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Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep
convolutional neural networks. It uses those features to estimate the inter-frame motions of objects at
the pixel level. In this article, we evaluate the ability of optical flow to quantify the spontaneous flows
of MT-based active nematics under different labeling conditions. We compare DLOF against the
commonly used technique, particle imaging velocimetry (PIV). We obtain flow velocity ground truths
either by performing semi-automated particle tracking on samples with sparsely labeled filaments,
or from passive tracer beads. We find that DLOF produces significantly more accurate velocity
fields than PIV for densely labeled samples. We show that the breakdown of PIV arises because the
algorithm cannot reliably distinguish contrast variations at high densities, particularly in directions
parallel to the nematic director. DLOF overcomes this limitation. For sparsely labeled samples,
DLOF and PIV produce results with similar accuracy, but DLOF gives higher-resolution fields. Our
work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and
biophysical systems. (Data and code is available at https://github.com/tranngocphu/opticalflow-
activenematics)

I. INTRODUCTION

Accurate measurement of flow fields is a cornerstone
for modeling diverse phenomena that range across the
field of fluid dynamics [1], active matter [2], and biologi-
cal systems [3]. A conventional approach to estimating
flow fields is Particle Image Velocimetry (PIV), where
flow velocities are computed by correlating features of two
consequent images [4–6]. However, PIV has limitations.
One arises from the dependence of the interrogation win-
dow size on seeding particle speed. Consequently, PIV
cannot estimate turbulent flows smaller than the interro-
gation window, leading to potential errors in the velocity
field [7]. Furthermore, significant Brownian motion can
introduce uncertainty into PIV measurements [8]. An-
other limitation is that tracer particles must be within an
optimal range of density and size [7]. This requirement
can be impractical in biological systems using fluorescent
proteins as markers, preventing the use of smaller win-
dow sizes as a workaround for issues related to Brownian
motion or smaller turbulent flows [9]. To overcome these

limitations we explore a deep-learning-based optical flow
(DLOF) algorithm for the estimation of the flow fields.

In computer vision, optical flow describes the apparent
motions of objects in a sequence of images [10]. Vari-
ous rule-based techniques for optical flow estimation have
been developed, including differential methods [11–14],
variational methods [15–18], and feature-based methods
[19–22]. Specific implementations of those rule-based op-
tical flow algorithms can be advantageous over PIV for
applications in biological images [23–28]. Rapid advance-
ments in machine learning have resulted in deep learning
optical flow (DLOF) algorithms, where the automatic fea-
ture extraction offered by deep convolutional neural net-
works has significantly improved the algorithm accuracy
[29–55].

Recent efforts used DLOF to estimate velocity fields
in applications that would otherwise rely on PIV [56–
61]. In these instances, DLOF was trained and evaluated
using data from fluid dynamics simulations or computer-
generated and augmented PIV datasets that mimic noisy
data in real-world experiments. Obtaining ground-truth
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velocities required for training machine learning models
is costly or impossible with real-world data. We investi-
gate the performance of DLOF on experimental data of
active nematic liquid crystals [62–72]. We image micro-
tubule (MT)-based active nematics under conditions that
are beyond the limitations of PIV and present a signif-
icant challenge to its performance. We then develop a
computational framework to apply DLOF to quantify the
velocity fields of the MTs. We test the framework with
ground truth velocity fields obtained by particle tracking
methods. We compare the velocity fields obtained by PIV
and DLOF against this ground truth data.

