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Abstract. In Basili and Pratelli (2024), a novel and coherent concept
of interval probability measures has been introduced, providing a method
for representing imprecise probabilities and uncertainty. Within the frame-
work of set algebra, we introduced the concepts of weak complementa-
tion and interval probability measures associated with a family of random
variables, which effectively capture the inherent uncertainty in any event.
This paper conducts a comprehensive analysis of these concepts within
a specific probability space. Additionally, we elaborate on an updating
rule for events, integrating essential concepts of statistical independence,
dependence, and stochastic dominance.

Keywords: Uncertainty · Imprecise Probabilities · Capacities

1 Introduction

The Theory of Belief Functions, initially introduced by Dempster (1967) to ex-
tend Bayesian statistical inference, was further developed by Shaffer (1976) to
tackle uncertainty representation. This evolution led to Uncertain Evidence The-
ory, where the combination rule became pivotal. Walley (1991) emphasized the
necessity of coherent lower and upper probability measures for a comprehensive
theory of imprecise probabilities.

Belief functions enable the representation of incomplete knowledge, the pool-
ing of evidence, and the updating of beliefs in the face of new evidence. Denoeux
(2019) outlined decision-making criteria within the belief functions framework.
Dubois and Denoeux (2012) delineated two methods for conditioning belief func-
tions: the Dempster rule for revising a plausibility function and a method tailored
for prediction based on observation. Additionally, Dubois et al. (2023) demon-
strated that a straightforward belief function logic can be derived by integrat-
ing Lukasiewicz logic into minimal epistemic logic, forming a probabilistic logic
within a modal logic framework

This concise paper revisits the concept of weak complementation, a dis-
tinctive notion of set-theoretic complementation within the algebra of sets (or
events) of a generic non-empty set, as discussed in Basili and Pratelli (2024).
This framework offers a natural and coherent approach to conceptualizing un-
certainty linked with an event. By interpreting eventualities as the causal factors
leading to the occurrence of a given random phenomenon, we introduce the set
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of indecisive eventualities (uncertain opportunities) and quantify the degree of
uncertainty associated with an event within a specific probability space of partic-
ular interest in applications. Furthermore, within this framework, we elaborate
on fundamental concepts such as imprecise probabilities, interval capacity mea-
sures and conditional interval probability measures. Finally, we illustrate the
notion of stochastic dominance between two random variables based on interval
probability measures and exhibit an example of the product of interval proba-
bility measures.

2 A Particular Probability Space

Consider the product space Ω defined as E×{0, 1}n, where E is a countable space
and n is a natural number greater than 0. In this space, an element (x, ωi1...in) is
an eventuality, where x belongs to E, and ωi1...in denotes a sequence of outcomes
or causal factors, each represented by 0 or 1. Subsets H of these eventualities
are events and contribute to the determination of a given random phenomenon.
However, due to imprecision in the elements of {0, 1}n, indecisive eventualities
arise when considering a specific event H . For instance, when n = 2 and E is
a singleton {x0}, the famous example of the umbrella (Keynes 1921, 28) has
been studied on {0, 1}2 (equivalent to E × {0, 1}2) where {ω00, ω11} is the set
of indecisive eventualities of H = {ω10} since the negation of a given cause does
not necessarily imply the non-occurrence of the represented event. (See Example
5 of Basili and Pratelli (2024))

2.1 Incompatible Eventualities

In the following scenario, any pair of distinct eventualities

(x, ωi1...in), (x, ωj1...jn)

where 0 < |i1 − j1| + . . . + |in − jn| < n is considered not incompatible due to
the imprecision or indecision represented by the elements of {0, 1}n. However,
denoted by ωi∗

1
...i∗n

as the (unique) negation of ωi1...in if |i1−i∗
1
|+. . .+|in−i∗n| = n,

the two eventualities
(x, ωi1...in), (y, ωi∗

1
...i∗n

)

can be considered incompatible for any pair x, y of elements of E. It’s observed
that there are 2n−1 events of the type {ωi1...in , ωi∗

1
...i∗n

} and we denote by Zj the
events of the form E×{ωi1...in , ωi∗

1
...i∗n

}, with j = 1, . . . , 2n−1. Obviously, events
Zj constitute a partition of Ω. In the particular case of n = 1, two distinct
eventualities are always incompatible.

