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We consider steady surface waves in an infinitely deep two—dimensional ideal fluid with
potential flow, focusing on high-amplitude waves near the steepest wave with a 120°
corner at the crest. The stability of these solutions with respect to coperiodic and
subharmonic perturbations is studied, using new matrix-free numerical methods. We
provide evidence for a plethora of conjectures on the nature of the instabilities as the
steepest wave is approached, especially with regards to the self-similar recurrence of the
stability spectrum near the origin of the spectral plane.
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1. Introduction

We consider the stability of spatially periodic waves that propagate with constant
velocity without change of form, in potential flow of an ideal (incompressible and inviscid)
two-dimensional fluid of infinite depth. The study of such Wave profiles has been the
subject of much previous work, going back to (also published 1n

)). Stokes’ work was followed by numerical com utatlon of these waves by [Michell
), and existence was proved in the works of m ) and
), see also Hu (2006); [Toland (1996) for existence of the global branch of wave
profiles. The numerical study of these waves and the nature of their singularities was
continued by (Grantl (1973), [Schwartz (1974), Williams (1981), Williams (1985), [Tanveer
(1993), [Cowley et all (1999), Baker & Xid (2011) and others.

In the context of water waves, such waves are usually referred to as Stokes waves. It
was suggested bym (IM) that there exists a progressive wave of maximum height,
and that the angle at the crest of this limiting wave should be 27 /3. Rigorous proofs of
these Stokes conjectures came much later. m ) showed global existence of the
limiting Stokes wave, but did not prove that the angle at the crest is 27r/3. This result was
proved by [Amick et all (1982) and [Plotnikov (1982) (Reported in English in [Plotnikoy
(M)) independently. We refer to the Stokes wave of greatest height as the extreme wave
and to waves of near-maximal amplitude as near-extreme waves. Even with the original
Stokes conjectures resolved, the study of the graph of the wave profiles remains active,
with a number of open problems, as detailed by Dyachenko et all (2023), see also below.

The works by [Longuet-Higgins & Fox (1977, 1978) and by [Longuet-Higgins (2008) study
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the near-extreme waves using both asymptotic and numerical methods. The review by
Haziot_et_all (2022) discusses many currently active research directions.

The investigation of the stability of Stokes waves was begun in the works of
(1967), Benjamin & Feid (1967), Lighthill (1965) and Whitham (1967). Except for the
influential experimental work by [Benjamin & Feir dl%_’ﬂ) the focus of these works was
on the dynamics of small disturbances of small-amplitude periodic Stokes waves. They
unveiled the presence of the modulational or Benjamin-Feir instability with respect
to long-wave disturbances in water of sufficient depth, kh > 1.363.... Here h is the
depth of the water and k = 2x/L, with L the period of the Stokes wave. The first
rigorous results on the Benjamin-Feir instability were established by [Bridges & Mielke
(@) followed up very recently by Neuyen & Strausd (|2Q23 and Hur & Yang (|2Q23
The numerical results of [Deconinck & Oliveras (2011) reveal the presence of a figure-
8 curve in the complex plane of the spectrum of the linear operator governing the
linear evolution of the Stokes wave disturbances. Approximations to this figure-8 are
obtained by [Creedon & Deconinck (lZQZﬂ) and by Berti et all (lZQQﬂ where the existence
of the figure-8 was proven rigorously. ) also examined the critical case
kh =1.363....

Deconinck & Oliveras (2011) also brought to the fore the presence of the so-called
high-frequency instabilities, existing for narrow ranges of the disturbance quasi-periods.

These instabilities were further studied by |Creedon et all (lZQZd) and by

(@), where their existence was proven rigorously.

The instabilities mentioned above play a role in our study of the dynamics of large-
amplitude Stokes waves, but we illustrate other instability mechanisms, not present
for small-amplitude waves. Understandably, the study of large-amplitude Stokes waves,
which cannot be thought of as perturbations of flat water, is harder, both from a compu-
tational and an analytical point of view. Nonetheless, some groundbreaking examinations
have been done, for instance by [Tanaka (1983) Emguﬂt_ﬂlggmmﬂamkd (1997) and
for near-extreme waves by [Korotkevich et all (121123 These authors all consider pertur-
bations of the Stokes waves with respect to co-periodic (or superharmonic) disturbances,
i.e., the Stokes waves and the disturbance have the same minimal period. Their results are
recapped in detail below, as they are instrumental to our own investigations. The results
in this manuscript follow those of [Deconinck et all (121123), as we present a computational
study of the instabilities of periodic Stokes waves, under the influence of disturbances
parallel to the propagation direction of the wave. It should be emphasized that all figures
presented below are quantitatively correct unless they are described as “schematic” in
the caption. Similarly, all floating-point numbers given are approximate, of course, but
all digits provided are believed to be correct.