Microtubule (MT)-based active nematics are powered
by ATP-consuming kinesin molecular motors. In such
materials the extensile MT bundles generate internal ac-
tive stresses, which in turn give rise to motile topological
defects and associated autonomous flows[64]. Active ne-
matics are described by two continuous fields, the direc-
tor field, which describes the average orientation of the
anisotropic MT filaments, and the velocity field, which
describes their motions. Accurate measurement of the
director field requires samples in which all the filaments
are labeled. However, such samples yield low variations
in spatial intensity, which makes application of PIV tech-
niques challenging [73]. Specifically, in fully labeled ac-
tive nematics PIV underestimates the velocity component
parallel to the nematic director [68, 74–76]. This can be
attributed to the anisotropy of nematics; the intensity of
MT bundles is fairly uniform along the nematic directors,
which presents challenges for implementation of PIV. Al-
ternatively, obtaining accurate PIV fields requires sam-
ples with a low volume fraction of labeled MTs, which
creates highly speckled patterns suitable for PIV appli-
cation, but from which the director field cannot be ex-
tracted. Overcoming these competing challenges requires
active nematics containing high-concentration MTs in one
color and dilute tracer MTs in a different wavelength [76].
The former are suitable for director field measurement
while the latter allow for accurate application of PIV
techniques. However, these samples are cumbersome to
prepare, and sequential imaging introduces a time lag be-
tween the measurement of the two fields.

We show that DLOF produces an accurate measure-
ment of the flow field irrespective of the fraction of labeled
filaments. Thus, DLOF techniques can fully characterize
the instantaneous state of an active nematic from one set
of images. Furthermore, the DLOF results are higher res-
olution and less noisy than those from PIV. These findings
suggest that DLOF models can be used for more accurate
and robust measurements of the velocity field in diverse
active and other soft matter systems.

II. DEEP LEARNING OPTICAL FLOW (DLOF)

DLOF use convolutional neural networks for the auto-
matic extraction of relevant features from the two adja-
cent frames in a video and use the extracted features to
estimate the movements of objects between the two video
frames [29, 32, 38, 77, 78]. DLOF models are typically
trained using supervised learning algorithms, in which
training data are synthetic videos that include the true
motions of all the objects in the videos across the video
frames [79–85]. Synthetic data are required by this ap-
proach because obtaining the true displacements of ob-
jects in real-world videos is highly challenging. Thus,
the ability of the models to properly adapt to unseen
data from a different domain becomes crucial for the
trained models to be useful in real-world scenarios. A
recent study suggested that a model called RAFT (Recur-
rent All-pairs Field Transforms for Optical Flow), which
was originally trained using synthetic data, could gener-
alize well to unseen fluid dynamics videos [58, 78]. How-
ever, this study evaluated the model’s performance on
simulation-generated videos and did not evaluate the per-
formance on challenging videos obtained in experiments,
such as the active nematics described above.

We evaluate the performance of RAFT on estimating
velocity fields in active nematics experimental videos. In
the sub-sections below, we briefly explain RAFT’s archi-
tecture and relevant training methods. We describe ex-
perimental data collection in Section III. In section IV,
we present and discuss the benchmarks of RAFT against
PIV on the active nematics experiments, using particle
tracking data as ground-truth.

A. Architecture of the RAFT model

RAFT estimates the optical flow from a pair of images
(I1, I2) in three main stages: (1) Extract features of the
input images using a convolutional neural network, (2)
Use those extracted features to construct a correlation
volume that computes the visual similarity of the images,
and (3) Compute the final flow through an iterative pro-
cess.

Feature map extraction. The model uses an encoder
gθ, which is a convolutional neural network, to extract
features from the two input images. In particular, gθ ex-
tracts features at 1/8 resolution; i.e., gθ : RH0×W0×C 7→
RH0/8×W0/8×D, where H0 and W0 are the height and
width of the images, C the number of color channels
(C = 3 for RGB and C = 1 for grayscale images), and D
the number of desired feature maps to be extracted. The
encoder gradually reduces the resolution of the output
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Figure 1. Microtubule (MT)-based active nematics. (A) Microscopic components of the active nematic liquid crystal.
Kinesin motor clusters consume energy to actively slide neighboring MTs against each other. (B) The active nematic exhibits
the spontaneous flow that deforms the nematic texture over time. All MTs are fluorescently labeled at 647 nm. Increased local
intensity indicates a higher local filament concentration. The time step is 7.5 s. (C) In Experiment 1, the fully labeled MTs
(top panel) are mixed with a sparse population of MTs that fluoresce at 488 nm (bottom panel), which are used to generate
ground-truth velocity points. (D) In Experiment 2, the fully labeled MTs (top panel) are mixed with passivated microbeads,
which are used to generate the ground-truth velocities (bottom panel).

feature maps; i.e., it successively outputs feature maps at
1/2, 1/4, and finally 1/8 resolution. For each of these
steps, the resolution reduction is performed by convolu-
tional residual neural network blocks (Figure 2A). In gen-
eral, feature maps produced at lower resolutions extract
spatial correlations at higher levels with a wider receptive
field, and it has been shown empirically that learning fea-
tures at the aforementioned resolutions offers a balance
between the model’s performance and complexity [78].