2.2 Set of Indecisive Eventualities and Weak Complementation

To determine the set of uncertain opportunities or indecisive eventualities of an
event H based on the previously stated and elaborated concepts in Basili and



Uncertainty and Imprecise Probabilities 3

Pratelli (2024), we define

Hind = ∪j:H∩Zj=∅ Zj

In simpler terms, Hind is the set of eventualities that are not incompatible with
the elements of H while Hc \Hind is the set of incompatible elements with the
eventualities of H . The set Hc

w = Hc \ Hind can be interpreted as the weak
complement of H , as it exclusively comprises eventualities that unequivocally
imply the non-occurrence of H . Thus, for any event H , it yields

Ω = H ∪Hc
w ∪Hind.

It is important to note that Kind ⊂ Hind implies Kind ⊂ Hind but it does not
imply Kc

w ⊂ Hc
w.

2.3 Degree of Uncertainty Associated with an Event

For any event H , a degree of uncertainty can be associated with any eventuality
incompatible with elements of H . Specifically, considering a generic mapping
r : Ω 7→ [0, 1] representing the degree of uncertainty on Ω, the random variable
YH defined by

YH(x, ωi1...in) = IHind
(x, ωi1...in)r(x, ωi1...in)

is the r-uncertainty associated with H . It is agreed that YH = 0 when Hind = ∅.
In the particular case of r = 1, it follows YH = IHind

whereas if r = 0 the
r-uncertainty of H is always null. In certain aspects, YH(x, ωi1...in) is akin to the
degree of indeterminacy of (x, ωi1...in) concerning H in intuitionistic fuzzy sets
(see Atanassov, 1986).

3 Imprecise Probabilities

Now, let’s consider a probability measure P defined on the events of Ω and
a degree of uncertainty r defined on Ω. The interval probability measure Qr

defined by

Qr(H) =
[

P (H), P (H) + E[rIHind
]
]

is said to be the imprecise probability measure associated with P and r. When
Hind is not P -negligible, Qr(H) coincides with [P (H), P (H)+P (Hind)EPHind

[r]].
It’s worth recalling (see [2]) that a generic interval probability measure (or impre-
cise probability) Q is a function from the events of Ω to the closed subintervals
of [0, 1], satisfying:

– The left-end extreme of Q is a probability measure.
– For every pair of events H1, H2, with H1 ⊆ H2, it holds |Q(H2)| ≤ |Q(H1)|,

where |Hi| denotes the width of Hi.
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When r = 1, for any event H it holds

Q1(H) = [P (H), P (H) + P (Hind)].

Notwithstanding, since P (H) +P (Hind) = 1−P (Hc
w), the right-end extreme of

Q1(H) consequently aligns with the left-end extreme of Q1((H
c
w)

c), where (·)c

denotes the usual set complementation. Finally

|Qr(H)| ≤ P (Hind) =
∑

ωi1...in ,ωi∗
1
...i∗n

∈Hc

(

f(ωi1...in) + f(ωi∗
1
...i∗n

)
)

where f is the probability mass function defined by f(ωj1...jn) = P (E×{ωj1...jn}).

3.1 Interval Capacity Measures

Instead of the probability measure P , a more generalized definition of an interval
measure can be derived by considering a capacity ν, which is a function defined
on the events of Ω satisfying ν(∅) = 0, ν(Ω) = 1 and ν(H) ≤ ν(K) when H ⊆ K.
More precisely, Qr could be defined as follows

Qr(H) =
[

ν(H), ν(H) +

∫

1

0

ν(Hind ∩ {r ≥ t}) dt
]

∩ [0, 1]

where
∫

1

0
ν(Hind ∩ {r ≥ t}) dt represents the Choquet integral of rIHind

. More-
over, if ν is a super-additive set function, it holds that:

Qr(H) ⊆
[

ν(H),

∫ 1

0

ν(H ∪ (Hind ∩ {r ≥ t})) dt
]

and |Qr(K)| ≤ |Qr(H)| when H ⊆ K. In this context, the interval capacity

measure of H could be considered
[

ν(H),
∫ 1

0
ν(H∪(Hind∩{r ≥ t})) dt

]

. However,
the map

Q′
r : H 7→

[

ν(H),

∫ 1

0

ν(H ∪ (Hind ∩ {r ≥ t})) dt
]

does not necessarily satisfy H ⊆ K =⇒ |Q′
r(K)| ≤ |Q′

r(H)| unlike Qr.