2. One-dimensional waves in water of infinite depth

The equations of motion governing the dynamics of the one-dimensional free surface
of a two-dimensional irrotational, inviscid fluid (see left panel of Fig. [[]) are the Euler
equations:
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Here y = n(x, t) is the equation of the free surface and ®(x,y,t) is the velocity potential
(i.e., the velocity in the fluid is v = (&4, Py)), subscripts denote partial derivatives,
x and y are the horizontal and vertical coordinate respectively, ¢t denotes time, and g
is the acceleration of gravity. We ignore the effects of surface tension. Although the
Stokes waves are 2w-periodic, it is important to pose the problem above on x € R, since
the perturbations we consider are not necessarily periodic. The first equation expresses
the divergence-free property of the flow under the free surface determined by n(z,t).
The second and third equation are nonlinear boundary conditions determining the free
surface: the kinematic condition (22) expresses that the free surface changes in the
direction of the normal derivative to the surface (particles on the surface remain on the
surface), whereas the dynamic condition (23)) states the continuity of pressure across the
surface. Atmospheric pressure has been equated to zero, without loss of generality.

Since the location of the surface y = n(z, t) is the main focus of the water wave problem,
different reformulations have been developed that eliminate the velocity potential in the
bulk of the fluid as an unknown. |[Zakharov (1968) shows how the problem (ZI))—(24]) can
be recast in terms of only the surface variables n(z,t) and ¢(x,t) = &(x, n(z,t),t), and
the dynamics of n(z,t) and ¢(z,t) is governed by an infinite-dimensional Hamiltonian
system with n(x,t) and ¢(x,t) as canonical variables. The Hamiltonian is the total energy
of the system (with potential energy renormalized to account for infinite depth), which
depends on the velocity potential @(x,y,t) in the bulk of the fluid.

To avoid the dependence on the bulk, Zakharov’s formulation uses the Dirichlet-
to-Neumann operator (DNO), producing the normal derivative of the velocity poten-
tial at the free surface (the right-hand side of (Z2))) from the values of ¢(x,t). For
small-amplitude waves, the DNO is conveniently expressed as a series, as done by
Craig & Sulem (1993). For large-amplitude waves, such an expansion is not readily
available, and the DNO has to be approximated numerically. To avoid doing so, we
use conformal variables, see Fig. I} for a 2m-periodic wave, a time-dependent conformal
transformation maps the half plane in the w = u + v plane ((u,v) € [—7, 7| X (—00,0])
into the area (x,y) € [—m, 7] X (—o0,n] in the physical z = z + iy plane occupied by the
fluid. The horizontal line v = 0 is mapped into the fluid surface y = n(x,t). The implicit
equations of motion in conformal variables are constructed in the works of |(Ovsyannikov
(1973), see also [Tanveer (1991), Zakharov et all (1996), Dyachenko (2001). We use this
implicit formulation to study the stability of Stokes waves.

From these works, the conformal map z(w,t) = z(w, t) +iy(w,t) is a complex-analytic
function in C~ that approaches the identity map z(w,t) = w as w — —ioco, the image
of a point at infinite depth. In the conformal variables, the Hamiltonian has the form

1 s N s
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FIGURE 1. A schematic of the conformal map from the lower half plane (right) to the physical
domain (left).

where ¢(u,t) = @(x,t) and the operator k = —H®,. Here H is the periodic Hilbert
transform defined by the principal-value integral

1 R ") cot L=

Hf(u) = Y. (2.6)

Equivalently, the Hilbert transform can be defined by its action on Fourier harmonics,
He* = jsign(k) e**. The equations of motion are derived by taking variational deriva-
tives of the action S = [ £dt with respect to z, y and 9. The Lagrangian has the form

L= Wl/) (Y20 — Yure) du—H+ _Trf(u) (y —Hlz - u]) du, (2.7)

—T

where the Lagrange multiplier f(u) is chosen to enforce the relation x(u,t) = u —

H [y(u,t)]. We refer to the work of Dyachenko et all (1996) for the complete derivation

of the equations of motion in conformal variables:

YtTy — Yult = 7]?[1/)7“ (28)

Ty — TPt — H [yﬂ/}u - yuwt] =g <xuy - %I;[auy2> . (2'9)

2.1. Traveling Waves
Using the conformal variables formulation (Z8HZD), the Stokes waves are obtained

by looking for a solution y = y(u — ct), ¥» = ¥(u — ct), corresponding to stationary
solutions in a frame of reference moving with constant speed ¢ in physical variables, see

)vachenko et all (2014). This gives rise to the so-called Babenkd ) equation:

(czl% — g) y— g (lAcy2 + 2yl%y> =0. (2.10)

Since we are interested in the stability of near-extreme Stokes waves, the accurate
numerical solution of ([ZI0) for near-limiting values of the speed is required. Details
of such computations for the Babenko equation (ZI0) are given by Dyachenko et _all
M) In what follows, the ratio of the crest-to-trough height H to wavelength L
is used as the definition of wave steepness s = H/L. The limiting Stokes wave has
the steepness sy, = 0.1410634839. .. and speed ¢, = 1.0922850485 ... as computed

by [Dyachenko et all (2023).