Construction of correlation feature map. Visual
similarity between the two input frames is required to
find the correspondences of moving objects between them.
RAFT computes the visual similarity by constructing a
correlation between all pairs of extracted features of first
the image gθ(I1) ∈ RH×W×D, and then that of the sec-
ond image gθ(I2) ∈ RH×W×D (right part of Fig. 2A).
The elements of a correlation volume C(gθ(I1), gθ(I2) ∈
RH×W×H×W are given by Cijkl =

∑
h gθ(I1)ijh ·gθ(I2)klh.

Correlations are further computed as a 4-layer pyramid
{C1,C2,C3,C4}, where Ck has dimensions H × W ×
H/2k×W/2k (Figure 2B). Here, the reduction of the last

two dimensions of the correlation volume C by a factor
of 2k is achieved by pooling the last two dimensions of C
with kernel size k and equivalent stride. Having correla-
tions at multiple levels through {C1,C2,C3,C4} allows
the model to handle both small and large displacements.
The first two dimensions (that belong to I1) are main-
tained to preserve high-resolution information, enabling
the model to detect motions of small fast-moving objects.

The link between an object in I1 and its estimated
correspondence in I2 is determined through correlation
lookup using the correlation pyramid, as described in Fig.
2C. The correspondence x′ ∈ I2 of a pixel x = (u, v) ∈ I1
is estimated by x′ = (u+f1(u), v+f2(v)), where (f1, f2) is
the current estimate of DLOF between I1 and I2. A local
grid around x′ is then defined as N (x′)r = {x′+dx | dx ∈
Z, ∥dx∥1 ≤ r}, a set of integer offsets that are within a
radius of r of x′ (using ℓ1 distance). The local neigh-
borhood N (x′)r is used to index from all levels of the
correlation pyramid using bilinear sampling, such that
the grid N (x′/2k)r is used to index the correlations Ck.
At a constant searching radius r across all levels, a local
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Figure 2. Main components of the DLOF model. (A) Feature extraction and construction of feature-level correlations: A
convolutional neural network (CNN) is used to extract D feature maps of resolution of H × W for each of the input images.
Taking the inner product of the features maps of two images produces all-pair feature-level correlation volumes C1 of dimension
H × W × H × W . (B) Correlation pyramid: Multi-scale feature correlations are constructed by pooling the last two
dimensions of C1, such that those dimensions are reduced by 1/2, 1/4, and 1/8, resulting in C2, C3, and C4, respectively. The
first two dimensions preserve high-resolution information while multi-scale correlations enable the model to capture the motions
of small fast-moving objects. (C) Correlation lookup for a pixel x in I1: An estimate of the location of the correspondence
x′ (in I2) is initialized by displacing x using the current flow estimate f . The model then looks for the most correlated features
in a neighborhood N (x′)r centered at x′ (r = 3 in the figure), where all locations within N (x′)r are used to index from the
correlation pyramid {C1,C2,C3,C4} to produce correlation features at all levels, which are further concatenated to form a
single correlation feature map for the pixel x in I1.

neighborhood on a lower level implies a larger context;
for example, at k = 4, a neighborhood of r = 4 effectively
includes a range of 256 pixels at the video’s resolution.
The interpolated correlation scores at all levels are con-
catenated to form a single feature map, which serves as
an input for iterative flow refinement described below.