3.2 Conditional Interval Probability Measures

Let H be a non-negligible event (P (H) > 0). An interval probability measure
can be defined to express the degree of confidence in realizing the random phe-
nomenon conditioned on the causes that determined H . For each event A, we
define the probability of A conditioned on H relative to Qr as

Qr(A|H) =
[P (A ∩H) + E[rIA∩Hind

]

P (H) + E[rIHind
]

,
EP [(IA + rIAind

)(IH + rIHind
)]

P (H) + E[rIHind
]

]

.
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Qr(·|H) is an imprecise probability in the sense of [2]. If r = 1, it leads to

Q1(A|H) =
[

P
(

A |(Hc
w)

c), P
(

(Ac
w)

c |(Hc
w)

c
)

]

It is noteworthy that Q1 possesses left and right extremes that adhere to the
duality rule concerning weak complementation. Moreover, it holds

Q1(Ω|H) = Q1((H
c
w)

c |H) = [1, 1], Q1(H |H) = [
P (H)

1− P (Hc
w)

, 1].

Remark 1. Let ν be a super additive capacity i.e. for any pair of disjoint events
A,B, ν satisfies ν(A) + ν(B) ≤ ν(A ∪ B). If ν(Hc) 6= 1, Dempster and Shafer
define

ν(A|H) =
ν((A ∩H) ∪Hc)− ν(Hc)

1− ν(Hc)

for any event A. This definition does not equate to standard Bayesian updating
if ν is not additive. However, if Hc is replaced with the weak complementation
Hc

w, and thus H replaced with (Hc
w)

c, interpreting the plausibility 1− ν(Hc
w) as

the measure of (Hc
w)

c according to a probability P , we can see that

ν((A ∩ (Hc
w)

c) ∪Hc
w)− ν(Hc

w)

1− ν(Hc
w)

=
ν((A ∪Hc

w)− ν(Hc
w)

1− ν(Hc
w)

can be understood as the ratio of measures of A ∩ (Hc
w)

c and (Hc
w)

c according
to P . In other words, the left endpoint of Q1(A|H). Similarly, the interpretation
of the right endpoint of Q1(A|H) holds true. Therefore, Q1(A|H) can represent
the conditional interval capacity measure associated with ν since the extremes
are two similar conservative belief and plausibility degrees conditional to H by
Dempster and Shafer.

Remark 2. Is there a ’reasonable’ way to define the concept of conditional prob-
ability with respect to H according to a general interval capacity measure? In
Basili and Pratelli (2024), we proposed only a hypothetical and partial defi-
nition, deferring the concept to further work (See also Denoeux et al (2020)).
Within this framework, inspired by the notions introduced in section 3.1, if ν

is a super-additive capacity and H is an event with ν(H) > 0, the definition of
Qr(A|H) can be expressed as

Qr(A|H) =
[ I(A)

I(Ω)
,
I(A) + J(Aind)

I(Ω)

]

where I(B) =
∫ 1

0
ν
(

B ∩ (H ∪ (Hind ∩ {r ≥ t}))
)

dt and

J(B) =

∫

1

0

ν
(

B ∩ (H ∪Hind) ∩ {r ≥ t}
)

dt.
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It is noteworthy that

Qr(A|H) ⊆
[ I(A)

I(Ω)
,
I(A) + I(Aind)

I(Ω)

]

and A ⊆ B =⇒ |Qr(B|H)| ≤ |Qr(A|H)|. By arguing as in section 3.1, one might
introduce the definition

Q′
r(A|H) =

[ I(A)

I(Ω)
,
I((Ac

w)
c)

I(Ω)

]

noting that

Qr(A|H) ⊆
[ I(A)

I(Ω)
,
I(A) + I(Aind)

I(Ω)

]

⊆ Q′
r(A|H).

Unfortunately, Q′
r(·|H), like Q′

r(·), does not necessarily satisfy A ⊆ B =⇒
|Q′

r(B|H)| ≤ |Q′
r(A|H)|.

4 Interval Distribution and Stochastic Dominance

As in Basili and Pratelli (2024), we consider a real-valued random variable X

and define the distribution function (according to a generic imprecise probability
Qr) of X as the function F from the real line to the set of closed subintervals
of [0, 1] given by

F (t) = Qr(X ≤ t)

The widths of the distribution function F depend significantly on the values of
Zj , as demonstrated in the following example.