It is known that the speed ¢ and the Hamiltonian H oscillate as a function of the

wave steepness s, for values near the limiting value sy, see [Longuet-Higgins & Fox
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FIGURE 2. A schematic of the oscillations of the Hamiltonian H (green) and the velocity ¢
(red) relative to their limit values as steepness s increases to its limiting 120° Stokes wave value,
using a logarithmic scale for the steepness s relative to its limit value s;;n,. In the green region,
the waves are unstable with respect to the first Benjamin-Feir branch and the first localized
instability branch, see Section Bl In the yellow region, they are unstable with respect to the
second branches, and so on. The steepnesses s.,, and sg,, correspond to the steepness values
where the velocity ¢ and the Hamiltonian H have extreme values.

(@) It is believed there is an infinite number of such oscillations. They are presented
schematically in Fig.[2l The other details of this figure constitute some of the main results
of this paper, discussed below.

2.2. Linearization about a Stokes wave

In a reference frame traveling with the velocity of a Stokes wave, the Babenko equation
describes a stationary solution of the equations ([2-8)—(29). The linear stability of these
Stokes waves is determined by the eigenvalue spectrum of the linearization in this
traveling frame. To obtain the linearization, we transform (2382:9) to a moving frame,
using

y(u,t) = y(u—ct,t), and x(u,t) — u— Hy(u— ct,t), (2.11)
V(u,t) = ¢lu — ct, t) — cHy(u — ct, t), (2.12)

as in [Dyachenko & Semenova (2023a). The nonlinear system Z82J) in the moving

frame becomes

Tul¥t — Yult = _I:I (¢u - C)a (2'13)
Tudr — Tebu — H [Yuds — yidu] + 2cxp = Phy — g (ﬂcuy - H [yyu]) ' (2.14)

The linearization about a Stokes wave is found by substituting

y(u,t) = y(u) + oy(u,t) +... and ¢(u,t) = 0+ dp(u,t) +.... (2.15)

Here y(u) corresponds to the Stokes wave and dy(u,t), d¢(u,t) are small perturbations.
Retaining only linear terms in dy and d¢ leads to the following evolution equations for
the perturbations dy and d¢:

leé@ — 2cHéy, = 516y, (2.16)
2016y, = koo, (2.17)
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where the operator 251 is defined via lef = x.f + yuﬁf. The operator f);rl is its
adjoint: Q;flf =z, f — H [y, f] and

Sl(y)éy = (0212: — g) oy —g {yiﬂéy + (5yf€y + /%(yéy) ) (2.18)
This is rewritten in matrix form as
> d¢ d¢
o[ 2]=n%]. -
with
R 0 On ~ [k 0
L=1. N M = ~ . 2.20
o, ] = o 5] @20

We examine the effect of quasi-periodic perturbations dy, d¢ using the Fourier-Floquet-
Hill (FFH) approach described in [Deconinck & Kutz (2006) and [Deconinck & Oliveras
(Iﬁ) The time dependence for dy and ¢ is found using separation of variables.
Moreover, in order to comsider quasiperiodic perturbations we use a Floquet-Bloch
decomposition in space,

[ J=e ] .

where p € (—1/2,1/2] is the Floquet parameter and A(u) € C is the eigenvalue. The
resulting p-dependent spectral problem is solved using a Krylov-based method and

the shift-and-invert technique, see henk men: (IZQZ_S_IJ) Details on Krylov
methods are presented by ). We refer to the spectrum obtained this way

as the stability spectrum of the Stokes wave. Note that the Floquet parameter is defined

modulo 1, thus p = 1/2 is equivalent to p = —1/2, see [Deconinck & Kutz (2006).

3. Instability
3.1. The oscillating velocity and Hamiltonian

Both the velocity ¢ and the Hamiltonian H depend on the Stokes wave. As the steepness
s of the Stokes wave increases and approaches its limiting value s;,,,, both quantities are
not monotone, as observed by Longuet-Higgins (1 (|_9_7j In fact, Longuet-Higgins & Fox
(@ @ ) produce an asymptotic result that implies the presence of an infinite
number of oscillations for both quantities. These oscillations were studied more by
Maklakov i%!!ﬂ )vachenko et all (2016) and [Lushnikov et all (2017), and very recently
by Silantyev (@ To our knowledge, no proof of an infinite number of oscillations in
velocity ¢ and Hamiltonian H exists.

We denote the steepness of a wave at the nth turning point of the speed by s¢,, n =
0,1,2,..., with s.o = 0. Similarly, the nth extremizer of the Hamiltonian is denoted by
sm.n- These critical values of the velocity and the Hamiltonian are important for changes
in the stability spectrum, as shown below. For the Hamiltonian, the importance of these
values is known, due to the works of Longuet-Higgins & Tanaka (1997); [Saffman (1985);
[Tanaka (ILM, |l9&ﬂ), for instance. It appears that these extremizing values interlace, so
that sc.n < Sgnt1 < Sent1, n=0,1,....

In the recent work of Dyachenko & Semenova (121123_(2]), a conjecture is made about an
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infinite number of secondary bifurcations associated with the Floquet multiplier = 1/2,
corresponding to perturbations whose period is twice that of the Stokes wave. It is
unclear how these bifurcations are related to those in the works of IChen & Saffman
(1980), ILonguet-Higgins (1985) and [Zufiria (1987), since those works do not introduce a
Floquet parameter. However, their importance to the stability results presented here
is demonstrated below. We denote the steepness associated with the nth secondary
bifurcation point by 5711/2, n = 1,2,.... Further, we observe that s., < 5711/2 < SHn-
These values are included in the schematic of Fig.