Iterative flow refinement. The flow between the two
input images is determined through an iterative process,
such that the final flow fN is obtained from the sequence
fk+1 = fk + ∆f where 0 ≤ k ≤ N − 1, f0 = 0, N is
the number of iterations, and ∆f is being produced by
the model at each of the iterations. The flow updating
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is performed by a convolutional Gated Recurrent Unit
(ConvGRU) cell [86], in which convolutions have replaced
fully connected layers:

zt = σ(Conv3×3([ht−1, xt],Wz)) (1)

rt = σ(Conv3×3([ht−1, xt],Wr)) (2)

h̃t = tanh(Conv3×3([rt ⊙ ht−1, xt],Wh)) (3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4)

where xt, zt, rt, h̃t, ht are the input, update gate, reset
gate, internal memory state, and hidden state at time
t, respectively; σ(·) is the sigmoid function, tanh(·) the
hyperbolic tangent, and Conv3×3(·,W ) the convolution
operator with kernel size 3 × 3 and bias W . Here, the
hidden state ht is further processed by two convolutions
to produce the flow update ∆f at time t.

In the above set of equations, at a current time t, the in-
put xt is the concatenation of the current flow estimate,
correlation, and context features. The update gate zt,
which is calculated using the last hidden state ht−1 and
the current input xt, controls how much past knowledge
should be considered in the computation of the current
hidden state ht. The reset signal rt is a function of the
current input xt and the last hidden state ht−1, and de-
termines how much of the past knowledge to forget. The
internal memory h̃t of the GRU cell is calculated using the
current input xt and the last hidden state ht−1 weighted
by the reset gate rt. Finally, the hidden state is updated
by the weighted sum of the last hidden state ht−1 and the
current cell memory h̃t, with the update gate zt controling
the weights distribution.

B. Training DLOF

Most state-of-the-art DLOF models are trained via su-
pervised learning using synthetic data, where flow ground
truths can be obtained straightforwardly during data
generation. The supervised loss Ls used to optimize
RAFT’s parameters compares the sequence of predictions
{f1, ..., fN} with the flow ground truth fgt, with exponen-
tially increasing weights:

Ls =

N∑
i=1

γN−1∥fgt − fi∥1 (5)

where γ < 1.
RAFT is trained using supervised learning, and it has

been shown to generalize well to data in other domains
[58, 78]. When it is required, the model’s parameters can
be further fine-tuned using the real-world data in the tar-
get domain; however, unsupervised learning is generally
required because ground truths of those data are often
unavailable.

Unsupervised training. An approach to unsupervised
training is to generate realistic pseudo-flow ground truth
data using the current model, and then use that pseudo
ground truth data for further optimizing the model’s pa-
rameters. In this approach, the current model is first used
to warp the image I1 to produce an estimate of the im-
age I2, i.e., Ĩ2 = Ω(I1, f) where Ω is the warping function
that displaces the pixels in I1 according to the current
estimate f of the flow. Ĩ2 can be then used as a pseudo
ground truth to compute a simple unsupervised loss

Lu = wphoto · Lphoto + wsmooth · Lsmooth (6)

where Lphoto denotes the photometric loss between I2 and
Ĩ2, Lsmooth flow smoothness regularization, and wphoto,
wsmooth are the weights. The photometric loss quantifies
the structural and visual differences between I2 and Ĩ2,
being aware of occluded regions in which pixels in I1 do
not have their correspondences in I2. A common metric
used for photometric loss is the occlusion-aware struc-
tural similarity index (SSIM) [25, 87]. A major challenge
in unsupervised training of DLOF models is to obtain an
accurate estimate of occlusions [77], which cannot be di-
rectly measured when dealing with real-world data. The
unsupervised loss above also has a second term to en-
courage the smoothness of the resultant velocity fields.
For example, the kth order smoothness is defined as [77]

Lsmooth(k) =
1

n

∑
exp

(
−∇I

σ

)
· ∥∇(n)V ∥ (7)

where ∇I detects the edges in the current image, ∇(k)V
is the k-th order gradient of the corresponding velocity
field, σ controls the strength of the regularization, and n
is total number of samples.