Example 1. A special case arises when X(Zj) = tj . In this case, it holds that

Fr(t) =
[

P (X ≤ t), P (X ≤ t) + (1 − P (X ≤ t))EP{X>t}
[r]

]

where P (X ≤ t) =
∑

j:tj≤t P (Zj) and EP{X>t}
[r] is the mean of r with respect

to P (· |X > t). In particular,

F1(t) =
[

P (X ≤ t), 1
]

.

If tj is non-decreasing and Y (Zj) is a countable subset of ]tj−1, tj ], then X ≥ Y

and the distribution function G1, according to Q1 is given by

G1(t) =
[

P (Y ≤ t), 1− P (Zi∗)δt

]

,

where ti∗−1 ≤ t < ti∗ , and δt = 1 if {ti∗−1 < Y < t 6= ∅} and δt = 0 elsewhere.
It’s noteworthy that the function representing the right endpoint of G1 is neither
increasing nor decreasing. Additionally, it holds P (X ≤ t) ≤ P (Y ≤ t) and
|F1(t)| ≥ |G1(t)| for any t ∈ R.
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These considerations suggest a notion of interval stochastic dominance. More
precisely, if F and G are the two (interval) distribution of X and Y , it is said
that X stochastically dominates Y if

Fl(t) ≤ Gl(t) and |G(t)| ≤ |F (t)| ∀t ∈ R

where Fl and Gl are the left endpoints of F and G.

A similar definition can be extended when X and Y are random vectors. This
concept of interval stochastic dominance enables the comparison of random vari-
ables in terms of uncertainty and provides a straightforward guideline for making
choices among various alternatives. Finally, these results can be generalized when
Q is an interval capacity measure obtained by a super additive capacity ν. How-
ever, if ν is only a sub-additive capacity, the stochastic dominance cannot be
extended because |G(t)| ≤ |F (t)| is not necessarily true when X ≥ Y .

5 Product of interval probabilities measures

Let’s consider the space E×{0, 1}n for simplicity when n = 2, and E is a single-
ton {x0}. On this space, let Q1 be the imprecise probability measure associated
with P (with r = 1). It’s worth noting that the product space Ω = (E×{0, 1}2)2

is obviously equivalent to E × {0, 1}4. We define the interval product measure
Q1 ⊗Q1 on the events H of Ω as

Q1 ⊗Q1(H) = [P ⊗ P (H), P ⊗ P (H) + P ⊗ P (H ′
ind)]

where P ⊗ P is the usual product measure and H ′
ind is the subset of the even-

tualities of Ω that are not incompatible with the elements of H with respect to
the partition

W1 = Z1 × Z1, W2 = Z2 × Z2, W3 = Z1 × Z2, W4 = Z2 × Z1

where Z1 = {ω00, ω11} and Z2 = {ω10, ω01}. Specifically,

H ′
ind = ∪i:H∩Wi=∅ Wi

Observe that Q1 ⊗ Q1 does not coincide with any measure Q′
r associated with

P⊗P and r on Ω because, for Q′
r, the event Hind is determined by eights disjoint

events. In particular, if H = H1 ×H2 with H1, H2 ⊆ E × {0, 1} then

Q1 ⊗Q1(H1 ×H2) = [P (H1)P (H2), P (H1)P (H2) + P ⊗ P (H ′
ind)]

Since P ⊗P (H ′
ind) 6= P ((H1)ind)P ((H2)ind), the product measure Q⊗Q cannot

be obtained by simply multiplying the endpoints and the widhts of intervals
Q1(H1) and Q1(H2). It can be demonstrated that

Q1 ⊗Q1(H1 ×H2) ⊆ Q′
1
(H1 ×H2).
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For example, if H = {(w10, w10)}, we have

Q1 ⊗Q1(H) = [P ({(w10})
2, P ({(w10})

2 + 1− P (Z2)
2]

which does not coincide with Q′
1 = [P ({(w10})

2, 1− P ({w01})
2] because

P ({(w10})
2 + 1− P (Z2)

2 = 1− P ({w01})
2 − 2P ({w01})P ({w10}).

These results could be useful for studying the example of the umbrella with two
observers. The two distinct measure Q1⊗Q1 and Q′

1 are two interval probability
measures derived from the same P ⊗ P but through two different ways of eval-
uating uncertainty. In conclusion, it can be easily noted that there is a number
of ways of evaluating uncertainty which grows exponentially with the dimension
n.
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