It is convenient to break up the range of steepness s from s = 0 to s = sy, in intervals
from one extremizer of the wave speed to the next. For example, the first interval starts at
the primary bifurcation s = 0 and ends at the first maximizer of the wave speed s = s¢1;
the second interval starts at s = s.; and ends at the first minimizer of the wave speed
5¢,2, and so on. The length of each interval shrinks as the extreme wave is approached,
and following [Longuet-Higgins & Fox (1978), we use a logarithmic scaling as illustrated
in Fig. 2l Note that, because of the observed interlacing of the extremizers of the wave
speed, those of the Hamiltonian, and the secondary bifurcations, each interval contains
one extremizer of the Hamiltonian and one secondary bifurcation point.

3.2. A cyclus of changes in the spectrum

As the steepness increases and each interval is traversed, an instability emerges from
A = 0 in the spectral plane, giving rise to a sequence of A(u)-curves with changing
topology, see Fig. Bl These changes for s € [sc,0 = 0, s.,1) are described below.

(1) Initially, at s, a figure-8 emerges from the origin, expanding in size as steepness
increases, Panels (a) and (b).

(i) At an isolated value of the steepness s = s, 1, both tangents of the figure-8 at the
origin become vertical, resulting in an hourglass shape, Panel (c).

(iii) Next, the lobes of the figure-8 detach from the origin, forming two disjoint isles
qualitatively reminiscent of the high-frequency instabilities of [Deconinck & Oliveras
(2011). The band of Floquet values parameterizing the isles shrinks away from p = 0 as
the steepness increases, Panels (d)-(h).

(iv) At s = s}/ 2, eigenvalues with Floquet parameter p = 1/2 bifurcate away from
the origin onto the real line, creating an oval of eigenvalues with center at the origin,
parameterized by Floquet values centered about u = 1/2; see Panels (f)-(h).

(v) As the steepness increases, the oval around the origin deforms to a bean shape,
eventually re-absorbing the remnants of the figure-8, Panel (j). More detail on the changes
in these remnants and their re-absorption is presented in Figs. B and B

(vi) At s = sp.1, the bean shape pinches to form a figure-co. The double point of the
figure-co is at the origin and has a Floquet parameter p = 0. Thus it corresponds to
perturbations with the same period as the Stokes wave, see [Dyachenko & Semenova
(20234a); [Korotkevich et all (2023). In Panel (k) this co-periodic (or superharmonic)
eigenvalue is marked in green. The unstable eigenvalue with g = 1/2 is marked in red
and gives rise to the most unstable mode for the wave with steepness s = sg 1.

(vii) As s increases beyond sp 1, the figure-oo splits off from the origin into a pair
of symmetric lobes, one moving to the right, the other to the left, Panel (1). Further
interesting changes in the shape of these lobes are observed as the steepness increases
and they move away from the origin, see Deconinck et all (2023) and Fig. @l Importantly,
we observe that the most unstable mode for this range of steepness s is either co-periodic
with the Stokes wave (u = 0, green dot in Fig. M) or has twice its period, i.e., it is
subharmonic with g = 1/2 (red dot in Fig. d). Figure [ illustrates two interchanges
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FIGURE 3. Spectra in the vicinity of the origin for increasing steepness s. A detailed description is
found in the main text. Here (a) s = 0.0449032652, (b) s = 0.1042102092, (c) s = 0.1090618215,
(d) s = 0.1122542820, (e) s = 0.1214481620, (f) s = 0.1289100582, (g) s = 0.1292029131, (h)
s =0.1307253066, (j) s = 0.1364173038, (k) s = 0.1366036552, (1) s = 0.1368557681. Note that
Panel (h) is repeated, with changing scales.
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FIGURE 4. Spectrum component lobe with highest real part, for increasing steepness. A detailed

description is found in the main text. Here (a) s = 0.1394245282, (b) s = 0.1394647831,
(c) s = 0.1394802926, (d) s = 0.1394894509, () s = 0.1394970022, (f) s = 0.1395148411,
(g) s = 0.1395380437, (h) s = 0.1395744737, (i) s = 0.1405658442, (j) s = 0.1405850778,
(k) s = 0.1405964046, (1) s = 0.1406007221, (m) s = 0.1406050801, (n) s = 0.1406080087,
(0) s = 0.1406169126, (p) s = 0.1406384552.

between these modes. We conjecture that such interchanges recur an infinite number
of times as s — S;m. Note that the difference between sy, = 0.1410634839 and the
steepness in the final panel of Fig. [ is about 0.000425 or 0.3%.

Below we focus on what happens near the origin of the spectral plane as the steepness
continues to increase, ever getting closer to its extreme value.
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FIGURE 5. Changes in the Benjamin-Feir remnant as it approaches the oval at the origin, with
steepness (from left to right panels): s = 0.1307253066, s = 0.1323979204, and s = 0.1329490573.