We obtained the results in the benchmarks of this work
using a RAFT model that was trained with the FlyingTh-
ings synthetic datasets [85], which yielded the highest per-
formance in our investigation. During velocity computa-
tion, we empirically set the number of iterations for flow
refinement to 24.
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III. ACTIVE NEMATICS SAMPLES

We tested the performance of the DLOF framework
using a MT-based active nematic liquid crystal [64]. An
active nematic is a quasi-2D liquid crystal comprised of lo-
cally aligned filamentous MTs. When powered by kinesin
molecular motors, extensile MTs spontaneously generate
a chaotic flow field that varies over space and time, and
in turn reorients the nematic texture (Fig. 1A-B). Typ-
ically, the velocity field is computed by performing PIV
on images of active nematics comprised of fluorescently
labeled MTs. However, this method can be inaccurate
when all the MTs are labeled, as these samples have poor
contrast variations in fluorescence intensity, especially in
the direction of the MT alignment [73].

We performed two distinct experiments, each contain-
ing a different type of tracer that we used to estimate
the ground truth. In both experiments, a large fraction
of MTs were labeled with a fluorescent dye that emits
647 nm wavelength photons. In Experiment 1, samples
contained a very low concentration of 488 nm labeled
MTs. They were dilute enough so that individual fila-
ments could be distinguished (Fig. 1C, bottom panel).
However, accurately linking the detected MTs into time
trajectories was only possible for a small fraction of the
dilute population. In Experiment 2, instead of relying
on dilute labeling, we mixed passivated 488 nm fluores-
cent microbeads into the active nematic (Fig. 1D, bottom
panel). Although not directly incorporated into the quasi-
2D active nematic, these beads were located right above
the nematic layer and followed the same flow field. Com-
pared to the sparsely-labeled MTs, the beads could be
reliably tracked across several frames with an automated
algorithm [SI], thus providing a larger set of velocity val-
ues that served as the ground truth.

IV. RESULTS & DISCUSSION

A. Experiment I: ground truth provided by
sparsely labeled MTs

We first studied active nematics containing both
densely and sparsely labeled MTs with different fluo-
rophores. The sample was imaged sequentially in the
dense and sparse channel. Using these samples we first
performed PIV and DLOF on densely labeled samples.
This data was compared to particle tracking of sparsely-
labeled active nematics, which served as ground truth
(Fig. 3). We found that the velocities estimated by PIV
for densely labeled systems are highly inaccurate. DLOF

overcomes this limitation of PIV and provides more ac-
curate estimates of both the magnitude and the direction
of the velocity. We hypothesize that the breakdown of
the PIV for densely labeled systems arises because the
algorithm cannot reliably distinguish contrast variations
at high densities. As we show below, the breakdown is
strongest in directions parallel to the director field. PIV
significantly underestimates the velocity tangent to the
MT bundles because the contrast is more uniform in that
direction, as was previously reported [68, 73–76].

To quantify the above-described observations, we used
PIV and DLOF to estimate the velocity fields from the
dense and dilute channels. We compared these to the
ground truth based on single-particle tracking. PIV and
DLOF estimate the flow field everywhere while single
particle tracking yields velocities only at the location of
tracked points. For each of the inter-frame displacements
of the traced labels, the velocity magnitude error is calcu-
lated by |||v||−||v∗|||/||v∗|| where v∗ is the true displace-
ment vector obtained from particle tracking at a partic-
ular position and v is the velocity obtained at the same
position from either the PIV or DLOF. The orientation
error θ is calculated using the cosine similarity, where
cos(θ) = v · v∗/(||v|| · ||v∗||). By repeating the procedure
for all tracked particles we obtained the distribution of
measurement errors (Figs. 4). PIV and DLOF have com-
parable errors for sparse labels (Fig. 4B). Specifically, us-
ing the sparse labels, PIV and DLOF have mean relative
speed errors of 19% and 23%, respectively. However, with
dense labels, PIV results were more unreliable, with rel-
ative speed errors extending out to 100%, and the mean
relative speed error increased to 42%. In contrast, the
DLOF estimates are nearly as good as those with sparse
labels, with a mean relative speed error of 29% (Fig. 4A).
Similarly, the mean orientation errors of PIV and DLOF
are also comparable when using sparse labels, 14 and 17
degrees, respectively (Fig. 4D). The discrepancy between
orientation errors produced by PIV and DLOF becomes
significant when using dense labels, where the mean ori-
entation error of PIV increases to 44 degrees while that
of DLOF is only 29 degrees (Fig. 4C).

