge components (KCs). KCs
are broadly defined in the education literature as “a concept,
principle, fact, or skill inferred from performance on a set
of related tasks” [16]. In our case, KCs represent specific
characteristics or distinct constraints of the reward features.
For example, the KCs could incrementally teach the bounds
on the cost of traveling through rubble given the step cost,
followed by bounds on the reward for recharging given the
step cost, and then trade-offs between rubble and battery.

After the demonstrations, the group members are given
test(s) related to the current KC, to evaluate their understand-
ing. Ideally, human learners will be provided a test environ-
ment (see Fig. 4) and asked to map the trajectory they believe
the robot will take. For our simulation study, we sample a
reward weight based on the individual’s PF distribution and
use that as the response to the test environment. The more
proportion of particles that lie within the consistent area of the
test environment, the more likely the sampled weight vector
gets the test response correct. In case they get the response
correct, a confirmatory feedback is provided and if they get
the response incorrect, a corrective feedback is provided. The
βt of the individual learners are updated according to Eq. 2b.

V. RESULTS AND DISCUSSION

Manipulation check: We wanted to ascertain the distinc-
tiveness of the demonstrations and information provided by
the various demonstration strategies. We used the surface area
formed by the constraints space (yellow region in Fig. 3) of
the demonstrations at each interaction period for comparison,
the lower the area, the higher the information conveyed by
the demonstrations. Fig. 5 (a) illustrates that the constraints
area for the various demonstration strategies are significantly
different (p < 0.01). Demonstrations based on joint belief
result in the most informative demonstrations, whereas those
based on the belief of the individual with highest knowledge
result in the least informative demonstrations. This is likely
because joint belief is a union of individual beliefs, and has a
broader distribution resulting in diverse counterfactuals which
in turn generate more informative demonstrations.

Experimental conditions results: For the four group teach-
ing strategies, the average number of interactions to learn
the reward weights is Ng = 7.67(1.68). Unsurprisingly, the
baseline strategy of teaching each learner separately takes
more interactions, almost twice as much, Nb = 17.13(2.32).
However, contrary to our expectations, the baseline condition
had a lower knowledge level, kb = 0.59(0.12) than the group
conditions, kg = 0.64(0.21), though the difference is not
statistically significant.
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Fig. 5. Experimental results on the effects of demonstration strategy and team composition. (a) All group teaching strategies performed better than the
baseline strategy of teaching individuals sequentially in terms of number of interactions. No discernable difference due to strategies for number of interactions.
Expected differences in teams, teams with more proficient learners learned quicker, observed. (b) Noticeable differences in average team knowledge observed
for strategy but differences are not statistically significant. Also observed that teams with more proficient learners had higher knowledge level.
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Fig. 6. Interaction effects of demo strategy and team composition on number
of interactions and average team knowledge. Differences in variance individual
and group belief for both the metrics can be observed.

Since the baseline condition is distinctly different than
the other group teaching strategies, we performed two-way
ANOVA only on the four group teaching strategies to exam-
ine their effects on team learning (see Fig. 5 (b) and (c)).
Demonstration strategy did not significantly influence either
the number of interactions (F = 0.42, p = 0.74) or team
knowledge level (F = 1.73, p = 0.16). Team composition,
on the other hand, significantly influences both the number of
interactions (F = 4.67, p = 0.00) and team knowledge level
(F = 4.64, p = 0.00), as expected. This is not surprising as
with more proficient learners in the team, the team is likely to
learn faster and better. We also found a significant interaction
effect between demonstration strategy and team composition
for team knowledge level (F = 2.32., p = 0.02).

Fig. 6 shows the interaction trends between demonstration
strategy and team composition. While there are no signifi-
cant interaction effects on the number of interactions, some
interesting trends are observed. Individual belief strategies
have more variance in learning duration compared to group
belief strategies. Group belief strategies, particularly joint
belief strategy, is able to accommodate diverse teams and
have similar teaching durations. Group belief strategies might
therefore be more suitable in situations where the proficiencies
of the learners are unclear but still the group has to be taught
with limited teaching resources.

On the other hand, we find significant interaction effects for
team knowledge level. The interaction trends, are however, in-
teresting as there is less variance in the team’s knowledge level
for individual belief and more variation for group belief. This
could be because of the targeted nature of the individual belief
demonstrations, which adaptively samples counterfactuals for
upcoming demonstrations from individual belief spaces based
on their current knowledge level. This could result in bringing
a uniformity of knowledge in the individual belief conditions,
particularly for the ‘individual low’ condition.

To further understand the significant interaction effect we
found for team knowledge level, we perform one-way ANOVA
for the strategy condition for each team combination and
found that demonstration strategy significantly influenced (af-
ter applying Bonferroni correction) team knowledge level
for homogeneous teams [N,N,N] (p < 0.05) and [P,P,P]
(p < 0.05). Specifically, group belief strategies work well
for teams with all proficient learners whereas individual belief
strategies work well for teams with all naive learners. For
mixed teams, while we do not observe significant differences,
we observe similar trends. For teams with more proficient
learners perform better with group strategies while teams with
more naive learners perform better with individual strategies.
The robot can choose the appropriate strategy from the start if
proficiency information is available apriori but is more robust
if it starts with a strategy and then adaptively change the
strategy based on real-time information about the learners
proficiency. These nuanced results thus highlight the need to
observe and estimate learner proficiency in real-time for more
effective teaching.

VI. CONCLUSION

In this study, we aimed to enhance the transparency and
efficacy of human-robot collaboration among human groups
through explainable robot demonstrations. Our approach in-
volved developing machine teaching algorithms that cater to
teams with diverse learning abilities, employing team belief
representations aggregated from individual beliefs represented
through particle filters. This approach aimed to overcome



the personalization challenges present within heterogeneous
groups. Our findings revealed that teaching strategies tailored
to group or individual beliefs significantly benefit distinctly
different groups characterized by varying levels of learner
capabilities. Specifically, we observed that the group belief
strategy and joint belief, in particular, was advantageous
for groups composed mostly of proficient learners. Indi-
vidual strategies were better suited for groups with mostly
naive learners, though they would take more interactions. We
gained deeper insights into the dynamics of group learning,
thus laying the foundation for adaptively selecting teaching
strategies to facilitate collaborative decision-making in real-
time scenarios. However, our study has several limitations.
In particular, the simulation did not evaluate the teaching
algorithms across multiple domains, nor did it involve actual
human learners. Our study had isolated simulated learners and
does not consider the nuances of interaction within the group.
These limitations highlight the simulation-centric nature of our
investigation and suggest the need for empirical validation in
real-world settings. Moving forward, we plan to extend this
simulation study by conducting a human-subjects user study.
This future research will involve actual human learners with
diverse learning abilities to assess the efficacy of our teaching
strategies. Additionally, we aim to explore the applicability
of our methods across various domains and settings to ensure
generalizability. By addressing the interaction dynamics within
groups, we aspire to refine our teaching algorithms further,
ensuring that they are not only effective but also adaptable to
the needs of different types of learners and group composi-
tions. By continuing to explore and refine machine teaching
approaches, we anticipate contributing to the development
of robots that can seamlessly integrate into human teams,
enhancing both efficiency and understanding in collaborative
tasks.
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