3.3. The Benjamin-Feir Instability

We observe that a figure-8 shape in the stability spectrum emerges from the origin
when the steepness s = s. ,, an extremizer of the velocity. The first three extrema of the
velocity appear at the following values:

Sc,0 = 0, (31)
51 = 0.138753, (3.2)
Se.2 = 0.140920. (3.3)

For small-amplitude waves (i.e., waves with steepness s near s.o = 0), the figure-8
corresponds to the well-studied classical Benjamin-Feir, or the modulational instability.
In what follows we refer to instabilities manifested through a figure-8 in the spectral
plane as Benjamin-Feir instabilities. We refer to the Benjamin-Feir instability branches
starting at steepness s, as the (n + 1)-th Benjamin-Feir branch, denoted BFI, BFII,
BFIII, and so on. Below, we show that eigenvalues on the figure-8 near the origin (for
BFII and BFII) give rise to modulational instabilities, as they do for small-amplitude
waves, see [Benjamin (1967); Whitham (1967).

All the Benjamin-Feir branches that we compute experience the sequence of changes
for increasing steepness described above: they grow in size, their tangents at the origin
become vertical followed by pinching off of the figure-8, resulting in the formation of
isole on the positive and negative imaginary axis. For each branch BFI, BFII and BFIII,
we determine the figure-8 that gives rise to the eigenvalue with the largest real part,
i.e., the maximal growth rate, see Fig. [6l Table [I] displays these values of steepness, the
corresponding eigenvalue with maximal real part and its Floquet exponent, for BFI, BFII
and BFIIL These computations illustrate that the widest figure-8 (green curves in Fig. [G])
settles down to a universal shape as the extreme wave is approached, since the second
and third panel appear indistinguishable). The values in Table [ confirm this visual
inspection. Further, for BFI, BFII and BFIII, we compute the hourglass shapes resulting
from the figure-8’s with vertical tangents at the origin, see Fig.[6l We overlay these shapes
in Fig. [0 plotting the real part of the spectrum as a function of the Floquet parameter.
This figure illustrates convergence to a universal hourglass shape as the steepest wave is
approached. We conjecture that an infinite number of Benjamin-Feir instability branches
exist as the steepest wave is approached and that all of them experience a universal
sequence of transitions.

Finally, using the points marked by triangles in Fig. [6] we examine the eigenfunctions
of (ZI9). The eigenfunctions related to BFI, BFII and BFIII are visibly different, while
their spectra in Figs. [ and [ are, to the eye, indistinguishable. A second observation is
that these eigenfunctions are indeed modulational in nature: Fig. [1 displays 10 (= 1/u)
Stokes wave periods of the eigenfunctions. Although their effect is increasingly localized
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FIGURE 6. The figure-8 component of the eigenvalue spectrum, showing the Benjamin-Feir
instability branches BFI, BFII and BFIII for Stokes waves of steepness s = 0.1045109822 (left,
green) and s = 0.1092129256 (left, red); s = 0.1398401087 (center, green) and s = 0.1401021466
(center, red); s = 0.1409908317 (right, green) and s = 0.1410079370 (right, red). The green
curves are associated with the maximal instability growth on the corresponding Benjamin-Feir
branch, with the black points marking the eigenvalues with largest real part, given in Table [l
The red hourglass curves correspond to the steepness when the figure-8 tangents at the origin
become vertical, leading to the figure-8 detaching from the origin in the spectral plane. The
points marked by gold triangles close to the origin have Floquet exponent p = 1/10.

| s A m

BFI [0.1045109822 0.0235702 + 0.2029603i 0.46376
BFII |0.1398401087 0.0288896 + 0.17460761 0.45743
BFIII | 0.1409908317 0.0288299 + 0.17475541 0.45774

TABLE 1. The Benjamin-Feir instability parameters for the figure-8 with the largest growth
rate, first three branches.

at the crest in each wave period, there is a more global modulational effect when many
periods are considered. Thus even the BFII and BFIII instabilities, for u close to zero,
deserve the modulational instability moniker.

3.4. The localized instability
The nth oval emerges from the origin of the spectral plane as the steepness increases
past si/ . We observe that si/ DS Sh.n, the value of the steepness for which the n-th

Benjamin-Feir figure-8 separates from the origin. Thus prior (i.e., for s < 5711/2) to these
ovals emerging from the origin, the spectrum near the origin is confined to the imaginary
axis. The primary, secondary, and tertiary ovals form at the steepnesses

s1/% = 0.128903, (3.4)
s3/? = 0.140487, (3.5)
s+/% = 0.141032049, (3.6)

which correspond to steepnesses at which 4r-periodic Stokes waves bifurcate from the
primary, 2m-periodic wave branch, see Dyachenko & Semenova (20234).