Previous studies [68, 74–76] had shown that uniform
contrast along densely labeled MT bundles poses a ma-
jor challenge to PIV, resulting in significantly underesti-
mated velocity component tangent to the MT bundles.
We therefore evaluated the contribution of this effect to
our observed breakdown of PIV as follows. We extracted
the director, i.e., the local orientation, of the MT bundles
using the dense labels and computed average errors of ve-
locities obtained by PIV and DLOF as functions of the
angle between ground truth velocity and director (Fig.
5). We find that when the MTs are moving in directions
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Figure 3. DLOF outperforms PIV for densely labeled samples. (left) The trajectory of an individual MT, which is
imaged every 1.5 seconds. MT true velocities (cyan arrows) are obtained by particle tracking. The velocity vectors estimated
by PIV and DLOFs are indicated respectively with green and orange arrows. The insets depict the densely labeled MTs in local
neighborhoods of the tracked labels at the indicated times. The high densities of the labels in the images pose a significant
challenge to PIV, resulting in inaccurate velocity estimates. In contrast, DLOF produces highly accurate velocities. Particle
tracking was extracted from a simultaneously imaged sparsely labeled channel.

with significant components along the director, PIV pro-
duces high relative speed errors (Fig. 5A) and orientation
errors (Fig. 5B). DLOF strongly improves the estimation
of velocities in these directions. In particular, the im-
provement of DLOF over PIV uniformly increases as the
velocity direction approaches the director field. When the
velocities are parallel to the directors (i.e., angles between
velocity and director are less than 1 degree), the average
relative speed error is reduced by 37% with DLOF (com-
pared to PIV), and average orientation error reduced by
31%. This analysis shows that DLOF can resolve this
well-known limitation of PIV, and thus establishes DLOF
as an alternative method capable of obtaining accurate
velocity fields with dense labels.

Comparing PIV and DLOF spatial flow fields. Thus
far, our analysis has focused on the accuracy of the PIV
and DLOF methods in estimating the velocities of in-
dividual traced labels. Next, we evaluate the quality of
the two-dimensional flow fields produced by each method.
In this case, we do not have ground truth to compare
against, since the tracked dilute MTs do not yield the
spatial flow fields. The analysis described above showed
that PIV and DLOF are comparable for sparsely labeled
systems. Therefore, we use the flow fields determined by
PIV with sparse labels as the baseline. For a meaning-
ful comparison, we note that PIV produced the velocity
fields on lower-resolution spatial grids when compared to
DLOF. Therefore, we interpolate the DLOF results onto
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Figure 4. Comparing PIV and DLOF to single-filament tracking. Distribution of errors when comparing PIV and
DLOF velocity fields from sparsely and densely labeled samples to single-filament tracking. The distributions of errors in the
magnitude and orientation of the velocity (defined in the text) for PIV and DLOF. Errors are computed by comparing different
estimates with particle tracking results. The mean relative speed errors for PIV are 42% and 19% for densely and sparsely
labeled systems; errors for DLOF are 29% and 23%. The mean orientation errors for PIV are 44 degrees and 14 degrees for
densely and sparsely labeled systems; errors for DLOF are 29 degrees and 17 degrees. The distributions are obtained from 4738
traced labels across 44 frames in Experiment 1.

the lower-resolution grid of the PIV results. PIV and
DLOF produce consistent flow fields for sparsely labeled
samples (Fig 6). However, the DLOF results are signifi-
cantly smoother. While the DLOF results are somewhat
noisier for the densely labeled system, the correct flow
structure is maintained. In comparison, PIV on densely
labeled systems produces an inaccurate flow structure.
Importantly, the DLOF model correctly estimates veloc-
ities across different regions and different scales of the
flow speed. For example, MT bundles move faster in the
vicinity of +1/2 topological defects and slower near −1/2
defects.

We compared the flow speeds obtained from PIV and

DLOF averaged over the entire field (Fig. 7). Consistent
with the previous analysis above, the PIV and DLOF es-
timates are nearly identical for sparsely labeled samples.
The DLOF estimates for dense labels fall within the 95%
confidence interval. In contrast, PIV significantly under-
estimates the velocities for dense labels.

As a further comparison between different methods, we
define the normalized zero-lag cross-correlation between
an estimated velocity and the ground truth as

C =

∑
i vi · v∗

i∑
i v

∗
i · v∗

i

=

∑
i vi · v∗

i∑
i ∥v∗

i ∥2
, (8)

where vi and v∗
i are the estimated and the ground truth
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Figure 5. The improvement of DLOF over PIV increases as the velocity becomes parallel to the director field
(for dense labels). Average relative speed error (A) and average orientation error (B) of PIV and DLOF as a function of the
angle between ground truth velocity and director. PIV particularly breaks when the velocities are tangent to the MT bundles
due to the uniform contrast of the dense labels along MT bundles. DLOF can handle the uniform contrast along MT bundles
and thus produces much more accurate velocities.

Figure 6. Comparison of the velocity fields in the x-direction (top row) and y-direction (bottom row) produced
by PIV and DLOF for sparse labels (blue and magenta highlighted), and by PIV and DLOF for dense labels
(green and orange highlighted). The velocity fields are calculated for the first frame obtained from Experiment 1. DLOF
always produces smoother fields, due to its capability to estimate displacements on a pixel-level. Remarkably, when dealing
with dense labels, velocity fields estimated by DLOF are significantly more accurate than those produced by PIV (by comparing
green and orange boxes for each velocity component).
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Figure 7. Comparison of mean flow speeds as a function
of time. The flow speeds (µm/s) averaged over the entire
spatial domain are shown as a function of time over the 44
frames of the benchmark video using the dense labels. The
frame interval is 1.5 seconds, and results are shown for sparse
and dense labels for PIV and optical flow. The shaded areas
show 95% confidence levels of the mean speeds.

velocities of the traced label i, and
∑

i sums over all the
traced labels in the current frame. A perfect velocity esti-
mation would yield C = 1, while C > 1 indicates that, on
average, flow speeds are overestimated and C < 1 underes-
timated. PIV and DLOF perform similarly for sparse la-
bels (Fig. 8). The performance discrepancy between PIV
and DLOF becomes significant for dense labels, where
velocities produced by DLOF are still highly correlated
with the ground truths. In contrast, velocities estimated
by PIV result in significantly lower correlations.

B. Experiment 2: ground truth provided by passive
beads

We also compared DLOF and PIV against tracked pas-
sive beads, which served as the ground truth. In each
frame, we compared the instantaneous velocity of each
bead to the velocities at the same position generated by
PIV and DLOF. Since we computed PIV on a sparse
grid, we interpolated its values as necessary to correspond
to bead positions. As in Experiment 1, the comparison
shows that DLOF is more accurate than PIV (Fig. 9). In
particular, the difference in speeds between the beads and
the DLOF velocities was significantly smaller than that
between the beads and PIV (Fig. 9A). Similarly, the an-

Figure 8. Normalized zero-lag cross-correlation be-
tween velocity estimates and ground truth. The nor-
malized spatial correlation (Eq. (8)) is shown for optical flow
on sparsely and densely labeled systems, as well as PIV on
densely labeled systems, as a function of time.

gular orientations of DLOF velocities were also closer to
the bead velocities (Fig. 9B). At each time point, the spa-
tially averaged mean speed of the DLOF field was closer
to that of the beads, while the mean speed of PIV was
systematically lower (Fig. 9C). This result is consistent
with the notion that PIV systematically underestimates
the motion of MTs when their motion is locally paral-
lel, rather than perpendicular, to intensity gradients in
the image on a length scale larger than the size of PIV’s
interrogation region [6, 7]. Lastly, the zero-lag cross-
correlation Eq. (8) between the DLOF and bead velocities
was consistently higher than the correlation between PIV
and bead velocities (Fig. 9D).