The changing topology of the primary oval for s > s}/ ? is shown in Figs. Bland @ More
detail is presented in Fig. [8 The oval develops for 51/2 < s < sg,1. The oval stage is
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FIGURE 7. (Left Panel) The growth rate Re X as a function of the Floquet exponent u for BFI,
BFII and BFIII are shown in purple, dashed green and dashed red, respectively. The curves are
associated with hourglass cases of the BFI, BFII and BFIII figure-8’s, the red curves in Fig. [6).
(Right Panel) The unstable eigenfunctions associated with the triangular marker in Fig. [6] left,
center and right panel, are colored purple, red and green respectively. The envelope for all three
is well described by cos(uz/L) with 4 = 1/10 and L = 27. Strong localization of the peaks
of the eigenfunctions at the wave crests of the Stokes waves is observed as the wave steepness
increases.
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FIGURE 8. (Left) Bean-shaped stage of the localized instability for s = 0.1365552495 < sm,1
(green), s = 0.1365917123 < sm,1 (gold) and s = 0.1366066477 > sg 1 (blue). (Right) Zoom-in
on the remnant of the primary Benjamin-Feir isole as it is absorbed into the first localized branch
at s = 0.1365546598 (red), s = 0.1365552495 (green) and s = 0.1365558392 (pink).

followed by a symmetric bean shape with a narrowing neck as steepness approaches sg 1.
The maximal growth rate associated with the localized instability quickly overtakes the
maximal growth rate associated with the Benjamin-Feir isole higher on the imaginary
axis, see [Deconinck et all (2023). Shortly before the steepness s reaches sp 1, the first
extremizer of the Hamiltonian, the remnant of the Benjamin-Feir instability isola merges
with the localized instability branch bean, as shown in the right panel of Fig.

We observe the recurrence of the process described above two more times, for the

secondary and tertiary ovals that form at s = s;/ >and s = s:l,,/

2, respectively. This leads
to the conjecture of an infinite number of such recurrences, the n-th one born at s = s}/ 2,
leading to the formation of the oval, gradually deforming to a bean shape, which pinches
off at s = sy p, after which the resulting lobes move away from the origin along the real
axis, ever decreasing in diameter. For s > sg ,, the lobes are parameterized by the full
range of Floquet exponents p € [—1/2,1/2). Further, for s € (Sm.n,Se.n+1) there is no
component of the spectrum other than the imaginary axis.

The first two figure-oo’s are shows in Fig. [@ Like the figure-8’s, they settle down to
a universal shape as s — sji,. The difference between the real and imaginary parts of
these first two figure-co’s as a function of the Floquet exponent never exceeds 1073,

Some eigenfunctions associated with the figure-oo are displayed in Figs. and [T11
For Floquet exponents close to zero (green and gold graphs), the modulational effect
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FIGURE 9. (Left) The figure-co component of the instability spectrum appears at the first
extremum of the Hamiltonian at sg,1 = 0.1366035. (Right) The second figure-co component
of the instability spectrum occurs for the wave with steepness sy, = 0.1407965 at the second
extremum of the Hamiltonian. The difference between the real and imaginary parts of the two
curves as a function of the Floquet exponent f is less than 1073,
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F1GURE 10. (Left) For the wave with sg,1 = 0.1366035 in the left panel of Fig.[d the perturbation
associated with p = 0.01 (green), with the eigenvalue A = 0.06106383 + 0.03263364¢ and its
complex conjugate A. The perturbation is given by ép = Re [¢"“dy]. The red curve shows the
same for p = 0.2, with eigenvalue A = 0.1600750 + 0.043264914 and its complex conjugate .
Only the interval —37 < = < 37 is shown from the 27 /u-periodic function. (Right) Polar plot,
e §y(u), where real and imaginary parts are plotted along the horizontal and vertical axes
respectively.
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Ficure 11. (Left) For the wave with sgo = 0.1407965 in the right panel of Fig. [ the
perturbation associated with p = 0.01 (gold) with the eigenvalue A = 0.06075090 + 0.032488904,
and its complex conjugate A. The perturbation is given by dp = Re [e¢"“dy]. The purple curve
shows the same for g = 0.2. Only the interval —37 < & < 37 is shown from the 27 /u-periodic
function. (Right) Polar plot, e**“§y(u), where real and imaginary parts are plotted along the
horizontal and vertical axes respectively.
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FIGURE 12. The primary BF instability emerges at steepness s = 0 for small-amplitude waves.
This is marked with a green diamond. The green curve shows the maximal growth rate associated

with this BF instability. At the secondary period-doubling bifurcation, 51/2 = 0.128903, marked
with a green triangle, the first branch of the localized instability appears (maximal growth rate
in black solid and dashed). The near-vertical appearance of this localized instability branch is
a consequence of the rapid changes in the spectrum of this branch for steep waves. The inset
s € [0.12878,0.12908], v € [0.005,0.018] shows a zoom-in of the intersection of the maximal
growth rate of the localized branch with the primary BF branch. The remnant of the BF
instability merges with the localized branch at the edge of the gold region I. In this region,
the BF branch is no longer distinguishable from the localized branch. The secondary branch
of BF (maximal growth rate plotted in blue) emerges at the first maximizer of the speed at
Se,1 = 0.138753 (blue diamond) and follows the same sequence of steps merging with the localized
branch at the edge of the golden rectangle II. The secondary localized branch emerges at the

second period-doubling bifurcation at s;/ 2 = 0.140487 (blue triangle). For the secondary inset
s € [0.1404795, 0.1404955], v € [0.005, 0.018]. The tertiary BF emerges at the turning point of
speed, sc,2 = 0.140920 (maximal growth rate plotted in purple), the tertiary localized branch

appears at sé/Q = 0.141032049 (purple triangle).