Our benchmarks demonstrate the accuracy of DLOF
for extracting velocities from active nematics, surpassing
the limitations of traditional PIV methods. Although we
have trained and demonstrated the model on 2D active
nematics samples captured with a 60× magnification ob-
jective, we note that it appears to generalize well to other
magnifications and situations, such as 2D slices from a 3D
isotropic active MT system [64] captured at lower magni-
fication (10×), provided that: there is sufficient contrast
between labeled MTs and the background, the illumina-
tion of MTs does not change significantly between the
two input frames, and the movements between two input
frames are smaller than the algorithm’s search window
and the scale of the moving textures in the images.
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Figure 9. Comparison of PIV and DLOF where passive
tracer beads generate the ground-truth velocities. (A)
Histograms of speed differences between PIV and bead veloc-
ities, and between optical flow and bead velocities. (B) His-
tograms of angular orientation differences between PIV and
bead velocities, and between optical flow and bead velocities.
(C) Mean speed of the beads, PIV, and optical flow over time.
The speed is averaged over all available points for the given
field (note that there are far more optical flow points than PIV
points, and far more PIV points than beads, in each frame).
Error bars indicate the standard deviation. (D) Zero-lag cross
correlation between PIV and bead velocities, and between PIV
and optical flow velocities over time (Eq. (8)).

V. CONCLUSIONS

We compared DLOF and PIV for estimating the veloc-
ity fields of active nematics. DLOF produces spatially
smoother velocity fields. It also generates more accu-
rate flows than PIV for high densities of fluorescent fil-
aments. Furthermore, unlike PIV, DLOF eliminates the
need to manually tune and readjust the model’s param-
eters when working with data that have high contrast
variances across the entire data. This is essential for an-
alyzing large amounts of data, or for real-time control
applications where it is impractical to manually tune pa-
rameters of algorithms such as PIV. There is growing in-

terest in applying data-driven and machine-learning ap-
proaches to physics and materials discovery [88–96], but
these approaches are limited by the availability of train-
ing data. The ability of DLOF to autonomously generate
high-quality velocity fields is a crucial step for advancing
these applications.
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SUPPLEMENTARY INFORMATION

In Experiment 1, active nematics were prepared as pre-
viously described [73]. The sample contained 1 mM ATP
with 1 mg/mL Alexa-647 labeled MTs. We doped the
active mixture with 10 ng/mL of Alexa-488 labeled MTs.
We imaged these samples on an epi-fluorescence micro-
scope (Nikon Ti2) equipped with an oil immersion objec-
tive 60X (NA 1.25) objective. The densely labeled Alexa-
647 MTs and sparsely doped Alexa-488-labeled MTs were
sequentially imaged every 1.50 seconds using a motorized
fluorescence filter turret.

In Experiment 2, active nematics were prepared fol-
lowing a similar procedure. The sample was mixed with
0.5 µm carboxyl beads which fluoresced at 488 nm. To
suppress bead aggregation, the beads were coated with
amine-PEG (20 KDa PEG) using a previously described
protocol [97]. The beads were mixed into the rest of the
active mixture, which was then introduced into the sam-
ple chamber. The sample was spun down in a swinging
bucket rotor (Sorvall LYNX 6000) at 2000×g for 10 min-
utes. These samples were imaged with a Nikon Eclipse
microscope and PCO Edge 4.2 camera using a 60X, 1.25
NA objective. The two channels (647 and 488 nm) were
imaged sequentially, with an overall time step of 0.25 s,
using a Lumencor Spectra light engine and a multi-band
filter cube.

For all active nematic datasets, PIV was performed us-
ing PIVLab v. 2.61 in MATLAB [4]. For pre-processing,
CLAHE was applied with a window size of 32 pixels, and
auto-contrast stretch was applied. For analyzing the PIV,
3 passes were used, with interrogation windows of 64, 32,



12

and 16 pixels, and step sizes 32, 16, 8 pixels, respectively.
For the sub-pixel estimator, the Gauss 2x3-point setting
was used. The standard setting was used for correlation
robustness. For post-processing the PIV fields, the vector

validation routine with threshold of 8 times the standard
deviation was used, with a local median threshold of 3.
The routine was set to interpolate missing data.
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