of the perturbation is clear from the polar plots. For other Floquet exponents (e.g. red
and blue), the perturbation does not have a distinct modulational character. As for
other high-amplitude Stokes waves, the localization of the eigenfunction (and thus the
perturbation) near the crest of the waves is increasingly pronounced as s — Syim.-

When the oval forms at s = si/ 2, its eigenvalue with largest real part is real and
has Floquet exponent u = 1/2, leading to eigenfunctions that have double the period
of the Stokes wave. After pinch off, s > sg ., the left-most eigenvalue of the right lobe
has p = 0 (co-periodic eigenfunctions). As for the primary lobe, we conjecture that the
most unstable mode on the right lobe is either the u = 0 or the p = 1/2 mode, which
interchange an infinite number of times as s — sy, see [Deconinck et all (2023). As
remarked above, the profile of the eigenfunction is strongly localized at the crests of the
Stokes wave. Modes with 1 close to 0 have an envelope containing roughly 1/u periods of
the Stokes wave and could be called modulational. However, in contrast to the Benjamin-
Feir instabilities, for these instabilities the p = 0 mode itself is unstable. For this reason,
we refer to the instabilities emerging from the figure-oo’s as localized instabilities.

3.5. The mazximal growth rate

We track the maximum growth rate v (i.e., we track the eigenvalues with the largest
real part) of the Benjamin-Feir and localized instabilities (plotted in black dotted and
solid lines) as a function of the steepness of the Stokes wave in Fig. The maximum
growth rate for BFI, BFII, and BFII are presented by green, blue, and purple curves
respectively. Steepnesses at which the dominant instability switches from the Benjamin-
Feir to the corresponding localized branch are marked by circles. These switches are
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FiGuRE 13. (Left) Detached figure-co spectrum of the localized instability for
s = 0.1366171604 > sm,1 (blue). (Right) Zoom-in on the high-frequency instability for
four increasing values of the steepness, s = 0.1366066477 (red), s = 0.1366141405 (green),
s = 0.1366171424 (golden), and s = 0.1366171604 (blue, the value for the left panel), showing
the vanishing of a high-frequency isola at a value just exceeding s = sg,1.

presented in the corresponding insets. The steepness values where the maximal growth
rates for BFI and BFII vanish, correspond to the case where the Benjamin-Feir remants
are absorbed into the localized instabilities.

3.6. The high-frequency instabilities

Since the work presented here focuses on the evolution of the spectrum for increasing
steepness in the vicinity of the origin in the spectral plane, we discuss the high-frequency
instabilities only briefly. As shown by [Deconinck & Oliveras (2011)) and |Creedon et al.
(2022), the high-frequency instabilities emanate from purely imaginary double eigen-
values for steepness s = 0, giving rise to an isola of unstable eigenvalues centered on
the imaginary axis, away from the origin. As steepness is increased, these isole may
collapse back on the imaginary axis, and new ones may form, see MacKay & Saffman
(1986). Unlike the Benjamin-Feir (figure-8’s) and localized instability branches (figure-
o0’s), the high-frequency isole are highly localized in the space of Floquet exponents:
indeed, [Deconinck & Oliveras (2011) show that often a range of Floquet exponents
of width no more than 10~* parameterizes an isola. This complicates their numerical
detection. Figure presents plots of a few high-frequency isole for near-extreme in-
creasing steepness, showing the collapse of one into the imaginary axis. For the top
isola plotted, p € [0.00092,0.00095], for the one below p € [0.00057,0.00059]. For the
two isole on bottom, p € [0.000251,0.000294] (outer), p € [0.000263,0.000282] (inner).
This demonstrates the isole can be captured using our method. A detailed study of the
evolution of the high-frequency instabilities as steepness increases is kept for future work.

4. Conclusions

We have presented a numerical exploration of the stability spectrum of Stokes waves
near the origin of the spectral plane, focusing on the topological changes in the stability
spectrum as the wave steepness grows. The main challenge of the study is due to the
non-smooth nature of the extreme Stokes wave, which has a 120° corner at its crest.
Thus for waves whose steepness approaches that of this extreme wave, our Fourier-based
method requires the use of millions of Fourier modes. Indeed, for the computation of
waves with steepness near the third extremizer of the Hamiltonian (see Fig.[2]) nearly ten
million Fourier modes are used. To examine the stability of these waves, we linearize
about them, resulting in a generalized operator eigenvalue problem. The numerical
approximation of this problem results in a generalized matrix eigenvalue problem with
matrices of dimension equal to the square of twice the number of Fourier modes used
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FIGURE 14. A schematic view of the appearance (and existence for a range of steepnesses)
of localized and Benjamin-Feir type instabilities. The first Benjamin-Feir instability figure-8
appears at the steepness s = sco = 0, the second one appears at s = s.,1, and the third

one at s = S¢2. Localized instabilities, manifested by an oval at the origin deforming to a

figure-co appear at steepnesses labeled ,971/ ? with n = 1,2, 3, ... that correspond to bifurcations

to double-period Stokes waves. Once localized instabilities appear, they continue to exist for all
larger values of the steepness in contrast to Benjamin-Feir type instabilities that emerge and
vanish as the steepness is increased. We conjecture that infinitely many Benjamin-Feir type and
localized instabilities appear as s — s;;m, the steepness of the extreme wave.

for approximating the underlying Stokes wave, since each component of the perturbation
requires a comparable number of Fourier modes to reach the same accuracy. Storing
and manipulating such matrices is prohibitive, and our investigations are only possible
because of the matrix-free approaches to the conformal mapping formulation, introduced
by Dyachenko & Semenova (2023d).

In [Deconinck et all (2023) we used this same method to investigate the largest growth
rate of perturbations of near-extreme Stokes waves, as a function of their steepness.
Among other outcomes, this led to the conclusion that long-lived ocean swell is confined
to moderate amplitudes. In this paper, we focus instead on the behavior of the stability
spectrum near the origin of the spectral plane, as the recurring, self-similar behavior
may provide an indication of how the stability of near-extreme Stokes waves may be
approached analytically. Specifically, previous work and our numerical explorations lead
to the following conjectures.

(i) The Hamiltonian H and the velocity ¢ have an infinite number of local extrema
($grms n = 1,2,... and s¢pn, n = 0,1,... respectively) as the steepness s increases to
Siim, the steepness of the extreme wave. This conjecture is not new, and the asymptotics
of [Longuet-Higgins & Fox (1977, 1978) provides a strong indication as to its validity. We
include this conjecture here because all others below depend upon it.

(ii) The maximal instability growth rate approaches infinity as the steepness in-
creases to that of the steepest wave. Convincing evidence for this conjecture is presented
by [Korotkevich et all (2023). This would imply that the Euler water wave problem for
the evolution of the extreme Stokes wave is ill posed. This is not a surprise as capillary
effects need to be incorporated when the curvature at the crest is too large. This is
discussed in more detail by [Deconinck et all (2023).

The conjectures below are a direct outcome of the investigations presented in this
paper. A graphical overview of which features occur at which steepness, according to
these conjectures, is presented in Fig. [[4]

(iii) As the steepness s increases from 0 to that of the steepest wave, there exists an
infinite number of Benjamin-Feir figure-8 instabilities. These emanate from the origin at
each extremum s ,, n =0, 1,... of the velocity. Upon formation, these figure-8’s persist
for a range of steepness. After their tangents at the origin become vertical (resulting in
an hourglass shape) at steepness sp n, n = 1,2, ..., the figure-8 separates in two lobes on
the imaginary axis.
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(iv) After the Benjamin-Feir figure-8 separates from the origin, the nth oval appears

at the origin, for the steepness 571/2, n =1,2,..., corresponding to the period-doubling
bifurcation points from the primary branch of Stokes waves.

(v) As the steepness s increases from 0 to that of the extreme wave, there are an infinite
number of figure-co instabilities. These occur at the origin at each extremum of the
Hamiltonian/energy. As the steepness is increased, the figure-oo’s detach instantaneously.
In other words, the figure-oo shapes occur only at isolated values of the steepness, for
which the Hamiltonian has a local extremum.

(vi) These figure-8’s and figure-oo’s alternate in their occurrence. Stated differently,
the extremizers of the Hamiltonian interlace the extremizers of the velocity.

(vii) For Stokes waves with amplitude greater than that of the first maximizer of
the Hamiltonian, the most unstable mode is either superharmonic (co-periodic) or
subharmonic with twice the period of the Stokes wave (anti-periodic). Further, there
exists an infinite number of interchanges between which of these two modes is dominant.
Throughout these interchanges, no other mode is the most unstable. These observations
were already discussed by [Deconinck et all (2023).

In the context of the full water wave problem, the present work reveals two primary
mechanisms for the breaking of ocean waves: (i) for Stokes waves with s < sy =
0.12894 (the steepness at which the dominant instability switches from Benjamin-Feir
to the localized branch, the abscissa of the green circle in Fig. [[2)), when the unstable
envelope of multiple periods of a train of Stokes waves enters the nonlinear stage, a
complicated pattern of waves is observed on the free surface. The pattern tends to self
focus leading to the formation of a large unsteady wave whose crest forms a plunging
breaker [Clamond et all (2006); |[Onorato et all (2013); (ii) for Stokes waves with s > s,
the dynamics of the wave is dominated by the localized instability at the wave crest,
see Baker & Xid (2011); [Duncan (2001); [Dyachenko & Newell (2016). The localized
instability immediately leads to wave breaking of either every other wave crest in the
train (if 4 = 0 is dominant), or every other crest (if 4 = 1/2 is dominant) as discussed
by IDeconinck et all (2023). More work is needed to understand the fully nonlinear stage
of the many different instabilities computed.

A complete understanding of the stability of Stokes waves with respect to bounded
perturbations (see [Haragus & Kapituld (2008); [Kapitula & Promislow (2013)) requires
further study of the spectrum of the operators associated with the linearization of the
Euler equations governing the dynamics of these perturbed waves. Nonetheless, our study
provides numerical evidence that the (quasi-) periodic eigenfunctions that we examine,
are fundamental to this problem.
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